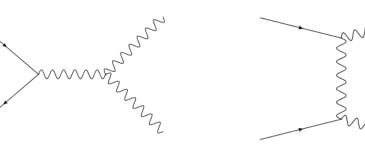
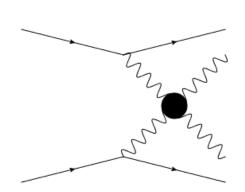
Measurements of Multi-boson production, Trilinear and Quadratic Gauge Couplings with the ATLAS detector

Karen Chen

(Stony Brook)

on behalf of the ATLAS Collaboration


DIS2015 WG3:


Electroweak, Higgs, and Beyond the Standard Model April 28, 2015

Outline

- Introduction to multi-boson physics
- Results from the following analyses:
 - WZ
 - WW
 - Semi-leptonic WW/WZ
 - Wγ/Zγ
 - ZZ
 - Zjj
 - Same sign WW
 - Wγγ
 - Simultaneous ttbar, WW, Z
- Overview of multi-boson cross section measurements
- Overview of limits on anomalous triple gauge couplings (aTGCs)

Introduction: Multiboson physics (I)

- Multi-boson cross section measurements
 - Important test of the electroweak sector of the Standard Model
 - Sensitive to new physics particles that decay to EW bosons
 - Irreducible background for Higgs
- Common signatures
 - Combinations of W, Z, γ
 - Leptonic decays: High p_T, isolated e or μ
 - W boson:
 - Transverse momentum imbalance, E_T^{miss}, from neutrino
 - Transverse mass (m_T) selection
 - Z boson:
 - Mass window around Z pole mass

 Cross section measurement in fiducial region, defined by detector acceptance and selection requirements

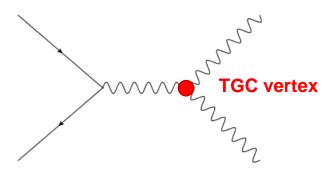
$$\sigma^{fid} = \frac{N_{data} - N_{bkg}}{C \int \mathcal{L} dt}$$

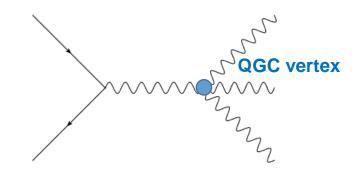
 Extrapolate to total phase space for total production cross section

$$\sigma^{tot} = \frac{N_{data} - N_{bkg}}{A \cdot C \cdot Br \cdot \int \mathcal{L}dt}$$

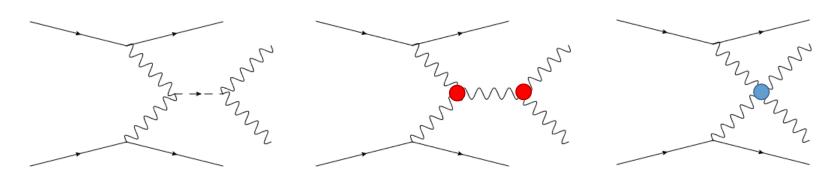
N_{data} = number of data events

 N_{bkq} = number of background events

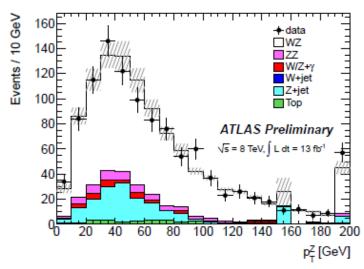

C = efficiency correction


A = fiducial acceptance

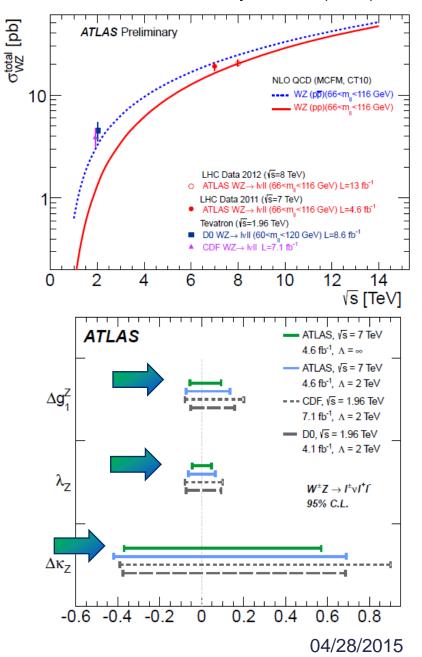
L = luminosity


Introduction: Multiboson physics (II)

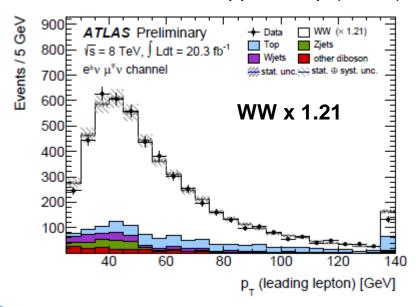
- Di-boson production is sensitive to anomalous triple gauge couplings (aTGCs)
- Triple boson production can be sensitive to anomalous quartic gauge couplings (aQGC)

