

Top quark property measurements at ATLAS & CMS

- (Introduction)
- Production asymmetries, spin correlations and Whelicity
- Anomalous couplings
- tt + W, Z, γ cross sections
- Conclusions & Outlook

Andreas Jung (Fermilab) for the ATLAS & CMS collaboration

Top quark introduction

Top is the heaviest fundamental particle discovered so far

$$\rightarrow m_t = 173.34 \pm 0.76 \text{ GeV}$$
[arxiv:1403.4427]

- Lifetime: $\tau \approx 5 \text{x}\,10^{\text{-}25}\,\text{s} << \Gamma_{\text{\tiny QCD}}$
 - → Observe bare quark properties
- Large Yukawa coupling to Higgs boson $\rightarrow \lambda_{t} \sim 1$

special role in electroweak symmetry breaking?

- If we could calculate the Higgs mass:
 - → Large corrections to the Higgs mass from top quark "loops"

(Hierarchy problem)

Top quarks as window to new physics

Top quark introduction

Strong interaction: Top pairs

Top quark introduction

Strong interaction: Top pairs

qq: ~15/13% (~10%, 14 TeV)

gg: ~85/87% (~90%, 14 TeV)

Decay channels:

gg fusion

Top Pair Branching Fractions

BR, bg decrease

BR, bg increase

Content

→ Selection of results, focus on most recent and/or precise results

<u>Top quark asymmetries</u>

Measurements at Tevatron 0.08
 & LHC are complementary

• Variety of models with wide parameter space still allowed $\rightarrow W'$, G, ω , φ , Ω

 $A_{\mathrm{C}} = rac{N(\Delta|y_{\mathrm{t}}|>0)-N(\Delta|y_{\mathrm{t}}|<0)}{N(\Delta|y_{\mathrm{t}}|>0)+N(\Delta|y_{\mathrm{t}}|<0)}$

 Asymmetries based on <u>decay</u> "easier" <u>leptons</u> or fully <u>reconstructed</u> <u>top quarks</u> "harder"

Charge asymmetries THEP 04 (2014) 191

- Dilepton, ≥ 2 jets $\& \geq 1$ b-
- Top reconstruction via "Analytical Matrix Weighting Technique"
- Kinematic dependence of A_{c} , e.g. as a function of $m(t\bar{t})$

Charge asymmetries THEP 04 (2014) 191

- Dilepton, ≥ 2 jets $\& \geq 1$ btags
- Top reconstruction via "Neutrino" Weighting Technique"
- Individual channels (ee, μμ, eμ) are combined

→ Measure top and lepton based asymmetry

In agreement with SM:

$$A_{c}^{"}$$
 = 0.024 ± 0.015 (stat.) ± 0.009 (syst.)

$$A_C^{\bar{t}} = 0.021 \pm 0.025$$
 (stat.) ± 0.017 (syst.)

Top quark asymmetries

Summary of the current Situation:

CMS PAS TOP-14-006 ATLAS-CONF-2014-012

- Experiment: Dominated by statistical uncertainties & signal model dominates systematic unc's
- Theory: Need QCD predictions at NNLO

- At increased √s expect to observe SM asymmetries
 - Larger gg fraction reduces them → improved methods, e.g. [arxiv:1309.2889]

Content

→ Selection of results, focus on most recent and/or precise results

Top quark polarization

- In tt production: New physics polarizes top quarks
- Polarization introduced by CP conserving or violating process:

$$\alpha_{l}P_{CPC} = -0.035 \pm 0.014 \text{ (stat.)} \pm 0.037 \text{ (syst.)}$$
 $\alpha_{l}P_{CPV} = 0.020 \pm 0.016 \text{ (stat.)} \pm \frac{0.013}{0.017} \text{ (syst.)}$
 α_{l} : Spin analyzing power, P_{CPX} : top quark polarization PRL 111, 232002 (2013)

- Systematic uncertainties dominated by: jet reconstruction & signal model
- Good agreement with SM (negligible polarization), also seen

by:→ CMS: PRL 112 (2014) 182001

→ DO: PRD 87, 011103(R) (2013)

