

First Rosenbluth separation of π^0 electroproduction cross section

Maxime Defurne CEA-Saclay Irfu/SPhN/LSN The DVCS Hall A collaboration

April the 29th 2015

Generalized parton distributions

- GPDs are generalization of form factors and PDF
- t_{min} = minimal squared momentum transfer t' = t_{min} -t $x_{B}=Q^{2}/(2M\nu)$

- Applying the factorization to deep exclusive processes:
 - Hard part calculable perturbatively.
 - Soft part encoded in GPDs (At leading-twist: 4 chiral-odd/ 4 chiral-even)

π^{0} : another QCD bound state

- Second factorization needed for the pion
 => Distribution amplitude is a second non perturbative object!
 - Additional unknown w.r.t. DVCS (Carlos Munoz's talk)

• Product of two twist-expansions!!

GPDs and electroproduction of π^0 For $ep \rightarrow ep\pi^0$, with ε degree of longitudinal polarization of the photon:

$$\frac{d\sigma}{dt} = \frac{d\sigma_T}{dt} + \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_{TL}}{dt} \sqrt{2\varepsilon (1+\varepsilon)} \cos(\Phi) + \frac{d\sigma_{TT}}{dt} \varepsilon \cos(2\Phi)$$

- σ_T and σ_L responses to a transversely/longitudinally polarized virtual photon

- σ_{TT} and σ_{TL} interferences between the responses.
- At leading-twist (tw-2 GPDs and tw-2 DA), only longitudinal responses!

$$\sigma_L$$
 very small (GPD \tilde{H}, \tilde{E})

Results of π^0 electroproduction

For $ep \to ep\pi^0$

$$\frac{d\sigma}{dt} = \frac{d\sigma_T}{dt} + \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_{TL}}{dt} \sqrt{2\varepsilon (1+\varepsilon)} \cos(\Phi) + \frac{d\sigma_{TT}}{dt} \varepsilon \cos(2\Phi)$$

[1]: CLAS Collaboration, Bedlinskiy et al., Phys.Rev.C.90 (2014)[2]: Fuchey et al., Phys.Rev.C.83 (2011)

Transversity GPDs at twist 3

• Twist-2 Chiral odd GPDs must couple to chiral odd DAs which are twist-3 DAs.

Ahmad, et al. PRD79,(2009); Goldstein, Osvaldo Gonzalez Hernandez, Liuti arXiv:1401.0438

• Although kinematically suppressed w.r.t. to twist-2, twist-3 DA contributions enhanced by:

 $\frac{m_{\pi}^2}{m_{\nu}+m_{d}}$

According to Goloskokov and Kroll model, we have:

 $\frac{d\sigma_{TT}}{dt} \propto |\langle \bar{E}_T \rangle|^2$ \Rightarrow Direct access to $\frac{d\sigma_T}{dt} \propto (1 - \xi^2) |\langle H_T \rangle|^2 - \frac{t'}{8M^2} |\langle \bar{E}_T \rangle|^2 \qquad \frac{\text{transversity GPDs}}{(H_T, H_T, E_T)}$

Rosenbluth separation to evaluate L/T contributions ullet

Goloskokov, Kroll, Transversity in hard exclusive electroproduction of pseudoscalar mesons, Eur. Phys. J. A, 47:112 (2011)

Thomas Jefferson National Accelerator Facility

- The E07-007 experiment ran from October to December 2010 at JLab Hall A
- Provides a continuous polarized electron beam to three (soon four) experimental halls.
- Maximum beam current: 200 µA
- All the halls are running experiments on fixed targets (Here it is liquid hydrogen).
- Spring 2014, first electrons at 10 GeV sent in CEBAF.

E07-007 kinematical settings

 Rosenbluth separation: Change only *ε* to perform L/T separation Need to extract cross sections at two different beam energies.

$$\frac{d\sigma}{dt} = \frac{d\sigma_T}{dt} + \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_{TL}}{dt} \sqrt{2\varepsilon (1+\varepsilon)} \cos(\Phi) + \frac{d\sigma_{TT}}{dt} \varepsilon \cos(2\Phi)$$

x_{B}	$Q^2 (GeV^2)$	beam Energy (GeV)	3
0.36	1.5	(3.355 ; 5.55)	(0.52 ; 0.84)
0.36	1.75	(4.455 ; 5.55)	(0.65 ; 0.79)
0.36	2	(4.455 ; 5.55)	(0.53 ; 0.72)

Cuts to select events

• Strong *Q*² dependence of the different responses from Hall A and CLAS results. Need to match low beam energy and high beam energy acceptances of the spectrometer.

Cuts to select events

• Two dimensional cuts on squared missing-mass and invariant mass of the two photons for exclusivity and particle identification.

Local fit procedure and extraction

• Least square fitting procedure: $\chi^2 = \sum_{k=0}^{N_{bin}} \left(\frac{N_k^{exp} - N_k^{sim}}{\sigma_1^{exp}} \right)^2$

$$N_k^{sim} = L \int_{\Phi_k} \frac{d^4\sigma}{d^4\Phi} d^4\Phi$$

 $d^4\Phi = dQ^2 dt dx_B d\varphi$

Fit number of counts for both beam energies data set AT THE SAME TIME.

• Using the natural parametrization: $\frac{d^{4}\sigma}{d^{4}\Phi} = \Gamma(x_{B}, Q^{2}, E)$ $\times \left[\frac{d\sigma_{T}}{dt} + \varepsilon \frac{d\sigma_{L}}{dt} + \frac{d\sigma_{TL}}{dt} \sqrt{2\varepsilon (1+\varepsilon)} \cos(\Phi) + \frac{d\sigma_{TT}}{dt} \varepsilon \cos(2\Phi) \right]$

• Use the Monte-Carlo to integrate $\Gamma(x_B, Q^2, E)$ and ε over the spectrometer acceptance

Differential cross sections in t and Φ

$$\varepsilon = 0.6!$$

 $\varepsilon = 0.79$

 $\sigma_{_{\sf T}}$ (red circle) and $\sigma_{_{\sf I}}$ (blue triangle)

 σ_{τ} (red circle) and σ_{μ} (blue triangle)

Systematic error evaluation

• No significant systematic error from exclusivity cut.

• Interference terms are also very stable with exclusivity cut.

Q^2 -dependence of σ_T

• Fitting a function $\frac{A}{O^n}$ to the averaged results over t'

• Seems to indicate the handbag diagram dominance

Conclusions

- The main contribution is the transverse response.
- Fair agreement with Goloskokov-Kroll predictions.
- Longitudinal response is found to very small: upper bound for \tilde{H} and \tilde{E} .
- Hints of non-zero longitudinal contribution at small t' and $Q^2 = 2 \ GeV^2$: Interesting to study higher Q^2 with higher $R = \frac{\sigma_L}{\sigma_T}$

Outlook

• Proposal for Rosenbluth separation in Hall C approved.

- The High Momentum Spectrometer with 11-GeV beam allow to access higher Q^2 .
- Better energy and position resolution with the PbWO₄ calorimeter

