Higher Fock states in CGC

A.V. Grabovsky

Novosibirsk State University and Budker Inst. of Nuclear Physics

DIS 2015, 29.04.2015 Dallas, SMU

A.V. Grabovsky Higher Fock states in CGC

ヘロン 人間 とくほ とくほ とう

3

Motivation

- LO equation for baryon Wilson loop (with R. Gerasimov)
- NLO equation (with I. Balitsky)
 - NLO quasi-conformal equation
 - Linearization
- Results and discussion

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Motivation

Dipole picture ? $\sigma_{\gamma^*}(s, Q^2) = \int d^2 \mathbf{r} \int_0^1 dx |\Psi_{\gamma^*}(\mathbf{r}, x, Q^2)|^2 \sigma_{dip}(\mathbf{r}, s).$ $\sigma_{dip}(\mathbf{r}, s) = 2 \int d^2 \mathbf{b} (1 - \frac{1}{N_c} U_{12}(\mathbf{b}, \mathbf{r}, s))$

where U_{12} obeys the Balitsky-Kovchegov evolution equation

個人 くほん くほん

Previous work

- M. Praszalowicz and A. Rostworowski, 1998 Proton wave function with one and two gluon emissions was studied. Indication that new color structures, not only dipoles and three-quark singlets (like proton) appear.
- Y. Hatta, E. Iancu, K. Itakura and L. McLerran, 2005 -Odderon in the color glass condensate was studied. Linear evolution equation for 3-quark Wilson line (its C-odd part) was obtained in the coordiante representation. It was shown that this equation is equivalent to the BKP equation in the momentum representation.
- J. Bartels and L. Motyka, 2008 Wave function, impact factor were studied. Gluon radiation was diagonalized into the evolution of 2-quark, 3-quark, and 4-quark states in C-even and C-odd states obeying the BKP equations with nonlinear terms.

<週 > < 注 > < 注 > ... 注

Shock wave formalism

LO I. Balitsky 1996, NLO I. Balitsky and G. Chirilli 2006-2013

Color field of a fast moving particle $A^- \sim \delta(z^+) A^{\eta}(z_{\perp})$ $A^{\eta}(z_{\perp})$ contains slow components with rapidities $< \eta$

Quark propagator in such an external field $G(x, y) \sim U^{\eta}(z_{\perp})$

DIS matrix element contains a Wilson loop = color dipole operator $U_{12}^{\eta} = tr(U^{\eta}(z_{1\perp})U^{\eta\dagger}(z_{2\perp})).$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

$$B_{123} = \varepsilon^{i'j'h'}\varepsilon_{ijh}U(\vec{z}_1)^i_{j'}U(\vec{z}_2)^j_{j'}U(\vec{z}_3)^h_{h'} = U_1 \cdot U_2 \cdot U_3.$$

• *B*₁₂₃ is gauge invariant since under a gauge rotation the Wilson lines change

$$U(\vec{z}_1)^i_{j'} o V(x)^i_k U(\vec{z}_1)^k_{k'} V(y)^{k'}_{j'}, \quad V \in SU(3).$$

•
$$\varepsilon^{i'j'h'}U^i_{i'}U^j_{j'}U^h_{h'} = \varepsilon^{ijh},$$

• $\varepsilon_{ijh}\varepsilon^{i'j'h'}U^i_{i'}U^j_{j'} = 2(U^{\dagger})^{h'}_{h}, \quad \varepsilon_{ijh}\varepsilon^{i'j'h'}(U^{\dagger})^i_{i'}(U^{\dagger})^j_{j'} = 2U^{h'}_{h},$
• $U_i \cdot U_j \cdot U_k = (U_iU^{\dagger}_l) \cdot (U_jU^{\dagger}_l) \cdot (U_kU^{\dagger}_l).$

• $B_{iij}^{\eta} = U_i \cdot U_i \cdot U_j = 2tr(U_j U_i^{\dagger})$, i.e. quark-diquark and quark-antiquark systems are described by the same operator.

・ 戸 ・ ・ ヨ ・ ・ 雪 ・

LO Evolution equation for a 3-quark Wilson loop

$$B_{123}^{\eta} = \varepsilon^{i'j'h'} \varepsilon_{ijh} U^{\eta} (\vec{z}_{1})_{i'}^{i} U^{\eta} (\vec{z}_{2})_{j'}^{j} U^{\eta} (\vec{z}_{3})_{h'}^{h} = U_{1} \cdot U_{2} \cdot U_{3}$$

$$\frac{\partial B_{123}^{\eta}}{\partial \eta} = \frac{\alpha_{s}3}{4\pi^{2}} \int d\vec{z}_{4} \left[\frac{\vec{z}_{12}}{\vec{z}_{41}^{2}\vec{z}_{42}^{2}} (-B_{123}^{\eta} + \frac{1}{6} (B_{144}^{\eta} B_{324}^{\eta} + B_{244}^{\eta} B_{314}^{\eta} - B_{344}^{\eta} B_{214}^{\eta})) + (1 \leftrightarrow 3) + (2 \leftrightarrow 3) \right].$$

agrees with JIMWLK results (A. Kovner M. Lublinsky Y. Mulian)

A.V. Grabovsky Higher Fock states in CGC

Quark-diquark limit

 $B_{122}^{\eta} = U_1 \cdot U_2 \cdot U_2 = 2tr(U_1 U_2^{\dagger})$, i.e. quark-diquark and quark-antiquark systems are described by the same operator. The evolution equation should go into the dipole Balitsky-Kovchegov evolution equation as $\vec{z}_{23} \rightarrow 0$

$$\frac{\partial tr(U_1 U_2^{\dagger})}{\partial \eta} = \frac{\alpha_s}{2\pi^2} \int d\vec{z}_4 \frac{\vec{z}_{12}^2}{\vec{z}_{14}^2 \vec{z}_{42}^2} \left[tr(U_1 U_4^{\dagger}) tr(U_4 U_2^{\dagger}) - N_c tr(U_1 U_2^{\dagger}) \right].$$