Top quark polarization

- In tt production: New physics polarizes top quarks
- Polarization introduced by CP conserving or violating process:

$$\alpha_{l}P_{CPC} = -0.035 \pm 0.014 \text{ (stat.)} \pm 0.037 \text{ (syst.)}$$
 $\alpha_{l}P_{CPV} = 0.020 \pm 0.016 \text{ (stat.)} \pm \frac{0.013}{0.017} \text{ (syst.)}$
 α_{l} : Spin analyzing power, P_{CPX} : top quark polarization PRL 111, 232002 (2013)

 Good agreement with SM (negligible polarization), also seen by:→ CMS: PRL 112 (2014) 182001

→ DO: PRD 87, 011103(R) (2013)

 In single top production, measure polarized top quarks as expected

$$P_t = 0.82 \pm 0.12 \text{ (stat.)} \pm 0.32 \text{ (syst.)}$$

CMS-PAS-TOP-13-001

Top quark spin correlations

Top quark spins expected to be correlated in SM

PRD 90 112016 (2014)

- Reconstruction based on leptons
 - → Dilepton decay channel, ≥ 2 jets
 - → L+jets decay channel, ≥ 4 jets
 - For the first time use a simultaneous fit to azimuthal angles $\Delta \varphi(l,d)$ & $\Delta \varphi(l,b)$
- <u>Dominated by:</u> hadronization uncertainties (ATLAS)

Results agree with NLO QCD: Spins correlated!

Top quark spin correlations

- Top quark spins expected to be correlated in SM
- Reconstruction based on leptons
 - → Dilepton decay channel, ≥ 2 jets
- Unfold to parton level by reg. Unfolding
- Dominated by: Unfolding & top

Unfolding & top p_T reweighting

Results agree with NLO QCD: Spins correlated!

 Search for top chromomagnetic anomalous couplings using differential cross section distribution

Limits on the chromomagnetic dipole moment $\text{Re}(\mu_{\!\scriptscriptstyle +})$

$$Re(\mu_{t}) = 0.037 \pm 0.041$$
 (tot.)
- 0.043 < $Re(\mu_{t})$ < 0.117 at 95% CL

Top quark spin correlations

- High precision SM measurements, more and more important in Run II
- Access top squarks (MSSM: 100% $t \to t \chi^0$) of similar mass as m₊
- Uncertainties dominated by: signal model (Hadronization and ISR/FSR)

Exclusion between m_t and 191 GeV at 95% CL, difficult to access by "standard" searches PRL 114, 142001 (2015)

 $m_{\tilde{t}_1}$ [GeV]

Whelicity in single top production

- W helicity in SM: $f_c=0.30$ f_o=0.70
- Complements results in pair production
- Similar precision but <u>orthogonal</u> systematic uncertainties in single top channels
 - Signal model & template statistics

Content

→ Selection of results, focus on most recent and/or precise results

Top quark: FCNC

CMS PAS-TOP-12-037 CMS-PAS-TOP-14-003

- Flavor Changing Neutral Currents are highly suppressed in SM, but enhancement in many models of new physics
- Search for FCNC involving Z bosons:

B(t
$$\rightarrow$$
 ug) < 5.7 · 10⁻⁵ B(t \rightarrow ug) < 3.55 · 10⁻⁴ B(t \rightarrow cg) < 2.7 · 10⁻⁴ B(t \rightarrow cg) < 3.44 · 10⁻³

CMS PAS-TOP-12-037

Top quark: FCNC

CMS PAS-TOP-13-017

- Flavor Changing Neutral Currents are highly suppressed in SM, but enhancement in many models of new physics
- Search for FCNC involving Z bosons:

B(t
$$\rightarrow$$
 ug) < 5.7 · 10⁻⁵ B(t \rightarrow ug) < 3.55 · 10⁻⁴ B(t \rightarrow cg) < 2.7 · 10⁻⁴ B(t \rightarrow cg) < 3.44 · 10⁻³