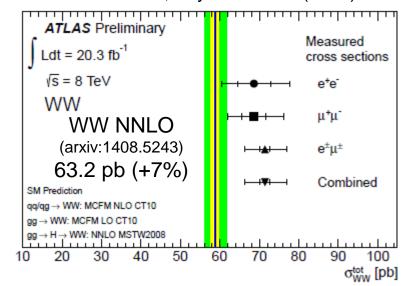

 Vector boson fusion/scattering can be sensitive to both

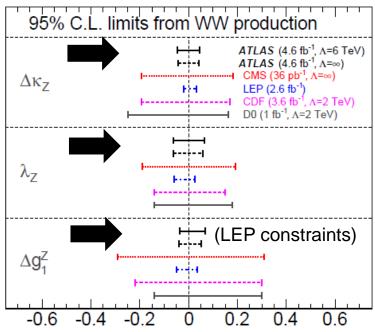
Anomalous couplings \rightarrow deviations in cross section measurements and/or enhancements in high p_T or invariant mass regions


WZ Production

- Final state: (W→) lv (Z→) ll, l = e, mu
- Selection:
 - 3 leptons
 - E_T^{miss} > 25 GeV, M_T^W > 20 GeV
 - Z mass window: | M_{II} M_Z | < 10 GeV
- Backgrounds:
 - Z+jets (~17%*), ZZ (~5%*), Top (~2%*)
 - Data driven estimates for Z+jets and top backgrounds

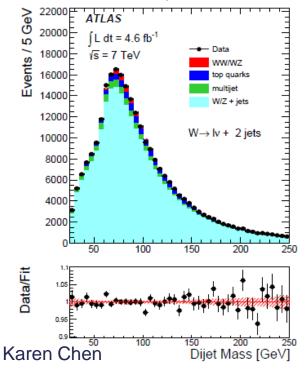


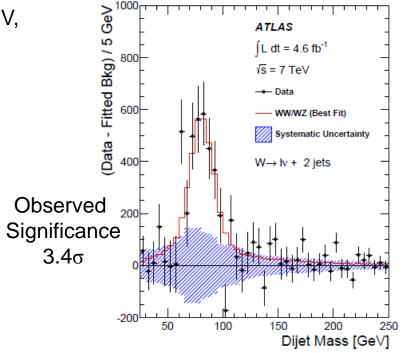

* As fraction of total events



W[∓]W[±] Production

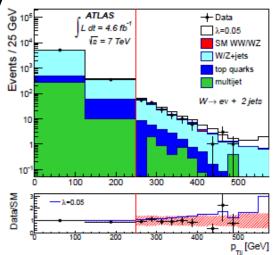
- Final state: lvlv, I = e, mu
- Selection:
 - 2 opposite sign leptons
 - Z veto in same flavor channels:
 - $|M_{\parallel} M_{Z}| > 15 \text{ GeV}$
 - Large E_T^{miss} to further suppress Drell-Yan (~5% of total)
 - Hard Jet Veto to suppress top (~14%)

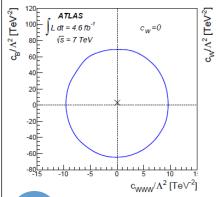


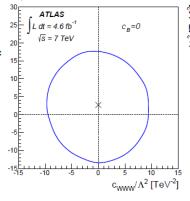


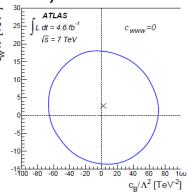
WW/WZ Semileptonic Production (I)

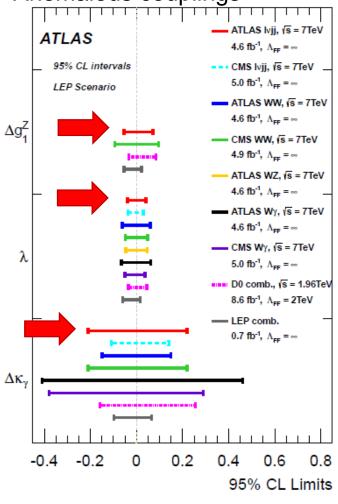
- Final state: (W→) lv (W/Z→) jj, l = e, mu
- Selection:
 - Exactly one lepton
 - Two jets with $|\Delta R| > 0.7$ if $p_T(jj) < 250$ GeV, $|\Delta \eta| < 1.5$, and 25 < $m_{ij} < 250$ GeV
 - $E_T^{miss} > 30$ GeV, $m_T^W > 40$ GeV, $|\Delta \phi(\text{ leading jet } E_T, E_T^{miss})| > 0.8$

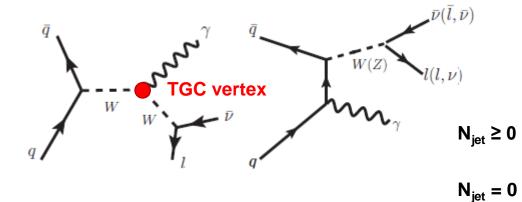

- Backgrounds:
 - W+jets (~85%),Z+jets (~4%), Multijet (~4%), Top (~5%)


$$\begin{split} \sigma_{\rm fid} &= 1.37 \pm 0.14 \; (\rm stat.) \pm 0.37 \; (\rm syst.) \; \rm pb \\ \sigma_{\rm tot} &= 68 \pm 7 \; (\rm stat.) \pm 19 \; (\rm syst.) \; \rm pb \; , \\ Standard \; Model \; prediction \; \; 61.1 \pm 2.2 \; \rm pb \end{split}$$


WW/WZ Semileptonic Production (II)