Indeed this is the case

+

$$\frac{\partial B_{122}^{\eta}}{\partial \eta} = \frac{\alpha_s 3}{4\pi^2} \int d\vec{z}_4 \left[\frac{\vec{z}_{12}}{\vec{z}_{41}^2 \vec{z}_{42}^2} (-B_{122}^{\eta} + \frac{1}{6} (B_{144}^{\eta} B_{224}^{\eta} + B_{244}^{\eta} B_{214}^{\eta} - B_{244}^{\eta} B_{214}^{\eta})) + (1 \to 2) + (2 \leftrightarrow 2) \right].$$

(過) (ヨ) (ヨ)

We build C-even and C-odd operators with $B^{\eta}_{\overline{1}\overline{2}\overline{3}} = \varepsilon^{i'j'h'}\varepsilon_{ijh}U^{\eta\dagger}(\vec{z}_1)^{i}_{j'}U^{\eta\dagger}(\vec{z}_2)^{j}_{j'}U^{\eta\dagger}(\vec{z}_3)^{h}_{h'} = U^{\dagger}_1 \cdot U^{\dagger}_2 \cdot U^{\dagger}_3$

$$egin{aligned} B^+_{123} &= B^\eta_{123} + B^\eta_{ar{1}ar{2}ar{3}} - 12, \quad B^-_{123} &= B^\eta_{123} - B^\eta_{ar{1}ar{2}ar{3}} \ B^+_{123} &= rac{1}{2}(B^+_{133} + B^+_{211} + B^+_{322}) + ilde{B}^+_{123}, \end{aligned}$$

where \tilde{B}^+_{123} works from the 4-gluon exchange. In SU(3)

$$B_{iij} = 2tr(U_j U_i^{\dagger})$$

 $\rightarrow B_{123}^+$ splits into 3 LO C-even BK Green functions and one NLO contribution. cf. Bartels and Motyka 2007 ?

(個) (日) (日) (日)

C-odd case

$$\begin{aligned} \frac{\partial B_{123}^{-}}{\partial \eta} &= \frac{\alpha_{s}^{3}}{4\pi^{2}} \int d\vec{z}_{4} \frac{\vec{z}_{12}^{2}}{\vec{z}_{14}^{2} \vec{z}_{42}^{2}} \left[B_{423}^{-} + B_{143}^{-} - B_{123}^{-} \right. \\ \left. - B_{124}^{-} - B_{443}^{-} + B_{424}^{-} + B_{144}^{-} + \frac{1}{12} \left(B_{144}^{+} B_{324}^{-} + B_{244}^{+} B_{314}^{-} - B_{344}^{+} B_{214}^{-} \right) \right. \\ \left. + \frac{1}{12} \left(B_{144}^{-} B_{324}^{+} + B_{244}^{-} B_{314}^{+} - B_{344}^{-} B_{214}^{+} \right) \right] + (2 \leftrightarrow 3) + (1 \leftrightarrow 3). \end{aligned}$$

The linear part of this result coincides with the linear result of Hatta, lancu, Itakura, McLerran 2005, which they proved to coincide with the BKP equation.

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

NLO corrections

NLO evolution of 2 Wilson lines with open indices from Balitsky and Chirilli 2013

NLO corrections

$$\begin{split} & -\frac{\alpha_s^2}{8\pi^4} \int d\vec{r}_0 d\vec{r}_4 \, \left[\left\{ \tilde{L}_{12} \left(U_0 U_4^{\dagger} U_2 \right) \cdot \left(U_1 U_0^{\dagger} U_4 \right) \cdot U_3 \right. \\ & + L_{12} \left[\left(U_0 U_4^{\dagger} U_2 \right) \cdot \left(U_1 U_0^{\dagger} U_4 \right) \cdot U_3 + tr \left(U_0 U_4^{\dagger} \right) \left(U_1 U_0^{\dagger} U_2 \right) \cdot U_3 \cdot U_4 \right. \\ & \left. -\frac{3}{4} [B_{144} B_{234} + B_{244} B_{134} - B_{344} B_{124}] + \frac{1}{2} B_{123} \right] \\ & + (M_{13} - M_{12} - M_{23} + M_2^{13}) \left[\left(U_0 U_4^{\dagger} U_3 \right) \cdot \left(U_2 U_0^{\dagger} U_1 \right) \cdot U_4 \right. \\ & + \left(U_1 U_0^{\dagger} U_2 \right) \cdot \left(U_3 U_4^{\dagger} U_0 \right) \cdot U_4 \right] + (\text{all 5 permutations } 1 \leftrightarrow 2 \leftrightarrow 3) \} + \left. \left(0 \leftrightarrow 4 \right) \right] \\ & \left. -\frac{\alpha_s^2 n_f}{16\pi^4} \int d\vec{r}_0 d\vec{r}_4 \left[\left\{ \left(\frac{1}{3} (U_1 U_0^{\dagger} U_4 + U_4 U_0^{\dagger} U_1) \cdot U_2 \cdot U_3 - \frac{1}{9} B_{123} tr (U_0^{\dagger} U_4) \right. \\ & \left. + \left(U_1 U_0^{\dagger} U_2 \right) \cdot U_3 \cdot U_4 + \frac{1}{6} B_{123} - \frac{1}{4} (B_{013} B_{002} + B_{001} B_{023} - B_{012} B_{003}) \right. \\ & \left. + \left. \left(1 \leftrightarrow 2 \right) \right) + \left(0 \leftrightarrow 4 \right) \right\} L_{12}^q + \left(1 \leftrightarrow 3 \right) + \left(2 \leftrightarrow 3 \right) \right] \\ & \beta \ln \frac{1}{\tilde{\mu}^2} = \left(\frac{11}{3} - \frac{2}{3} \frac{n_f}{3} \right) \ln \left(\frac{\mu^2}{4e^{2\psi(1)}} \right) + \frac{67}{9} - \frac{\pi^2}{3} - \frac{10}{9} \frac{n_f}{3} . \end{split}$$

This equation has correct dipole limit.