- Search for Higgs boson production in the dilepton (same sign) and trilepton channel
- Systematic uncertainties dominated by:
 Background modeling / cross sections
- Limit on top-charm flavor-violating Higgs Yukawa coupling & upper limits for branching fractions:

Top quark: FCNC

- Search in single top production (t-channel)
- MVA technique to: suppress QCD, separate signal & bg, search for Wtb couplings & FCNC interactions
- Systematic uncertainties dominated by: Background normalization

CMS preliminary, $\sqrt{s} = 7 \text{ TeV}$, $L = 5.0 \text{ fb}^{-1}$

CMS-PAS-TOP-14-007

Process	Uncertainty
top-quark pair production	15%
single top, s-channel	15%
single top, tW-channel	13%
W+jets, "WQQ"	100%
W+jets, "Wc"	100%
W+jets, "W+light"	50%
W+jets, "WQX (UE)"	50%
QCD (data-driven)	100%
Drell-Yan process	30%
WW, WZ, ZZ	30%

CMS preliminary, \sqrt{s} = 7 TeV, L = 5.0 fb⁻¹

(Limits on left & right vector and tensor couplings in backup)

Content

→ Selection of results, focus on most recent and/or precise results

Ttbar + X: W, Z, y

- Tight photon ID requirements and cuts to suppress the bg
- Observation at 7 TeV by ATLAS and first measurement at 8 TeV by CMS

$$R = \sigma_{\bar{t}t+\gamma}/\sigma_{\bar{t}t}$$

= $(1.07 \pm 0.07(\text{stat.}) \pm 0.27(\text{syst.})) \cdot 10^{-2}$

$$\sigma_{t\bar{t}+\gamma} = R \cdot \sigma_{\bar{t}t}^{\text{CMS}}$$

= 2.4 \pm 0.2(stat.) \pm 0.6(syst.) pb

 Dominated by object IDs (jets, photon, btag) and signal model related

<u>Ttbar + X: W, Z, γ</u>

- Associated production of W and Z in the SM (different mechanisms)
- Both experiments use data driven approaches of non-prompt bg
- Exploit full potential → many channels (opposite/same sign dilepton, 2/3 leptons, etc.)_u
- Stringent cuts to reduce bg (various cuts on number of jets, b-tags)
- Mostly counting, ATLAS use 7 variables & NN to search for ttW and ttZ in OS di-I

000000

 $5/\sigma_{SM}$ (tfZ)

Ttbar + X: W, Z, γ

- 2D fit of ttW and ttZ cross sections, dominated by statistical unc's
- SM (NLO): $\sigma(ttZ) = 206 \pm 29$ fb and $\sigma(ttW) = 203 \pm 25$ fb

<u>Proces</u>	ss Cr	oss sec	<u>tion</u>		,	<u>Sign.</u>
<i>††Z</i>	150^{+55}_{-50}	(stat.)	± 21	(syst.) fk) (3.1σ
ttW	300 +120 -100	(stat.)	+70 –80	(syst.) fb) 3	3.1σ

Process	Cross section	Significance
tŧW	170^{+90}_{-80} (stat.) $^{+70}_{-70}$ (syst.) fb	1.6σ
tŧZ	200^{+80}_{-70} (stat.) $^{+40}_{-30}$ (syst.) fb	3.1σ
$t\bar{t}W + t\bar{t}Z$	380^{+100}_{-90} (stat.) $^{+80}_{-70}$ (syst.) fb	3.7 σ

Conclusions & Outlook

- Remarkable precision: Signal modeling is the future topic
- High precision top quark property measurement, also accessible now in single top quark production (t-channel)
- Results on Asymmetry are not yet completely conclusive...
- Evidence for associated production of W, Z, γ
- No significant deviations seen from SM expectations at LHC Run I: → Waiting for next LHC run ...

Only small limited selection of results shown, more information:

ATLAS Top Web pages

CMS Top Web pages

Thank you!