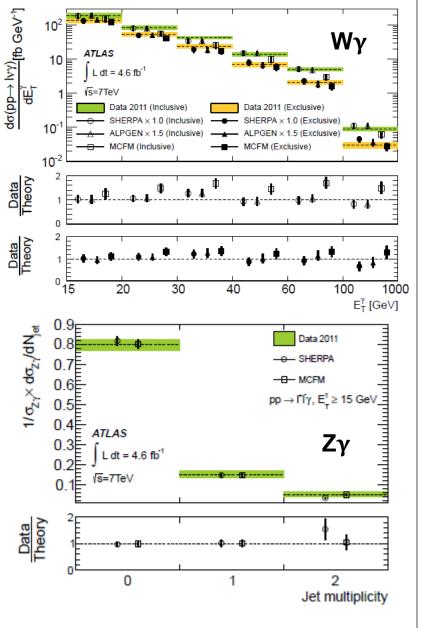

 $p_T(jj)$ used to extract limits on parameters in anomalous couplings framework and effective field theory


Effective field theory model (first at LHC!)

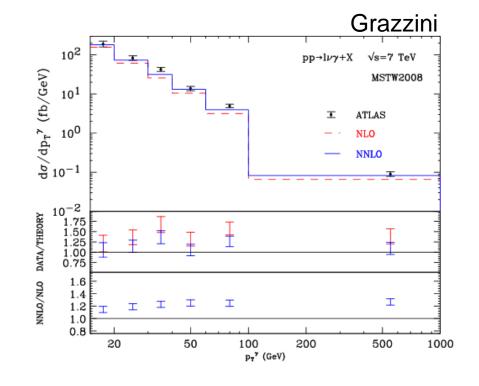


Karen Chen

04/28/2015


W_γ / Z_γ Production (I)

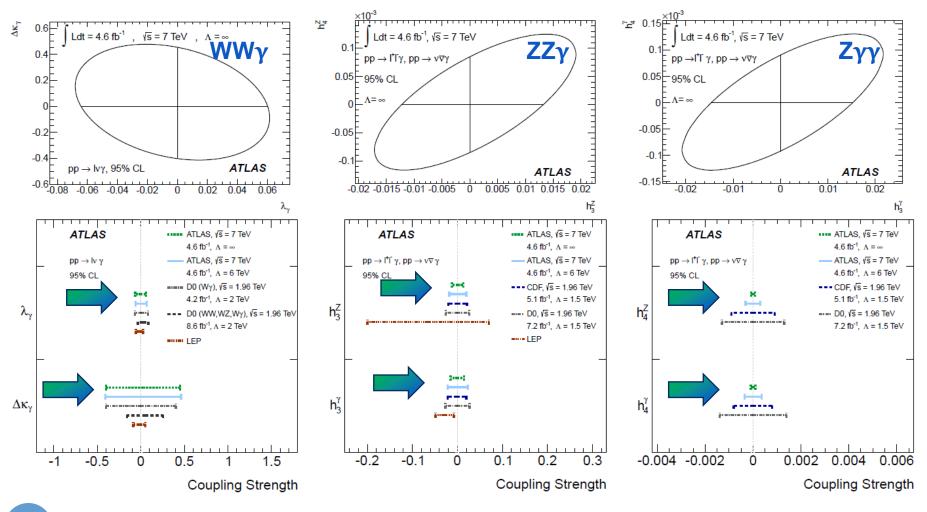
Selection Highlights


(W→) Iv γ	(Z→) II γ	(Ζ→) νν γ		
p _T ^{lep} > 25 GeV, E _T ^γ > 15 GeV		E _T ^γ > 100 GeV		
E _T miss > 35 GeV	-	E _T ^{miss} > 90 GeV		
m _T > 40 GeV M(II) > 40 GeV		-		
p _T ^{jet} > 30 GeV				

- Differential cross section measurements in photon E_T (top) and jet multiplicity (bottom).
 - Exclusive: $N_{jet} = 0$, Inclusive: $N_{jet} \ge 0$

W_γ / Z_γ Production (II)

- NNLO calculation (arXiv:1407.1618)
 - Large radiative corrections for Wγ
 - 19% correction for Wγ
 - 6% increase for Zγ
- Agreement with data is improved
- Fiducial cross section with NLO and NNLO calculations below

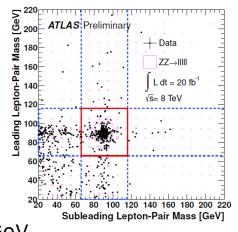


Process	NLO (fb)	NNLO (fb)	Measurement (fb)
Wγ	2065.2 ± 0.9	2456 ± 6	2770 ± 30(stat) ± 330(syst) ± 140(lumi)
Ζγ	1226.2 ± 0.4	1305 ± 3	$1310 \pm 20(stat) \pm 110(syst) \pm 50(lumi)$

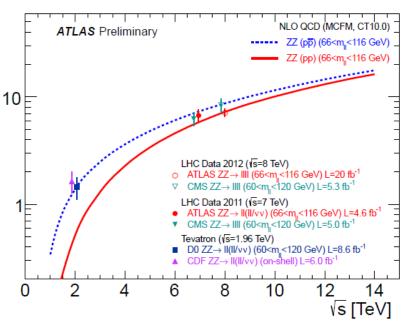
Karen Chen 04/28/2015

W_γ / Z_γ Production (III)