Remains to compare with JIMWLK results (A. Kovner M. Lublinsky Y. Mulian)

NLO corrections

Pomeron contribution $L_{12}(0 \leftrightarrow 4) = L_{12}$

$$\begin{aligned} L_{12} &= \left[\frac{1}{\vec{r}_{01}^{2} \vec{r}_{24}^{2} - \vec{r}_{02}^{2} \vec{r}_{14}^{2}} \left(-\frac{\vec{r}_{12}^{4}}{8} \left(\frac{1}{\vec{r}_{01}^{2} \vec{r}_{24}^{2}} + \frac{1}{\vec{r}_{02}^{2} \vec{r}_{14}^{2}} \right) + \frac{\vec{r}_{12}^{2}}{\vec{r}_{04}^{2}} - \frac{\vec{r}_{02}^{2} \vec{r}_{14}^{2} + \vec{r}_{01}^{2} \vec{r}_{24}^{2}}{4\vec{r}_{04}^{4}} \right) \\ &+ \frac{\vec{r}_{12}^{2}}{8\vec{r}_{04}^{2}} \left(\frac{1}{\vec{r}_{02}^{2} \vec{r}_{14}^{2}} - \frac{1}{\vec{r}_{01}^{2} \vec{r}_{24}^{2}} \right) \right] \ln \left(\frac{\vec{r}_{01}^{2} \vec{r}_{24}^{2}}{\vec{r}_{14}^{2} \vec{r}_{02}^{2}} \right) + \frac{1}{2\vec{r}_{04}^{4}}. \\ L_{12}^{q} &= \frac{1}{\vec{r}_{04}^{4}} \left\{ \frac{\vec{r}_{02}^{2} \vec{r}_{14}^{2} + \vec{r}_{01}^{2} \vec{r}_{24}^{2} - \vec{r}_{04}^{2} \vec{r}_{12}^{2}}{2(\vec{r}_{02}^{2} \vec{r}_{14}^{2} - \vec{r}_{01}^{2} \vec{r}_{24}^{2})} \ln \left(\frac{\vec{r}_{02}^{2} \vec{r}_{14}^{2}}{\vec{r}_{01}^{2} \vec{r}_{24}^{2}} \right) - 1 \right\}. \end{aligned}$$

2-point contribution to odderon $\tilde{L}_{12}(0 \leftrightarrow 4) = -\tilde{L}_{12}$

$$\tilde{L}_{12} = \frac{\vec{r}_{12}^2}{8} \left[\frac{\vec{r}_{12}^2}{\vec{r}_{01}^2 \vec{r}_{02}^2 \vec{r}_{14}^2 \vec{r}_{24}^2} - \frac{1}{\vec{r}_{01}^2 \vec{r}_{04}^2 \vec{r}_{24}^2} - \frac{1}{\vec{r}_{02}^2 \vec{r}_{04}^2 \vec{r}_{14}^2} \right] \ln \left(\frac{\vec{r}_{01}^2 \vec{r}_{24}^2}{\vec{r}_{14}^2 \vec{r}_{02}^2} \right).$$

New structures

$$\begin{split} M_{12} &= \frac{\vec{r}_{12}^2}{16} \left[\frac{\vec{r}_{12}^2}{\vec{r}_{01}^2 \vec{r}_{02}^2 \vec{r}_{14}^2 \vec{r}_{24}^2} - \frac{1}{\vec{r}_{01}^2 \vec{r}_{04}^2 \vec{r}_{24}^2} - \frac{1}{\vec{r}_{02}^2 \vec{r}_{04}^2 \vec{r}_{14}^2} \right] \ln \left(\frac{\vec{r}_{01}^2 \vec{r}_{02}^2}{\vec{r}_{14}^2 \vec{r}_{24}^2} \right) . \\ M_2^{13} &= \frac{1}{4\vec{r}_{01}^2 \vec{r}_{34}^2} \left(\frac{\vec{r}_{12}^2 \vec{r}_{23}^2}{\vec{r}_{02}^2 \vec{r}_{24}^2} - \frac{\vec{r}_{14}^2 \vec{r}_{23}^2}{\vec{r}_{04}^2 \vec{r}_{24}^2} - \frac{\vec{r}_{03}^2 \vec{r}_{12}^2}{\vec{r}_{02}^2 \vec{r}_{04}^2} + \frac{\vec{r}_{13}^2}{\vec{r}_{04}^2} \right) \ln \left(\frac{\vec{r}_{02}^2}{\vec{r}_{24}^2} \right) . \end{split}$$

A.V. Grabovsky Higher Fock states in CGC

NLO corrections: quasi-conformal kernel

To construct composite conformal operators we will use the model (I. Balitsky and G. Chirilli 2009, A. Kovner M. Lublinsky Y. Mulian 2014)

$$O^{conf} = O + \frac{1}{2} \frac{\partial O}{\partial \eta} \left| \frac{\frac{\vec{r}_{mn}^2}{\vec{r}_{mn}^2 r_{mn}^2} \rightarrow \frac{\vec{r}_{mn}^2}{\vec{r}_{mn}^2 r_{mn}^2} \ln\left(\frac{\vec{r}_{mn}^2 a}{\vec{r}_{mn}^2 r_{mn}^2}\right) \right|,$$

where *a* is an arbitrary constant. For the conformal 3QWL operator we have the following ansatz

$$B_{123}^{conf} = B_{123} + \frac{\alpha_s 3}{8\pi^2} \int d\vec{r}_4 \left[\frac{\vec{r}_{12}}{\vec{r}_{41}^2 \vec{r}_{42}^2} \ln \left(\frac{a\vec{r}_{12}}{\vec{r}_{41}^2 \vec{r}_{42}^2} \right) \right]$$

$$\times (-B_{123} + \frac{1}{6} (B_{144} B_{324} + B_{244} B_{314} - B_{344} B_{214})) + (1 \leftrightarrow 3) + (2 \leftrightarrow 3)$$
If we put $\vec{r}_2 = \vec{r}_3$, then

$$B_{122}^{conf} = B_{122} + \frac{\alpha_s 3}{4\pi^2} \int d\vec{r}_4 \frac{\vec{r}_{12}^2}{\vec{r}_{41}^2 \vec{r}_{42}^2} \ln\left(\frac{a\vec{r}_{12}^2}{\vec{r}_{41}^2 \vec{r}_{42}^2}\right) (-B_{122} + \frac{1}{6} B_{144} B_{224}).$$

