Coherent ρ Production in Neutrino-nucleus Interactions

Xinchun Tian

Department of Physics and Astronomy

DIS 2015 @ Dallas, TX, 4/27-5/1, 2015

Xinchun Tian (USC, Columbia)

Outline

Introduction

$\begin{array}{l} \mbox{Coherent } \rho \mbox{ production at NOMAD} \\ \mbox{Coherent } \rho^+ \\ \mbox{Coherent } \rho^0 \end{array}$

Coherent Meson Production at $\mathsf{DUNE}/\mathsf{LBNF}$

Conclusion

Xinchun Tian (USC, Columbia)

$\mathsf{Coh}\rho$ production in neutrino-nucleus

- Neutrino scatters coherently off a target nucleus
- No quantum numbers (charge, spin, isospin) exchange
- Small momentum transfer, large energy transfer
- ρ emitted at small angles with respect to the incident neutrino

Vector Meson Dominance Model

Conservation of Vector Current

$$rac{d^3\sigma(
u_\mu\mathcal{A}
ightarrow \mu^-
ho^+\mathcal{A})}{dQ^2d
u dt} = rac{G_F^2}{4\pi^2}rac{f_
ho^2}{1-\epsilon}rac{|q|}{E_
u^2}\left[rac{Q}{Q^2+m_
ho^2}
ight]^2(1+\epsilon R)\left[rac{d\sigma^T(
ho^+\mathcal{A}
ightarrow
ho^+\mathcal{A})}{dt}
ight]$$

In simple Rein Sehgal meson absorption model

$$rac{d\sigma^{T}(
ho^{+}\mathcal{A}
ightarrow
ho^{+}\mathcal{A})}{dt}=rac{\mathcal{A}^{2}}{16\pi}\sigma^{2}(hn)exp(-b|t|)F_{abs}$$

 $\mathrm{Coh}\rho^0$ is about 15% of $\mathrm{Coh}\rho^+$ related by weak mixing angle

$$\frac{d^3\sigma(\nu_\mu\mathcal{A}\to\nu_\mu\rho^0\mathcal{A})}{dQ^2d\nu dt}=\frac{1}{2}(1-2\sin^2\theta_W)^2\frac{d^3\sigma(\nu_\mu\mathcal{A}\to\mu^-\rho^+\mathcal{A})}{dQ^2d\nu dt}$$

Xinchun Tian (USC, Columbia)

Motivation for Coherent Meson Production Study

Physics

- Structure of Weak-Current and its Hadronic-Content
 - Coh π : Partially Conserved Axial Current (PCAC) and Adler's theorem at high energy ($E_{\nu} > 2 \text{ GeV}$) and Microscopic model at low energy ($E_{\nu} < 1.5 \text{ GeV}$)
 - Cohp: Conserved Vector Current (CVC) and Vector Meson Dominance (VMD)

Motivation for Coherent Meson Production Study

Physics

- Structure of Weak-Current and its Hadronic-Content
 - Coh π : Partially Conserved Axial Current (PCAC) and Adler's theorem at high energy ($E_{\nu} > 2 \text{ GeV}$) and Microscopic model at low energy ($E_{\nu} < 1.5 \text{ GeV}$)
 - Cohp: Conserved Vector Current (CVC) and Vector Meson Dominance (VMD)

Utility

• Precise measurement of Coherent meson, π and ρ could constrain neutrino flux and energy scale with indepedent systematics

Coherent ρ production at NOMAD

The NOMAD Detector

Average neutrino energy is $\sim 25~\text{GeV}$

sub-detectors		performance
Drift Chambers (2.7 tons)	Target & tracking	$\delta r < 200 \ \mu m$
$ ho = 0.1 ext{ g/cm}^3$		$\delta p \sim 3.5\%$ @ $p < 10~{ m GeV}/c$
Transition Radiation Detector (TRD)	e^{\pm} identification	90% e^{\pm} eff. with π rejection @10 ³
Muon Chambers	Muon identification	$\epsilon\sim 97\%$ @ $p_{\mu}>5~{ m GeV}/c$
Electromagnetic Calorimeter (ECL)	Lead glass	$\frac{\sigma(E)}{E} = (1.04 \pm 0.01)\% + \frac{3.22 \pm 0.07}{\%} E(\text{GeV})$
Hadronic Calorimeter (HCAL)	neutron and K_L^0 veto	