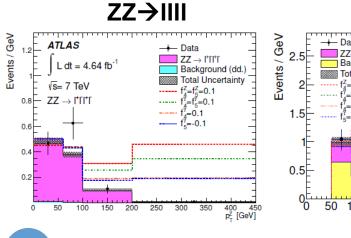
Limits on anomalous couplings from fiducial measurement with E_T^γ > 100 GeV

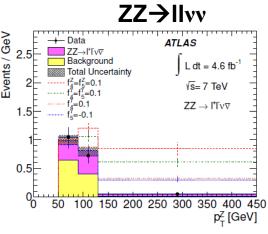


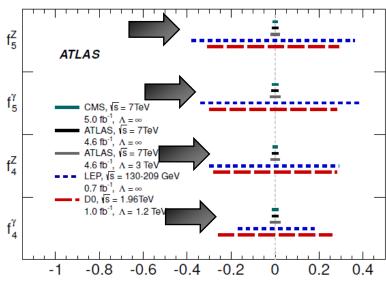
Karen Chen


04/28/2015

ZZ Production


- Final state: ZZ→I+I-I+I- and ZZ→I+I-vv
- Selection:
 - Opposite sign lepton pair(s) with M(II) within Z mass window
 - For I⁺I⁻vv: jet veto axial-E_T^{miss} > 75 GeV




octal [pb]

ATLAS-CONF-2013-020, JHEP 1303 (2013) 128

Karen Chen

Vector Boson Fusion Production of Zjj

 W^+

 W^{\cdot}

VBF

EW Zjj

- Final state: $(Z \rightarrow)$ I⁺I⁻ jj
- Signature:
 - Two leptons with m(II) consistent with m₇
 - Two high p_⊤ jets
 - Search region:
 - $p_T(II) > 20 \text{ GeV}$

- Fiducial cross sections measured in several regions, including a search region with $m_{ii} > 1$ TeV to obtain high sensitivity to EW production of Zjj (35% of events)
 - Reject background only hypothesis at > 5σ

$$\sigma_{\rm EW} (m_{jj} > 1 \,{\rm TeV}) = 10.7 \pm 0.9 \,({\rm stat}) \pm 1.9 \,({\rm syst}) \pm 0.3 \,({\rm lumi}) \,{\rm fb},$$

theoretical prediction $9.38 \pm 0.05 \,({\rm stat}) \,^{+0.15}_{-0.24} \,({\rm scale}) \pm 0.24 \,({\rm PDF}) \pm 0.09 \,({\rm model}) \,{\rm fb}.$

 μ^-, e^- N μ^-

Prediction Data

 10^{2}

ATLAS

aTGC	$\Lambda = 6 \text{ TeV (obs)}$	$\Lambda = 6 \text{ TeV } (\exp)$	$\Lambda = \infty \text{ (obs)}$	$\Lambda = \infty \text{ (exp)}$
$\Delta g_{1,Z}$	[-0.65, 0.33]	[-0.58, 0.27]	[-0.50, 0.26]	[-0.45, 0.22]
λ_Z	[-0.22, 0.19]	[-0.19, 0.16]	[-0.15, 0.13]	[-0.14, 0.11]

Karen Chen

m_{ii} [GeV]

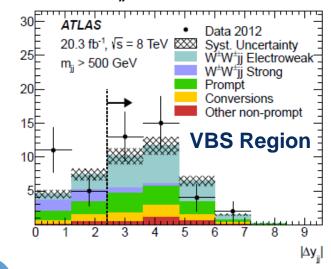
Vector boson scattering: W±W±jj Production

Final state: l±v l±v jj

Selection

Two high p_T leptons, ≥2 jets

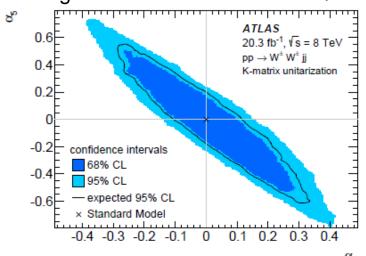
m(II) > 20 GeV


| m(ee) – m_z | > 10 GeV

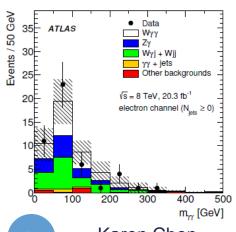
E_T^{miss} > 40 GeV

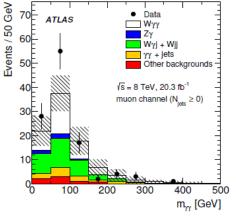
b-jet veto

Inclusive: m(jj) > 500 GeV


• VBS: $|\Delta y_{ij}| > 2.4$

First evidence of VBS WWjj at LHC!