Quasi-conformal kernel

 \sim *n*_f part does not change

$$\begin{split} \langle \mathcal{K}_{\mathsf{NLO}} \otimes \mathcal{B}_{123}^{conf} \rangle &= -\frac{\alpha_s^2}{8\pi^4} \int d\vec{r}_0 d\vec{r}_4 \; \left(\left\{ \tilde{L}_{12}^C \left(U_0 U_4^{\dagger} U_2 \right) \cdot \left(U_1 U_0^{\dagger} U_4 \right) \cdot U_3 \right. \\ \left. + \mathcal{L}_{12}^C \left[\left(U_0 U_4^{\dagger} U_2 \right) \cdot \left(U_1 U_0^{\dagger} U_4 \right) \cdot U_3 + tr \left(U_0 U_4^{\dagger} \right) \left(U_1 U_0^{\dagger} U_2 \right) \cdot U_3 \cdot U_4 \right. \\ \left. - \frac{3}{4} [\mathcal{B}_{144} \mathcal{B}_{234} + \mathcal{B}_{244} \mathcal{B}_{134} - \mathcal{B}_{344} \mathcal{B}_{124}] + \frac{1}{2} \mathcal{B}_{123} \right] \\ \left. + \mathcal{M}_{12}^C \left[\left(U_0 U_4^{\dagger} U_3 \right) \cdot \left(U_2 U_0^{\dagger} U_1 \right) \cdot U_4 + \left(U_1 U_0^{\dagger} U_2 \right) \cdot \left(U_3 U_4^{\dagger} U_0 \right) \cdot U_4 \right] \right. \\ \left. + n_f(\ldots) + \; (\text{all 5 permutations } 1 \leftrightarrow 2 \leftrightarrow 3) \right\} + (0 \leftrightarrow 4)) \\ \left. - \frac{\alpha_s^2}{8\pi^3} \int d\vec{r}_0 \left(\frac{\beta}{2} \left[\ln \left(\frac{\vec{r}_{01}^2}{\vec{r}_{02}^2} \right) \left(\frac{1}{\vec{r}_{02}^2} - \frac{1}{\vec{r}_{01}^2} \right) - \frac{\vec{r}_{12}^2}{\vec{r}_{01}^2 \vec{r}_{02}^2} \ln \left(\frac{\vec{r}_{12}^2}{\vec{\mu}^2} \right) \right] \right] \\ \left. \times \left(\frac{3}{2} (\mathcal{B}_{100} \mathcal{B}_{230} + \mathcal{B}_{200} \mathcal{B}_{130} - \mathcal{B}_{300} \mathcal{B}_{210}) - \mathcal{9} \mathcal{B}_{123} \right) + (1 \leftrightarrow 3) + (2 \leftrightarrow 3) \right) \right. \\ \left. - \frac{\alpha_s^2}{32\pi^3} \int d\vec{r}_0 \left(\mathcal{B}_{003} \mathcal{B}_{012} \left[\frac{\vec{r}_{32}^2}{\vec{r}_{02}^2} \ln^2 \left(\frac{\vec{r}_{32}^2 \vec{r}_{10}^2}{\vec{r}_{13}^2 \vec{r}_{20}^2} \right) - \frac{\vec{r}_{12}^2}{\vec{r}_{01}^2 \vec{r}_{02}^2} \ln^2 \left(\frac{\vec{r}_{12}^2 \vec{r}_{30}^2}{\vec{r}_{13}^2 \vec{r}_{20}^2} \right) \right] \\ \left. + \left(\text{all 5 permutations } 1 \leftrightarrow 2 \leftrightarrow 3 \right) \right). \end{split}$$

Remains to compare with JIMWLK results (A. Kovner M. Lublinsky Y. Mulian)

Quasi-conformal kernel

$$\begin{split} \mathcal{L}_{12}^{C} &= \mathcal{L}_{12} + \frac{\vec{r}_{12}^{2}}{4\vec{r}_{01}^{2}\vec{r}_{04}^{2}\vec{r}_{24}^{2}} \ln\left(\frac{\vec{r}_{02}^{2}\vec{r}_{14}^{2}}{\vec{r}_{04}^{2}\vec{r}_{12}^{2}}\right) + \frac{\vec{r}_{12}^{2}}{4\vec{r}_{02}^{2}\vec{r}_{04}^{2}\vec{r}_{14}^{2}} \ln\left(\frac{\vec{r}_{01}^{2}\vec{r}_{22}^{2}}{\vec{r}_{04}^{2}\vec{r}_{12}^{2}}\right), \\ \tilde{\mathcal{L}}_{12}^{C} &= \tilde{\mathcal{L}}_{12} + \frac{\vec{r}_{12}^{2}}{4\vec{r}_{01}^{2}\vec{r}_{04}^{2}\vec{r}_{24}^{2}} \ln\left(\frac{\vec{r}_{02}^{2}\vec{r}_{14}^{2}}{\vec{r}_{04}^{2}\vec{r}_{12}^{2}}\right) - \frac{\vec{r}_{12}^{2}}{4\vec{r}_{02}^{2}\vec{r}_{04}^{2}\vec{r}_{14}^{2}} \ln\left(\frac{\vec{r}_{01}^{2}\vec{r}_{24}^{2}}{\vec{r}_{04}^{2}\vec{r}_{12}^{2}}\right), \\ \mathcal{M}_{12}^{C} &= \frac{\vec{r}_{12}^{2}}{16\vec{r}_{02}^{2}\vec{r}_{04}^{2}\vec{r}_{14}^{2}} \ln\left(\frac{\vec{r}_{01}^{2}\vec{r}_{02}^{2}\vec{r}_{34}^{4}}{\vec{r}_{03}^{4}\vec{r}_{14}^{2}\vec{r}_{24}^{2}}\right) + \frac{\vec{r}_{12}^{2}}{16\vec{r}_{01}^{2}\vec{r}_{04}^{2}\vec{r}_{24}^{2}} \ln\left(\frac{\vec{r}_{01}^{4}\vec{r}_{04}^{2}\vec{r}_{12}^{2}}{\vec{r}_{04}^{2}\vec{r}_{14}^{2}}\right) \\ &+ \frac{\vec{r}_{23}^{2}}{16\vec{r}_{02}^{2}\vec{r}_{04}^{2}\vec{r}_{34}^{2}} \ln\left(\frac{\vec{r}_{01}^{4}\vec{r}_{03}^{2}\vec{r}_{24}^{6}\vec{r}_{34}^{2}}{\vec{r}_{01}^{2}\vec{r}_{03}^{2}\vec{r}_{04}^{2}\vec{r}_{24}^{2}}\right) + \frac{\vec{r}_{23}^{2}}{16\vec{r}_{03}^{2}\vec{r}_{04}^{2}\vec{r}_{24}^{2}} \ln\left(\frac{\vec{r}_{02}^{2}\vec{r}_{14}^{2}\vec{r}_{34}^{2}}{\vec{r}_{01}^{2}\vec{r}_{03}^{2}\vec{r}_{24}^{4}}\right) \\ &+ \frac{\vec{r}_{13}^{2}}{16\vec{r}_{03}^{2}\vec{r}_{04}^{2}\vec{r}_{14}^{2}} \ln\left(\frac{\vec{r}_{02}^{4}\vec{r}_{14}^{2}\vec{r}_{34}^{2}}{\vec{r}_{03}^{2}\vec{r}_{24}^{4}}\right) + \frac{\vec{r}_{13}^{2}}{16\vec{r}_{01}^{2}\vec{r}_{04}^{2}\vec{r}_{34}^{2}} \ln\left(\frac{\vec{r}_{02}^{2}\vec{r}_{14}^{2}\vec{r}_{34}^{2}}{\vec{r}_{01}^{2}\vec{r}_{03}^{2}\vec{r}_{24}^{4}}\right) \\ &+ \frac{\vec{r}_{03}^{2}\vec{r}_{14}^{2}}{8\vec{r}_{01}^{2}\vec{r}_{02}^{2}\vec{r}_{04}^{2}\vec{r}_{34}^{2}} \ln\left(\frac{\vec{r}_{01}^{2}\vec{r}_{03}^{2}\vec{r}_{24}^{4}}{\vec{r}_{03}^{2}\vec{r}_{24}^{4}}\right) + \frac{\vec{r}_{23}^{2}\vec{r}_{24}^{2}}{8\vec{r}_{01}^{2}\vec{r}_{02}^{2}\vec{r}_{34}^{2}} \ln\left(\frac{\vec{r}_{02}^{2}\vec{r}_{14}^{2}\vec{r}_{34}^{2}}{\vec{r}_{01}^{2}\vec{r}_{02}^{2}\vec{r}_{24}^{2}}\right) \\ &+ \frac{\vec{r}_{14}^{2}\vec{r}_{23}^{2}}{8\vec{r}_{01}^{2}\vec{r}_{02}^{2}\vec{r}_{04}^{2}\vec{r}_{34}^{2}} \ln\left(\frac{\vec{r}_{01}^{2}\vec{r}_{03}^{2}\vec{r}_{24}^{4}}{\vec{r}_{34}^{2}}\right) + \frac{\vec{r}_{13}^{2}}{8\vec{r}_{01}^{2}\vec{r}_{02}^{2}\vec{r}_{34}^{2}}} \ln\left(\frac{\vec{r}$$