Xinchun Tian (USC, Columbia)

Coherent ρ production at NOMAD

$\mathrm{Coh}\rho^{\pm,0}$ Measurements Status

The Coh ho^{\pm} measurements have very large errors and no measurement of NC-Coh ho^0

Experiment	$\nu/\bar{\nu}$	Channel	Target	$< E_{ u} > ({ m GeV})$	σ (10 ⁻⁴⁰ cm ² /nucleus)
E546	ν	ρ^+	Neon (A=20)	51	189.7±59
BEBC WA59	$\bar{\nu}$	ρ^{-}	Neon (A=20)	18	73±23
E632	$\nu + \bar{\nu}$	ρ^{\pm}	Neon (A=20)	86	210±80
SKAT	ν	ρ^+	Freon (A=30)	10	29±16

Coherent ρ^+

Introduction

$\begin{array}{l} \mbox{Coherent } \rho \mbox{ production at NOMAD} \\ \mbox{Coherent } \rho^+ \\ \mbox{Coherent } \rho^0 \end{array}$

Coherent Meson Production at DUNE/LBNF

Conclusion

Xinchun Tian (USC, Columbia)

Cohp@DIS 2015

053015 8 / 27

Coherent ρ production at NOMAD Coherent ρ^+

What we are looking for in CC ρ^+ - $\mu^-\pi^++2$ clusters and little else

Xinchun Tian (USC, Columbia)

Cohp@DIS 2015

053015 9 / 27

Coherent ρ production at NOMAD Coherent ρ^+

What we are looking for in CC ρ^+ - $\mu^-\pi^+$ + 1 cluster + 1 V_0 with little else

Xinchun Tian (USC, Columbia)

Cohp@DIS 2015

053015 10 / 27

Coherent ρ^+

Data Analysis - Likelihood/Neural-Network

- The events passing the preselection subjected to multi-variant analysis
- The background is constrained using the control (background) region
- Both Likelihood (LH) and Neural-Network (NN) have been fully validated using Mock-data.

Xinchun Tian (USC, Columbia)

Coherent ρ production at NOMAD Coherent ρ^+

Kinematics in the signal region

A Coherent ρ^+ signal must pass four tests

12 / 27

Systematics

Total overall systematic error - $\pm 3.9\%$

- Background normalization $\pm 1.6\%$
 - Dominated by CC-DIS, use the control region in LH to get a normalization factor and error
- Absolute normalization $\pm 2.5\%$
 - From inclusive CC cross section measurement
- Efficiency $\pm 2.5\%$
 - Mockdata study < 1%
 - Vary LH-cuts, difference in LH .vs. NN $\pm 1.6\%$
 - Vary the MC-parameters $\pm 2.5\%$

Coherent ρ production at NOMAD Coherent ρ^+

Measurement of $\sigma_{{\rm Coh} ho^+}/\sigma_{{\rm CC}}$ as a function of $E_{ u}$

Xinchun Tian (USC, Columbia)

Coherent ρ production at NOMAD Coherent ρ^+

Measurement of $\sigma_{{\rm Coh} ho^+}$ as a function of $E_{ u}$

NOMAD data favor the model with R = 0, i.e. there is little longitudinal contribution in Coh ρ production

Xinchun Tian (USC, Columbia)

Coherent ρ^0

Introduction

$\begin{array}{l} \mbox{Coherent } \rho \mbox{ production at NOMAD} \\ \mbox{Coherent } \rho^+ \\ \mbox{Coherent } \rho^0 \end{array}$