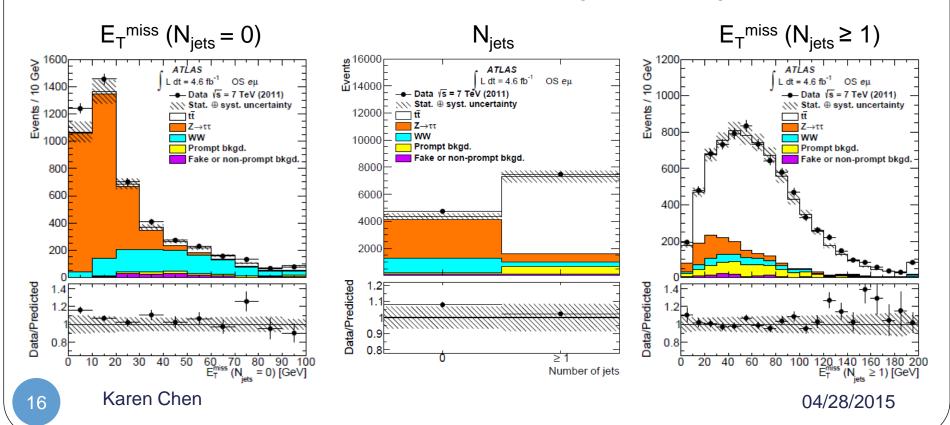

Fiducial Cross section				
Strong and Electroweak W±W±jj	Observed	$2.1 \pm 0.5 (\text{stat}) \pm 0.3 (\text{syst}) \text{ fb}$ Significance 4.5 σ		
	SM Prediction	1.52 ± 0.11 fb		
Electroweak W±W±ii	Observed	$1.3 \pm 0.4(\text{stat}) \pm 0.2(\text{syst}) \text{ fb}$ Significance 3.6 σ		
(VBS region)	SM Prediction	$0.95 \pm 0.06 \text{fb}$		


Measured fiducial cross section in VBS region used to set limits on aQGC's

Wyy Production

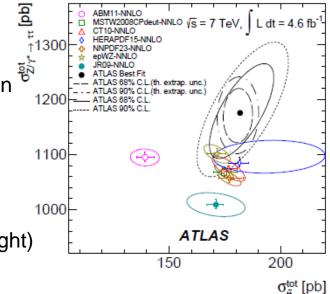
- Final state (W→)lv γγ
- Selection:
 - Lepton/photon p_T > 20 GeV
 - E_T^{miss} > 25 GeV
 - m_T > 40 GeV
 - Restrictions on eγγ system to reduce electron mis-id. (mainly from Zγ)
- Backgrounds:
 - Data driven estimates for photon fakes (Wγj+Wjj) and lepton fakes (γγ+jets)

First evidence of triboson Wγγ

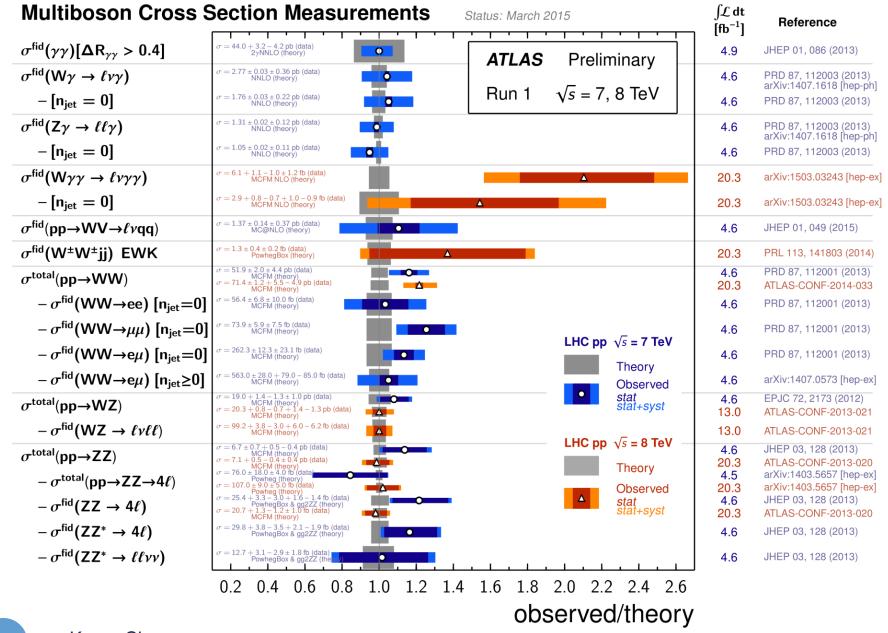

Fiducial Cross section				
Inclusive (N _{jet} ≥ 0)	Measured	$6.1^{+1.1}_{-1.0}(\text{stat}) \pm 1.2 \text{ (syst)}$ $\pm 0.2(\text{lumi.}) \text{ fb}$ Significance >3 σ		
, , , ,	MCFM	$2.90 \pm 0.16 \text{ fb}$		
Exclusive (N _{jet} = 0)	Measured	2.9 +0.8 _{-0.7} (stat) +1.0 _{-0.9} (syst) ± 0.1(lumi.) fb		
	MCFM	$1.88 \pm 0.20 \text{ fb}$		

Exclusive cross section measurement with $m(\gamma\gamma) > 300$ GeV used to extract aQGC limits with different exponents in form factor