All these functions are conformally invariant

In the 3-gluon approximation

$$\langle \mathcal{K}_{NLO} \otimes B_{123}^{conf} \rangle \stackrel{3g}{=} -\frac{9\alpha_s^2}{8\pi^4} \int d\vec{r}_0 d\vec{r}_4 (L_{12}^C + L_{13}^C + L_{23}^C - \frac{n_f}{54} (L_{12}^q + L_{13}^q + L_{23}^q)) (B_{044} + B_{004} - 12)$$

$$-\frac{\alpha_s^2 n_f}{24\pi^4} \int d\vec{r}_0 d\vec{r}_4 \left\{ (2B_{014} - B_{001} - B_{144}) (L_{12}^q + L_{13}^q - 2L_{32}^q) + (1 \leftrightarrow 3) + (1 \leftrightarrow 2) \right\}$$

$$+ \frac{27\alpha_s^2}{4\pi^2} \zeta(3) (3 - \delta_{23} - \delta_{13} - \delta_{21}) (B_{123} - 6)$$

$$\begin{split} &-\frac{9\alpha_s^2}{64\pi^4} \int d\vec{r}_0 d\vec{r}_4 \ \left(F_0(B_{040}-B_{044})+\{F_{140}+(0\leftrightarrow 4)\}B_{140}+(\text{all 5 perm.1}\leftrightarrow 2\leftrightarrow 3)\right) \\ &-\frac{9\alpha_s^2}{64\pi^3} \int d\vec{r}_0 \left(\tilde{F}_{100}B_{100}+\tilde{F}_{230}B_{230}+(1\leftrightarrow 3)+(1\leftrightarrow 2)\right) \\ &-\frac{9\alpha_s^2}{16\pi^3} \int d\vec{r}_0 \left(\beta \left[\ln\left(\frac{\vec{r}_{01}^2}{\vec{r}_{02}^2}\right)\left(\frac{1}{\vec{r}_{02}^2}-\frac{1}{\vec{r}_{01}^2}\right)-\frac{\vec{r}_{12}^2}{\vec{r}_{01}^2\vec{r}_{02}^2}\ln\left(\frac{\vec{r}_{12}}{\vec{\mu}^2}\right)\right] \\ &\times (B_{100}+B_{230}+B_{200}+B_{130}-B_{300}-B_{210}-B_{123}-6)+(1\leftrightarrow 3)+(2\leftrightarrow 3))\,. \end{split}$$
Here $\delta_{ij}=1$, if $\vec{r}_i=\vec{r}_i$ and $\delta_{ij}=0$ otherwise.