Coherent Meson Production at DUNE/LBNF

Conclusion

Xinchun Tian (USC, Columbia)

Cohp@DIS 2015

053015 16 / 27

Coherent ρ production at NOMAD Coherent ρ^0

What we are looking for in NC - $\rho^0 \rightarrow \pi^+\pi^-$ with little else

Measure the background: shape and normalization

- Preselection Cuts: Fiducial volume, Muon veto, 2-track, $E_{\pi\pi} > 2$ GeV, Upstream-hanger, Photon veto, $20^{\circ} < \phi_{\pi\pi} < 160^{\circ}$
- $0.6 < m_{\pi\pi} < 1.0 \; {
 m GeV}$
- $\zeta_{\pi\pi}$ is the critical variable distinguishing $\operatorname{Coh}\rho^0$ from background. Need to know the shape and normalization of background very well.

Background Calibration

- Outside Background (OBG)
 - 2-track events with primary vertex outside
 - Normalize it to the K_0 peak in $m_{\pi\pi}$ plot
- NC Background Shape
 - Use CC-DIS events with 3, 3-&-4 tracks w/ μ^-
 - Remove the muon, (+,-) subjected to the standard selection
 - Obtain a NC-DIS MC Re-weight based on Data/MC ($p_{\pi^{\pm}}$, $p_{\pi^{\pm}}^{\rm T}$, $m_{\pi\pi}$, $\zeta_{\pi\pi}$)
 - Apply the Re-weight to calibrate the shape of $\zeta_{\pi\pi}$
 - Tried 3 track sample and 3 -&-4 track sample, 1D/2D/3D/4D re-weighting matrix. The difference is within 10%
- NC Background Normalization
 - Re-weighted using $\phi_{\pi\pi}$ distribution in $\zeta_{\pi\pi} > 0.075$ control (background) region

Coherent ρ production at NOMAD Co

Coherent ρ^0

NC Background Calibration

- Shape: re-weighted using CC Data-Simulator
- Normalization: re-weighted using $\phi_{\pi\pi}$ distribution in $\zeta_{\pi\pi} > 0.075$ region (background region) Xinchun Tian (USC, Columbia) Cohe@DIS 2015 053015

20 / 27

$m_{\pi\pi}$ Distribution

Xinchun Tian (USC, Columbia)

Results

- Using $\zeta_{\pi\pi}$, fit for ${\rm Coh}
 ho^0$ in \leq 0.1 region
- We observed $669 \pm 116 \,({\rm stat.}) \pm 88 \,({\rm syst.})$ fully corrected Coherent ρ^0 events. The rate with respect to CC events (1.44 M) is $(4.65 \pm 1.01) \times 10^{-4}$
- The first observation of neutrino induced NC Coherent ρ^0

Systematics

Total overall systematic error - $\pm 13.4\%$

- Data-Simulator: shape of $\zeta_{\pi\pi}$ in NC-DIS $\pm 10.8\%$
 - Using only $\zeta_{\pi\pi}$ re-weight (which does not descirbe the $\pi\pi$ system in CC-data well)
- NC-DIS ±7.17%
 - Using $\pm 2.2\%$ variation (constrained by $\phi_{\pi\pi}$ in the background region)
- CC-DIS ±2.24%
- Absolute normalization $\pm 2.5\%$
 - From inclusive CC cross section measurement
- OBG ±0.0%
 - With 833 data events used to simulate the OBG, a 3.5% variation in its normalization had a negligible effect on the $Coh\rho^0$ normalization.