		Observed [TeV ⁻⁴]	Expected [TeV ⁻⁴]
	$f_{\rm T0}/\Lambda^4$	$[-0.9, 0.9] \times 10^2$	$[-1.2, 1.2] \times 10^2$
n = 0	$f_{\rm M2}/\Lambda^4$	$[-0.8, 0.8] \times 10^4$	$[-1.1, 1.1] \times 10^4$
	$f_{\rm M3}/\Lambda^4$	$[-1.5, 1.4] \times 10^4$	$[-1.9, 1.8] \times 10^4$
	$f_{\rm T0}/\Lambda^4$	$[-7.6, 7.3] \times 10^2$	$[-9.6, 9.5] \times 10^2$
n = 1	$f_{\rm M2}/\Lambda^4$	$[-4.4, 4.6] \times 10^4$	$[-5.7, 5.9] \times 10^4$
	$f_{\rm M3}/\Lambda^4$	$[-8.9, 8.0] \times 10^4$	$[-11.0, 10.0] \times 10^4$
	$f_{\rm T0}/\Lambda^4$	$[-2.7, 2.6] \times 10^3$	$[-3.5, 3.4] \times 10^3$
n = 2	$f_{\rm M2}/\Lambda^4$	$[-1.3, 1.3] \times 10^5$	$[-1.6, 1.7] \times 10^5$
	$f_{\rm M3}/\Lambda^4$	$[-2.9, 2.5] \times 10^5$	$[-3.7, 3.3] \times 10^5$


Simultaneous measurement: ttbar, W⁺W⁻, Z→ττ

- Final state: oppositely charged electron and muon
- Separate processes by E_T^{miss} and jet multiplicity
 - N_{iets} ≥ 1 dominated by ttbar
 - N_{jets} = 0 and low/high E_T^{miss} dominated by Drell-Yan/WW
- Data driven estimate for fake or non-prompt backgrounds using matrix method



Simultaneous measurement: ttbar, W+W-, Z → ττ

- Simultaneous fit using templates of E_T^{miss} and jet multiplicity distributions
 - Normalizations for each process are free parameters in the fit
- Results with correlated PDFs:
 - NLO calculations underestimates the data for ttbar and Z
 - NNLO calculations generally describe the data well (right)
 - Comparison to dedicated measurements and theory (below)

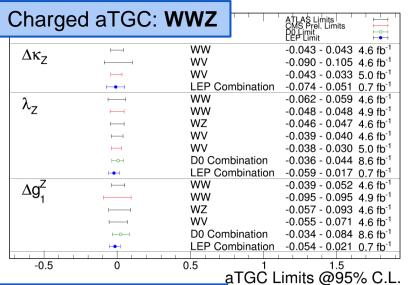
Process	Source	σ_X^{tot}			Uncertainti	es	·	$\int \mathcal{L} dt$
		[pb]	Stat.	Syst.	Lumi.	Beam	Total	$[\mathrm{fb}^{-1}]$
	Simultaneous	181	3	10	3	3	11	4.6
$t ar{t}$	Dedicated	183	3	4	4	3	7	4.6
	NNLO QCD	177					11	
	Simultaneous	53.3	2.7	7.7	1.0	0.5	8.5	4.6
WW	Dedicated	51.9	2.0	3.9	2.0		4.9	4.6
	NLO QCD	49.2	Nith gg-	>H→WW	/)		2.3	
	Simultaneous	1174	24	80	21	9	87	4.6
$Z/\gamma^* \to \tau \tau$	Dedicated $(e\mu)$	1170	150	90	40		170	0.036
	NNLO QCD	1070					54	