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

$$\begin{split} \tilde{F}_{100} &= \left(\frac{\vec{r}_{12}^2}{\vec{r}_{01}^2 \vec{r}_{02}^2} - \frac{\vec{r}_{13}^2}{\vec{r}_{01}^2 \vec{r}_{03}^2} - \frac{2\vec{r}_{23}^2}{\vec{r}_{02}^2 \vec{r}_{03}^2}\right) \ln^2 \left(\frac{\vec{r}_{02}^2 \vec{r}_{13}^2}{\vec{r}_{01}^2 \vec{r}_{23}^2}\right) + \frac{\vec{r}_{23}^2}{2\vec{r}_{02}^2 \vec{r}_{03}^2} \ln^2 \left(\frac{\vec{r}_{03}^2 \vec{r}_{12}^2}{\vec{r}_{02}^2 \vec{r}_{13}^2}\right) \\ &\quad + \tilde{S}_{123} I \left(\frac{\vec{r}_{12}^2}{\vec{r}_{01}^2 \vec{r}_{02}^2}, \frac{\vec{r}_{13}^2}{\vec{r}_{01}^2 \vec{r}_{03}^2}, \frac{\vec{r}_{23}^2}{\vec{r}_{02}^2 \vec{r}_{03}^2}\right) + (2 \leftrightarrow 3), \\ \tilde{F}_{230} &= \left(\frac{2\vec{r}_{12}^2}{\vec{r}_{01}^2 \vec{r}_{02}^2} - \frac{\vec{r}_{23}^2}{2\vec{r}_{02}^2 \vec{r}_{03}^2}\right) \ln^2 \left(\frac{\vec{r}_{03}^2 \vec{r}_{12}^2}{\vec{r}_{02}^2 \vec{r}_{13}^2}\right) + \left(\frac{\vec{r}_{13}^2}{\vec{r}_{01}^2 \vec{r}_{03}^2} - \frac{\vec{r}_{12}^2}{\vec{r}_{01}^2 \vec{r}_{02}^2}\right) \ln^2 \left(\frac{\vec{r}_{02}^2 \vec{r}_{13}^2}{\vec{r}_{01}^2 \vec{r}_{03}^2}\right) \\ &\quad - \tilde{S}_{123} I \left(\frac{\vec{r}_{12}^2}{\vec{r}_{01}^2 \vec{r}_{02}^2}, \frac{\vec{r}_{13}^2}{\vec{r}_{01}^2 \vec{r}_{03}^2}, \frac{\vec{r}_{23}^2}{\vec{r}_{02}^2 \vec{r}_{03}^2}\right) + (2 \leftrightarrow 3). \\ \tilde{S}_{123} &= \left(\frac{\vec{r}_{12}^4}{\vec{r}_{01}^4 \vec{r}_{03}^4} + \frac{\vec{r}_{23}^4}{\vec{r}_{01}^4 \vec{r}_{03}^4} - \frac{2\vec{r}_{13}^2 \vec{r}_{12}^2}{\vec{r}_{01}^2 \vec{r}_{02}^2 \vec{r}_{03}^2} - \frac{2\vec{r}_{23}^2 \vec{r}_{12}^2}{\vec{r}_{01}^2 \vec{r}_{03}^2} - \frac{2\vec{r}_{13}^2 \vec{r}_{23}^2}{\vec{r}_{01}^2 \vec{r}_{03}^2}\right) \\ \end{split}$$

is the square of the area of the triangle with the corners at $r_{1,2,3}$ after the inversion.

$$I(a,b,c) = \int_0^1 \frac{dx}{a(1-x) + bx - cx(1-x)} \ln\left(\frac{a(1-x) + bx}{cx(1-x)}\right)$$

is symmetric w.r.t. interchange of its arguments function.

< ∃→

ъ

$$\begin{split} F_{0} &= \frac{\vec{r}_{12}^{2}}{2\vec{r}_{14}^{2}\vec{r}_{24}^{2}} \left(\frac{\vec{r}_{24}^{2}}{\vec{r}_{02}^{2}\vec{r}_{04}^{2}} \ln \left(\frac{\vec{r}_{01}^{2}\vec{r}_{02}^{2}\vec{r}_{34}^{4}}{\vec{r}_{14}^{2}\vec{r}_{24}^{2}\vec{r}_{03}^{4}} \right) - \frac{\vec{r}_{13}^{2}}{\vec{r}_{01}^{2}\vec{r}_{03}^{2}} \ln \left(\frac{\vec{r}_{01}^{2}\vec{r}_{13}^{2}\vec{r}_{24}^{2}}{\vec{r}_{03}^{2}\vec{r}_{12}^{2}\vec{r}_{14}^{2}} \right) \\ &+ \frac{2\vec{r}_{34}^{2}}{\vec{r}_{03}^{2}\vec{r}_{04}^{2}} \ln \left(\frac{\vec{r}_{01}^{2}\vec{r}_{02}^{2}\vec{r}_{34}^{2}}{\vec{r}_{03}^{2}\vec{r}_{04}^{2}\vec{r}_{12}^{2}} \right) \right) - (0 \leftrightarrow 4). \\ &F_{140} = \frac{\vec{r}_{12}^{2}}{\vec{r}_{02}^{2}\vec{r}_{04}^{2}\vec{r}_{14}^{2}} \ln \left(\frac{\vec{r}_{02}^{2}\vec{r}_{04}^{2}\vec{r}_{12}^{2}\vec{r}_{34}^{4}}{\vec{r}_{03}^{4}\vec{r}_{14}^{2}\vec{r}_{24}^{4}} \right) \\ &- \frac{\vec{r}_{01}^{2}\vec{r}_{23}^{2}}{\vec{r}_{03}^{2}\vec{r}_{04}^{2}\vec{r}_{14}^{2}} \ln \left(\frac{\vec{r}_{01}^{2}\vec{r}_{24}^{2}\vec{r}_{34}^{2}}{\vec{r}_{04}^{2}\vec{r}_{14}^{2}\vec{r}_{23}^{2}} \right) - \frac{\vec{r}_{23}^{2}\vec{r}_{12}^{2}}{\vec{r}_{03}^{2}\vec{r}_{14}^{2}\vec{r}_{24}^{4}} \ln \left(\frac{\vec{r}_{02}^{2}\vec{r}_{14}^{2}\vec{r}_{23}^{2}}{\vec{r}_{04}^{2}\vec{r}_{14}^{2}\vec{r}_{23}^{2}} \right) \\ &+ \frac{\vec{r}_{23}^{2}}{\vec{r}_{03}^{2}\vec{r}_{04}^{2}\vec{r}_{24}^{2}} \ln \left(\frac{\vec{r}_{02}^{2}\vec{r}_{34}^{2}}{\vec{r}_{04}^{2}\vec{r}_{23}^{2}} \right) + \frac{\vec{r}_{02}^{2}\vec{r}_{13}^{2}}{\vec{r}_{04}^{2}\vec{r}_{24}^{2}} \ln \left(\frac{\vec{r}_{01}^{2}\vec{r}_{02}^{2}\vec{r}_{34}^{4}}{\vec{r}_{04}^{2}\vec{r}_{23}^{2}} \right). \end{split}$$

All the functions *F* are conformally invariant.