Sensitivity Study of Coherent-Meson Production in a Fine Grain Straw Tube Tracker (STT) - the proposed DUNE Near Detector

• The DUNE ND will have a much a higher resolution and statistics $(\times 50)$ than NOMAD, but lower energy $(\sim 1/4)$

The proposed High Resolution DUNE/LBNF Near Detector

	Performance Metric	FGT
	Straw Tube Detector Volume	3.5m x 3.5m x 6.4m
	Straw Tube Detector Mass	8 tonnes
	Vertex Resolution	$0.1 \mathrm{mm}$
	Angular Resolution	2 mrad
	E_e Resolution	5%
	E_{μ} Resolution	5%
	$\nu_{\mu}/\bar{\nu}_{\mu}$ ID	Yes
	$\nu_e/\bar{\nu}_e$ ID	Yes
	$NC\pi^0/CCe$ Rejection	0.1%
	$NC\gamma/CCe$ Rejection	0.2%
X	$CC\mu/CCe$ Rejection	0.01%

- Built on the NOMAD experience
- Determination of the beam flux at the Near Site and the measurement of ν_{e} -appearance backgrounds (Primary purpose)
- Precision Standard Model neutrino physics measurements, such as precise measurement of the weak mixing angle

Xinchun Tian (USC, Columbia)

Coherent Meson Production at DUNE/LBNF

NOMAD Coh $\rho^{\pm,0}$ Measurements

Experiment	$\nu/\bar{\nu}$	Channel	Target	$< E_{ u} > ({ m GeV})$	$\sigma~(10^{-40}~{ m cm}^2/{ m nucleus})$
E546	ν	ρ^+	Neon (A=20)	51	189.7±59
BEBC WA59	$\bar{\nu}$	ρ^{-}	Neon (A=20)	18	73±23
E632	$\nu + \bar{\nu}$	ρ^{\pm}	Neon (A=20)	86	210±80
SKAT	ν	ρ^+	Freon (A=30)	10	29±16
NOMAD	ν	ρ^+	Carbon (A=12.8)	24.8	67.00±5.67

- Most precise measurement of $Coh\rho^+$ up to date
- First observation of Cohρ⁰: $\sigma = (10.30 \pm 2.25) \times 10^{-40}$ cm²/nucleus

 $R(Coh\rho^0/Coh\rho^+)=0.155\pm0.036$, consistent with prediction

Xinchun Tian (USC, Columbia)

26 / 27

Conclusion

Conclusion

- We have conducted a measurement of Coherent $\rho^{+,0}$ production using NOMAD data a clear Coherent $\rho^{+,0}$ signal is observed
 - We observe 4318.8±307.4 (stat.)±168.4 (syst.) fully corrected Coherent ρ^+ events, The rate with respect to ν_μ -CC events (1.44 M) is (3.00±0.24)×10^{-3}
 - We observed $669 \pm 116 \,({\rm stat.}) \pm 88 \,({\rm syst.})$ fully corrected Coherent ρ^0 events. The rate with respect to CC events (1.44 M) is $(4.65 \pm 1.01) \times 10^{-4}$. The first observation of neutrino induced NC Coherent ρ^0
 - $R(Coh\rho^0/Coh\rho^+)=(669.0\pm145.6)/(4318.8\pm350.5)=0.155\pm0.036$
- The observed rate and kinematics are consistent with theory (CVC and VMD)
- The analysis is largely data-driven the backgrounds are constrained using control samples
- The knowledge from NOMAD analysis of the coherent meson studies is applicable on DUNE ND studies which will have a much a higher resolution and statistics, but lower energy, than NOMAD

Xinchun Tian (USC, Columbia)

Backups

Cross Secton

$$\frac{d^3\sigma(\nu_{\mu}\mathcal{A}\to\mu^-\rho^+\mathcal{A})}{dQ^2d\nu dt} = \frac{G_F^2}{4\pi^2}\frac{f_{\rho}^2}{1-\epsilon}\frac{|q|}{E_{\nu}^2}\left[\frac{Q}{Q^2+m_{\rho}^2}\right]^2(1+\epsilon R)\left[\frac{d\sigma^T(\rho^+\mathcal{A}\to\rho^+\mathcal{A})}{dt}\right] \tag{1}$$