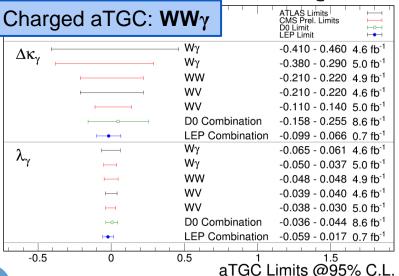
Karen Chen

04/28/2015

Summary of aTGC Limits at LHC

References


-0.015 - 0.015 4.6 fb⁻¹


-0.005 - 0.005 19.6 fb⁻¹

-0.004 - 0.003 24.7 fb⁻¹

-0.003 - 0.003 24.7 fb⁻¹

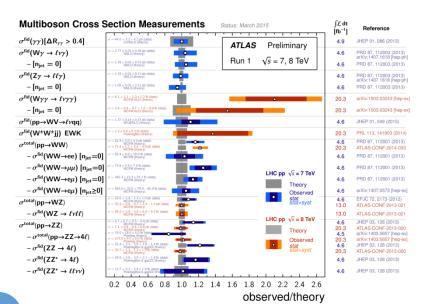
ATLAS Limits CMS Prel. Limits

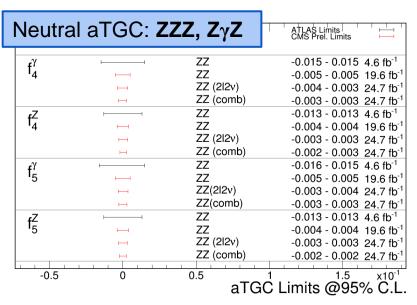
f_4^Z	——	77	
1 1 4		ZZ	-0.013 - 0.013 4.6 fb ⁻¹
•4	⊢	ZZ	-0.004 - 0.004 19.6 fb ⁻¹
	\vdash	ZZ (2l2v)	-0.003 - 0.003 24.7 fb ⁻¹
	Н	ZZ (comb)	-0.002 - 0.003 24.7 fb
f_{5}^{γ}	-	ZZ	-0.016 - 0.015 4.6 fb ⁻¹
¹ 5	—	ZZ	-0.005 - 0.005 19.6 fb ⁻¹
	\vdash	ZZ(2l2v)	-0.003 - 0.004 24.7 fb ⁻¹
	Н	ZZ(comb)	-0.003 - 0.003 24.7 fb
f_5^Z	——	ZZ	-0.013 - 0.013 4.6 fb ⁻¹
' 5	\vdash	ZZ	-0.004 - 0.004 19.6 fb ⁻¹
	\vdash	ZZ (2l2v)	-0.003 - 0.003 24.7 fb ⁻¹
	H	ZZ (comb)	-0.002 - 0.002 24.7 fb
-0.5	0	0.5	1 1.5 x10 ⁻¹
-0.5			C Limits @95% C.L
Moutral	aTGC: Z	77. 7	ATLAS Limits
ve uliai	arGC. Z	- 27, 277	ATLAS Limits CMS Prel. Limits CDF Limit
h_3^{γ}	-	Ζγ	-0.015 - 0.016 4.6 fb ⁻¹
1.13	⊢	Ζγ	-0.003 - 0.003 5.0 fb ⁻¹
	⊢	Ζγ	-0.005 - 0.005 19.5 fb ⁻¹
		Ζγ	-0.022 - 0.020 5.1 fb ⁻¹
I ₂ Z	<u> </u>	Ζγ	-0.013 - 0.014 4.6 fb ⁻¹
h_3^Z	H		-0.013 - 0.014 4.6 fb ⁻¹
h_3^Z		Ζγ	-0.013 - 0.014 4.6 fb ⁻¹ -0.003 - 0.003 5.0 fb ⁻¹
h ₃ ^Z	<u> </u>	Zγ Zγ	-0.013 - 0.014 4.6 fb ⁻¹ -0.003 - 0.003 5.0 fb ⁻¹ -0.004 - 0.004 19.5 fb ⁻¹
	H H	Ζγ Ζγ Ζγ	-0.013 - 0.014 4.6 fb ⁻¹ -0.003 - 0.003 5.0 fb ⁻¹ -0.004 - 0.004 19.5 fb ⁻¹ -0.020 - 0.021 5.1 fb ⁻¹
h_3^Z $h_4^Y \times 100$		Ζγ Ζγ Ζγ Ζγ	-0.013 - 0.014 4.6 fb ⁻¹ -0.003 - 0.003 5.0 fb ⁻¹ -0.004 - 0.004 19.5 fb ⁻¹ -0.020 - 0.021 5.1 fb ⁻¹ -0.009 - 0.009 4.6 fb ⁻¹
		Ζ _Υ Ζ _Υ Ζ _Υ Ζ _Υ Ζ _Υ	-0.013 - 0.014 4.6 fb ⁻¹ -0.003 - 0.003 5.0 fb ⁻¹ -0.004 - 0.004 19.5 fb ⁻¹ -0.020 - 0.021 5.1 fb ⁻¹ -0.009 - 0.009 4.6 fb ⁻¹ -0.001 - 0.001 5.0 fb ⁻¹
h ₄ γx100		Ζ΄γ Ζ΄γ Ζ΄γ Ζ΄γ Ζ΄γ Ζ΄γ	-0.013 - 0.014 4.6 fb ⁻¹ -0.003 - 0.003 5.0 fb ⁻¹ -0.004 - 0.004 19.5 fb ⁻¹ -0.020 - 0.021 5.1 fb ⁻¹ -0.009 - 0.009 4.6 fb ⁻¹ -0.001 - 0.001 5.0 fb ⁻¹ -0.004 - 0.004 19.5 fb ⁻¹
h ₄ γ100	<u> </u>	Ζ _Υ Ζ _Υ Ζ _Υ Ζ _Υ Ζ _Υ Ζ _Υ	-0.013 - 0.014 4.6 fb ⁻¹ -0.003 - 0.003 5.0 fb ⁻¹ -0.004 - 0.004 19.5 fb ⁻¹ -0.020 - 0.021 5.1 fb ⁻¹ -0.009 - 0.009 4.6 fb ⁻¹ -0.001 - 0.001 5.0 fb ⁻¹ -0.004 - 0.004 19.5 fb ⁻¹
	H	Ζγ Ζγ Ζγ Ζγ Ζγ Ζγ Ζγ	-0.013 - 0.014 4.6 fb ⁻¹ -0.003 - 0.003 5.0 fb ⁻¹ -0.004 - 0.004 19.5 fb ⁻¹ -0.020 - 0.021 5.1 fb ⁻¹ -0.009 - 0.009 4.6 fb ⁻¹ -0.001 - 0.001 5.0 fb ⁻¹ -0.004 - 0.004 19.5 fb ⁻¹ -0.009 - 0.009 4.6 fb ⁻¹ -0.001 - 0.001 5.0 fb ⁻¹
h ₄ γx100	<u> </u>	Ζ _Υ Ζ _Υ Ζ _Υ Ζ _Υ Ζ _Υ Ζ _Υ	-0.013 - 0.014 4.6 fb ⁻¹ -0.003 - 0.003 5.0 fb ⁻¹ -0.004 - 0.004 19.5 fb ⁻¹ -0.020 - 0.021 5.1 fb ⁻¹ -0.009 - 0.009 4.6 fb ⁻¹ -0.001 - 0.001 5.0 fb ⁻¹ -0.004 - 0.004 19.5 fb ⁻¹ -0.009 - 0.009 4.6 fb ⁻¹ -0.001 - 0.001 5.0 fb ⁻¹
h ₄ ^γ x100	H	Ζ _Υ	-0.013 - 0.014 4.6 fb ⁻¹ -0.003 - 0.003 5.0 fb ⁻¹ -0.004 - 0.004 19.5 fb ⁻¹ -0.009 - 0.009 4.6 fb ⁻¹ -0.001 - 0.001 5.0 fb ⁻¹ -0.009 - 0.009 4.6 fb ⁻¹ -0.009 - 0.009 4.6 fb ⁻¹ -0.001 - 0.001 5.0 fb ⁻¹ -0.003 - 0.003 19.5 fb ⁻¹
h ₄ γx100	H H	Zγ Zγ Zγ Zγ Zγ Zγ Zγ Zγ	-0.013 - 0.014 4.6 fb ⁻¹ -0.003 - 0.003 5.0 fb ⁻¹ -0.004 - 0.004 19.5 fb ⁻¹ -0.009 - 0.009 4.6 fb ⁻¹ -0.004 - 0.004 19.5 fb ⁻¹ -0.004 - 0.004 19.5 fb ⁻¹ -0.009 - 0.009 4.6 fb ⁻¹ -0.001 - 0.001 5.0 fb ⁻¹ -0.003 - 0.003 19.5 fb ⁻¹
h ₄ ^γ x100	H H	Zγ Zγ Zγ Zγ Zγ Zγ Zγ Zγ	-0.013 - 0.014 4.6 fb ⁻¹ -0.003 - 0.003 5.0 fb ⁻¹ -0.004 - 0.004 19.5 fb ⁻¹ -0.020 - 0.021 5.1 fb ⁻¹ -0.009 - 0.009 4.6 fb ⁻¹ -0.004 - 0.004 19.5 fb ⁻¹ -0.004 - 0.004 19.5 fb ⁻¹ -0.009 - 0.009 4.6 fb ⁻¹ -0.001 - 0.001 5.0 fb ⁻¹