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

In the 3-gluon approximation

$$B_{123}^+ \stackrel{\text{3g}}{=} \frac{1}{2}(B_{133}^+ + B_{211}^+ + B_{322}^+).$$

Therefore for model of the composite operator we use

$$B_{123}^{+conf} \stackrel{3g}{=} \frac{1}{2} (B_{133}^{+conf} + B_{211}^{+conf} + B_{322}^{+conf})$$

and

т

$$\langle \mathcal{K}_{NLO} \otimes \mathcal{B}_{123}^{+conf} \rangle \stackrel{\text{3g}}{=} \frac{1}{2} \langle \mathcal{K}_{NLO} \otimes (\mathcal{B}_{133}^{+conf} + \mathcal{B}_{211}^{+conf} + \mathcal{B}_{322}^{+conf}) \rangle.$$

This equality imposes the following constraints

$$0 = \{F_{140} + (0 \leftrightarrow 4)\} + (\text{all 5 permutations 1} \leftrightarrow 2 \leftrightarrow 3),$$

$$0 = \int d\vec{r_0} \tilde{F}_{230},$$

$$0 = \int \frac{d\vec{r_4}}{\pi} (\{F_{140} + (0 \leftrightarrow 4)\} + (2 \leftrightarrow 3)) + \tilde{F}_{100} + \frac{1}{2}\tilde{F}_{230}|_{1\leftrightarrow 3} + \frac{1}{2}\tilde{F}_{230}|_{1\leftrightarrow 2}$$

hey are satisfied.

Linearized C-odd exchange

$$\begin{split} \frac{\partial B_{123}^{-conf}}{\partial \eta} &\stackrel{_{3g}}{=} \frac{3\alpha_s \left(\mu^2\right)}{4\pi^2} \int d\vec{r}_0 \left[\left(B_{100}^{-conf} + B_{320}^{-conf} + B_{200}^{-conf} + B_{310}^{-conf} - B_{300}^{-conf} - B_{210}^{-conf} - B_{123}^{-conf} \right) \\ & \quad -B_{300}^{-conf} - B_{210}^{-conf} - B_{123}^{-conf} \right) \\ & \quad \times \left(\frac{\vec{r}_{12}^{\,2}}{\vec{r}_{01}^{\,2} \vec{r}_{02}^{\,2}} - \frac{3\alpha_s}{4\pi} \beta \left[\ln \left(\frac{\vec{r}_{01}^{\,2}}{\vec{r}_{02}^{\,2}} \right) \left(\frac{1}{\vec{r}_{02}^{\,2}} - \frac{1}{\vec{r}_{01}^{\,2}} \right) - \frac{\vec{r}_{12}^{\,2}}{\vec{r}_{01}^{\,2} \vec{r}_{02}^{\,2}} \ln \left(\frac{\vec{r}_{12}^{\,2}}{\vec{\mu}^{\,2}} \right) \right] \right) \\ & \quad + (1 \leftrightarrow 3) + (2 \leftrightarrow 3) \right] + \frac{27\alpha_s^2}{4\pi^2} \zeta(3)(3 - \delta_{23} - \delta_{13} - \delta_{21})B_{123}^{-} \\ & \quad - \frac{\alpha_s^2 n_f}{24\pi^4} \int d\vec{r}_0 d\vec{r}_4 \left\{ \left(2B_{014}^{-} - B_{001}^{-} - B_{144}^{-} \right) \left(L_{12}^q + L_{13}^q - 2L_{32}^q \right) + (1 \leftrightarrow 3) + (1 \leftrightarrow 2) \right\} \\ & \quad - \frac{9\alpha_s^2}{64\pi^3} \int d\vec{r}_0 \left(\tilde{F}_{100} B_{100}^{-} + \tilde{F}_{230} B_{230}^{-} + (1 \leftrightarrow 3) + (1 \leftrightarrow 2) \right) \\ & \quad - \frac{9\alpha_s^2}{64\pi^4} \int d\vec{r}_0 d\vec{r}_4 \left(2F_0 B_{040}^{-} + \{F_{140} + (0 \leftrightarrow 4)\} B_{140}^{-} + (\text{all 5 perm. } 1 \leftrightarrow 2 \leftrightarrow 3) \right). \end{split}$$

◆□ > ◆□ > ◆豆 > ◆豆 > →

æ

Linearized C-odd exchange for a dipole

The BK equation for the C-odd part of the color dipole operator $B_{122}^- = 2tr(U_1U_2^{\dagger}) - 2tr(U_1^{\dagger}U_2)$ in the 3-gluon approximation reads

$$\begin{split} &\frac{\partial B_{122}^{-conf}}{\partial \eta} \stackrel{_{3g}}{=} \frac{3\alpha_s \left(\mu^2\right)}{2\pi^2} \int d\vec{r}_0 (B_{100}^{-conf} + B_{220}^{-conf} - B_{122}^{-conf}) \\ &\times \left(\frac{\vec{r}_{12}}{\vec{r}_{01}^2 \vec{r}_{02}^2} - \frac{3\alpha_s}{4\pi} \beta \left[\ln \left(\frac{\vec{r}_{01}}{\vec{r}_{02}^2}\right) \left(\frac{1}{\vec{r}_{02}^2} - \frac{1}{\vec{r}_{01}^2}\right) - \frac{\vec{r}_{12}}{\vec{r}_{01}^2 \vec{r}_{02}^2} \ln \left(\frac{\vec{r}_{12}}{\vec{\mu}^2}\right) \right] \right) \\ &- \frac{9\alpha_s^2}{2\pi^4} \int d\vec{r}_0 d\vec{r}_4 \ \tilde{L}_{12}^C B_{044}^- + \frac{27\alpha_s^2}{2\pi^2} \zeta(3) B_{122}^- \\ &- \frac{\alpha_s^2 n_f}{12\pi^4} \int d\vec{r}_0 d\vec{r}_4 \left\{ (2B_{014}^- - B_{001}^- - B_{144}^-) - (2B_{024}^- - B_{002}^- - B_{244}^-) \right\} L_{12}^q \end{split}$$

This equation contains the nondipole 3QWL operators in its quark part.

御 医 金属 医 金属 医

- LO and NLO evolution equation for 3QWL.
- Quasi-conformal equation for composite 3QWL operator.
- Linearized quasi-conformal equation in 3-g approximation.
- Linearized equation for a dipole depending on 3QWLs in 3-g approximation.