where G_F is the weak coupling constant, $Q^2 = -q^2 = -(k - k')^2$, $t = (p - p')^2$, $\nu = E_{\nu} - E_{\mu}$, $x = Q^2/(2\nu M)$, $y = \nu/E_{\nu}$, g_{ρ} is related to the ρ form-factor, the polarization parameter $\epsilon = \frac{4E_{\nu}E_{\mu}-Q^2}{4E_{\nu}E_{\mu}+Q^2+2\nu^2}$, and $R = \frac{d\sigma^L/dt}{d\sigma^T/dt}$ with σ^L and σ^T as the longitudinal and transverse ρ -nucleus cross sections. The ρ form factor f_{ρ} is related to the corresponding factor in charged-lepton scattering, $f_{\rho}^{\pm} = f_{\rho 0}^{\gamma} \sqrt{2} \cos \theta_C$, θ_C is the Cabibbo angle and $f_{\rho}^{\gamma} = m_{\rho}^2/\gamma_{\rho}$ is the coupling of ρ^0 to photon $(\gamma_{\rho}^2/4\pi = 2.4 \pm 0.1)$.

Following the Rein-Sehgal model of meson-nucleus absorption,

$$\frac{d\sigma^{T}(\rho^{+}\mathcal{A} \to \rho^{+}\mathcal{A})}{dt} = \frac{\mathcal{A}^{2}}{16\pi}\sigma^{2}(hn)exp(-b|t|)F_{abs}$$
(2)

where $\sigma(hn)$ is the 'hadron-nucleon' cross-section with the energy of the hadron $\simeq \nu$, $b = R^2/3$ such that $R = R_0 A^{1/3}$, with $R_0 = 1.12 fm$ and the absorption factor $F_{abs} = 0.47 \pm 0.03$.

Xinchun Tian (USC, Columbia)

Cohp@DIS 2015

053015 28 / 27

The SPS Beam

ν	$ u/ u_{\mu}$
$ u_{\mu}$	1.0
$ar{ u}_{\mu}$	0.025
ν_e	0.015
$\bar{\nu}_e$	0.0015

Backups

MC

- Total ν_{μ} -CC is normalized to 1.44 M
- QE is normalized to 33 k
- Resonance is normalized to 43 k ($\sim 15\%$ error)
- Coh π^+ is normalized to 10 k (${\sim}25\%$ error)

MC

• Deep Inelastic Scattering (DIS)

- Modelled with the help of modified LEPTO 6.1 package
- Production of all zoo of hadrons is simulated with help of JETSET 7.4
- Structure functions are calculated for LO GRV 98 pdf according A. Bodek prescriptions
- Quasi-Elastic scattering (QE)
 - Based on the Smith-Moniz approach
 - The vector form-factors F_V and F_M are supposed to be well known (the GKex(05) parametrization)
 - The axial form-factor has the dipole form $F_A(Q^2) = F_A(0)[1+Q^2/M_A^2]^{-2}$

• Resonance/single pion production

- Based on ReinSehgal (RS) model
- Set of 18th baryon resonances with masses below 2 GeV as in RS but with all relevant parameters updated according to the most recent PDG
- Factors which were estimated in RS numerically are corrected by using the new data and a more accurate integration algorithm
- Coherent pion production
 - Based on Rein-Sehgal (RS) model
- Final state interactions
 - Modelled with the help of DPMJET package, based on the Formation Zone Intranuclear Cascade model

Xinchun Tian (USC, Columbia)

Coh*p*@DIS 2015

053015 31 / 27

NC ρ^0 : Signal & Background

- Signal: $\rho^0 \to \pi^+\pi^-$
- Background
 - NC-DIS: 2-Track (+,-). The largest contribution
 - CC-DIS: 2-Track (+,-) where no muon identified. small contribution
 - Outside Background (OBG): *K*₀ from outside-interactions. Small contribution

NC ρ^0 : Control Sample

- Control Sample: CC Data Simulator Correction
 - ν_{μ} -CC events where the μ^{-} is identified and then "removed", the remaining hadronic (+,-) tracks subjected to the analysis.