ZΖ

ΖZ

ZZ (2l2v)


ZZ (comb)


Neutral aTGC: ZZZ, ZyZ

Karen Chen

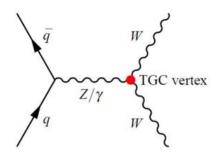
Conclusions

- Summarized multi-boson results with ATLAS
 - Fiducial and total cross sections, differential cross sections
 - Generally good agreement with theory predictions
 - Limits on anomalous triple/quartic gauge couplings
 - Each analysis will be more sensitive to some couplings than others
 - Measurements with different final states will give complementary results
 - First evidence of VBS W±W±jj and Wγγ tri-boson production
- More multi-boson analyses at 8 TeV are on their way!

Karen Chen

Backup

21


Karen Chen 04/28/2015

Anomalous triple gauge couplings (aTGCs)

General Lagrangian for WWZ or WWγ vertex that conserves C and P separately:

$$\mathcal{L}/g_{WWV} = ig_1^V (W_{\mu\nu}^* W^{\mu} V^{\nu} - W_{\mu\nu} W^{* \mu} V^{\nu}) + i\kappa^V W_{\mu}^* W_{\nu} V^{\mu\nu} + i\frac{\lambda^V}{M_W^2} W_{\rho\mu}^* W_{\nu}^{\mu} V^{\nu\rho}$$

• For SM: $g_1^V = 1$, $k^V = 1$, $\lambda^V = 0$

83		
coupling	parameters	channel
WW_{γ}	λ_{γ} , $\Delta \kappa_{\gamma}$	WW, Wγ
WWZ	λ_Z , $\Delta \kappa_Z$, Δg_1^Z	WW, WZ
$ZZ\gamma$	h_3^Z, h_4^Z	$Z\gamma$
$Z\gamma\gamma$	$h_3^{\gamma}, h_4^{\gamma}$	$Z\gamma$
$Z\gamma Z$	f_{40}^{Z}, f_{50}^{Z}	ZZ
ZZZ	$f_{40}^{\gamma}, f_{50}^{\gamma}$	ZZ

- For non-SM values, this vertex will violate unitarity. We can introduce form factors to restore unitarity:
 - $s = m_{WW}^2$ and Λ is the scale for new physics (~TeV range)

$$\Delta g_1^V \to \frac{\Delta g_1^V}{(1+\hat{s}/\Lambda^2)^2}, \qquad \Delta \kappa^V \to \frac{\Delta \kappa^V}{(1+\hat{s}/\Lambda^2)^2}, \qquad \lambda^V \to \frac{\lambda^V}{(1+\hat{s}/\Lambda^2)^2}$$

Effective Field Theory (EFT)

Expand Lagrangian to include higher order dim-6 operators, O

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i$$

The C and P conserving operators relevant to triple gauge boson interactions

$$\mathcal{O}_{WWW} = \text{Tr}[W_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}]$$

$$\mathcal{O}_{W} = (D_{\mu}\Phi)^{\dagger}W^{\mu\nu}(D_{\nu}\Phi)$$

$$\mathcal{O}_{B} = (D_{\mu}\Phi)B^{\mu\nu}(D_{\nu}\Phi)$$

Can relate the anomalous couplings to these couplings strengths

$$\begin{split} \frac{c_W}{\Lambda^2} &= \frac{2}{m_Z^2} \Delta g_1^Z \\ \frac{c_B}{\Lambda^2} &= \frac{2}{m_Z^2} (\Delta \kappa^{\gamma} - \Delta \kappa^Z) \\ \frac{c_{WWW}}{\Lambda^2} &= \frac{2}{3g^2 m_W^2} \lambda \end{split}$$