Discussion

- Baryon Wilson loop is a natural SU(3) model for low-x proton Green function → phenomenology.
- 3QWL operator is the basic operator describing C-odd exchange.
- The evolution equation for the C-odd part of the 3QWL operator is the generalization of the BKP equation for odderon exchange to the saturation regime.
- However, it is valid for the colorless object, i.e. for the function $B_{ijk}^- = B^-(\vec{r}_i, \vec{r}_j, \vec{r}_k)$, which vanishes as $\vec{r}_i = \vec{r}_j = \vec{r}_k$.
- The linear approximation of the equation for the C-odd part of the 3QWL should be equivalent to the NLO BKP for odderon exchange acting in the space of such functions.
- One may try to restore the full NLO BKP kernel from our result via the technique similar to the one developed for the 2-point operators (Fadin Fiore AG Papa).

Thank you for your attention

・ 同 ト ・ ヨ ト ・ ヨ ト …

In the quark-diquark limit $ec{r}_3 ightarrow ec{r}_2$

$$\begin{cases} M_{12}^{C} \left[\left(U_{0} U_{4}^{\dagger} U_{3} \right) \cdot \left(U_{2} U_{0}^{\dagger} U_{1} \right) \cdot U_{4} + \left(U_{1} U_{0}^{\dagger} U_{2} \right) \cdot \left(U_{3} U_{4}^{\dagger} U_{0} \right) \cdot U_{4} \right] \\ + \left(\text{all 5 permutations 1} \leftrightarrow 2 \leftrightarrow 3 \right) \right\} + \left(0 \leftrightarrow 4 \right) \\ \rightarrow 2 \tilde{L}_{12}^{C} \left[tr \left(U_{0}^{\dagger} U_{4} \right) \left(tr \left(U_{2}^{\dagger} U_{0} U_{4}^{\dagger} U_{1} \right) + tr \left(U_{2}^{\dagger} U_{1} U_{4}^{\dagger} U_{0} \right) \right) \\ + 2 tr \left(U_{0}^{\dagger} U_{1} \right) tr \left(U_{2}^{\dagger} U_{4} \right) tr \left(U_{4}^{\dagger} U_{0} \right) - \left(0 \leftrightarrow 4 \right) \right], \\ \left\{ \tilde{L}_{12}^{C} \left(U_{0} U_{4}^{\dagger} U_{2} \right) \cdot \left(U_{1} U_{0}^{\dagger} U_{4} \right) \cdot U_{3} + \left(\text{all 5 permutations 1} \leftrightarrow 2 \leftrightarrow 3 \right) \right\} + \left(0 \leftrightarrow 4 \right) \\ \rightarrow 2 \tilde{L}_{12}^{C} \left[tr \left(U_{4}^{\dagger} U_{0} \right) \left(tr \left(U_{0}^{\dagger} U_{1} U_{2}^{\dagger} U_{4} \right) + tr \left(U_{0}^{\dagger} U_{4} U_{2}^{\dagger} U_{1} \right) \right) - \left(0 \leftrightarrow 4 \right) \right], \\ L_{12}^{C} \left[\left(U_{0} U_{4}^{\dagger} U_{2} \right) \cdot \left(U_{1} U_{0}^{\dagger} U_{4} \right) \cdot U_{3} + tr \left(U_{0} U_{4}^{\dagger} \right) \left(U_{1} U_{0}^{\dagger} U_{2} \right) \cdot U_{3} \cdot U_{4} + \frac{1}{2} B_{123} \right) \\ - \frac{3}{4} \left[B_{144} B_{234} + B_{244} B_{134} - B_{344} B_{124} \right] + \left(\text{all 5 permutations 1} \leftrightarrow 2 \leftrightarrow 3 \right) \right] + \left(0 \leftrightarrow 4 \right) \\ \rightarrow 4 L_{12}^{C} \left[tr \left(U_{2}^{\dagger} U_{1} \right) - 3 tr \left(U_{0}^{\dagger} U_{1} \right) tr \left(U_{2}^{\dagger} U_{0} \right) + tr \left(U_{0}^{\dagger} U_{1} \right) tr \left(U_{2}^{\dagger} U_{4} \right) tr \left(U_{4}^{\dagger} U_{0} \right) \right) \\ - tr \left(U_{0}^{\dagger} U_{1} U_{4}^{\dagger} U_{0} U_{2}^{\dagger} U_{4} \right) + \left(0 \leftrightarrow 4 \right) \right].$$

$$\begin{split} \langle \mathcal{K}_{\mathsf{NLO}} \otimes \mathcal{B}_{122}^{conf} \rangle &= -\frac{\alpha_s^2}{2\pi^4} \int d\vec{r}_0 d\vec{r}_4 \, \left(\left\{ \left(\tilde{L}_{12}^C + L_{12}^C \right) tr \left(U_0^{\dagger} U_1 \right) tr \left(U_2^{\dagger} U_4 \right) tr \left(U_4^{\dagger} U_0 \right) \right. \right. \\ &+ L_{12}^C \left[tr \left(U_2^{\dagger} U_1 \right) - 3tr \left(U_0^{\dagger} U_1 \right) tr \left(U_2^{\dagger} U_0 \right) - tr \left(U_0^{\dagger} U_1 U_4^{\dagger} U_0 U_2^{\dagger} U_4 \right) \right] \right\} + \left(0 \leftrightarrow 4 \right) \\ &- \frac{3\alpha_s^2}{2\pi^3} \int d\vec{r}_0 \frac{11}{6} \left[\ln \left(\frac{\vec{r}_{01}^2}{\vec{r}_{02}^2} \right) \left(\frac{1}{\vec{r}_{02}^2} - \frac{1}{\vec{r}_{01}^2} \right) - \frac{\vec{r}_{12}^2}{\vec{r}_{01}^2 \vec{r}_{02}^2} \ln \left(\frac{\vec{r}_{12}^2}{\vec{\mu}^2} \right) \right] \\ & \times \left(tr \left(U_0^{\dagger} U_1 \right) tr \left(U_2^{\dagger} U_0 \right) - 3tr \left(U_2^{\dagger} U_1 \right) \right) . \end{split}$$

This is twice the gluon part of the BK kernel.

★週 ▶ ★ 臣 ▶ ★ 臣 ▶

ъ