<u>Backup</u>

SM vacuum stability

 With the Higgs discovery the SM can be extrapolated to Planck scale energies

- "Test" the stability of the electroweak vacuum, under assumption of no new physics:
 - \rightarrow meta-stable, life time > O(10⁸⁰) t_{universe}
- → but new physics can change that dramatically

LHC and detectors

- Peak luminosities: 8 x 10³³ cm⁻²s⁻¹
- ~5 (25) fb⁻¹/experiment recorded
- LHC consolidation/upgrades till 2015

Top quark asymmetries

Interference appears at NLO QCD:

- \rightarrow Only occurs in qq initial state; gg is fwd-bwd symmetric
- This is a forward-backward asymmetry at Tevatron
- No valence anti-quarks at LHC $\rightarrow \bar{t}$ more central
- SM predictions at NLO (QCD+EWK)
 - \rightarrow Tevatron: $A_{rR} \sim 8-9$ % vs. LHC: $A_{r} \sim 1$ % (waiting for full NNLO pQCD predictions)

$$= \frac{N(\Delta|y_{t}| > 0) - N(\Delta|y_{t}| < 0)}{N(\Delta|y_{t}| > 0) + N(\Delta|y_{t}| < 0)}$$

Top quark asymmetries

• Migration matrix shows superior resolution of leptonic based quantities

Variable	A_{C}	$A_{\rm C}^{ m lep}$
Experimental uncer	tainties	
Jet energy scale	0.003	0.001
Lepton energy scale	< 0.001	< 0.001
Background	0.001	0.001
Jet energy resolution	< 0.001	< 0.001
Pileup	< 0.001	0.001
Scale factor for b tagging	< 0.001	< 0.001
Lepton selection	< 0.001	< 0.001
tt modelling uncert	ainties	
Fact. and renorm. scales	0.004	0.005
Top-quark mass	0.001	0.001
Parton distribution functions	< 0.001	< 0.001
τ-lepton decay	< 0.001	< 0.001
Top-quark p_T reweighting	0.001	< 0.001
Unfolding	0.006	0.001
Total systematic uncertainty	0.008	0.006

A. Jung

Charge asymmetries JHEP02(2014)107

- lepton+jets, ≥ 1 b-tag
- Kinematic dependencies of A_c as a function of $m(t\bar{t})$, $\beta_{\bar{t}}(t\bar{t})$ $t\bar{t}$ velocity

In agreement with SM:

О.	9.001110111 11	•	
>	Α	Data	Theory
	C	0.006 ± 0.010	0.0123 ± 0.0005
	$m_{t\bar{t}} > 600 \text{ GeV}$	0.018 ± 0.022	$0.0175^{+0.0005}_{-0.0004}$
	$\beta_{z,t\bar{t}} > 0.6$	0.011 ± 0.018	$0.020^{+0.006}_{-0.007}$

W helicity

channel	$f_{\mathrm{SM}}(\Delta\phi)$	$f_{SM}(S-ratio)$	$f_{\text{SM}}(\cos(\theta_+)\cos(\theta)_{\text{helicity}})$	$f_{\text{SM}}(\cos(\theta_{+})\cos(\theta_{-})_{\text{maximal}})$
e^+e^-	$0.87 \pm 0.35 \pm 0.47$	$0.81 \pm 0.35 \pm 0.39$	$1.72 \pm 0.57 \pm 0.75$	$0.48 \pm 0.41 \pm 0.52$
$e^{\pm}\mu^{\mp}$	$1.24 \pm 0.11 \pm 0.12$	$0.95 \pm 0.12 \pm 0.12$	$0.76 \pm 0.23 \pm 0.24$	$0.86 \pm 0.16 \pm 0.18$
$\mu^+\mu^-$	$1.11 \pm 0.20 \pm 0.25$	$0.53 \pm 0.26 \pm 0.38$	$0.31 \pm 0.42 \pm 0.56$	$0.97 \pm 0.33 \pm 0.44$
Dilepton	$1.19 \pm 0.09 \pm 0.15$	$0.87 \pm 0.11 \pm 0.12$	$0.75 \pm 0.19 \pm 0.25$	$0.83 \pm 0.14 \pm 0.17$

Top quark: FCNC's

Variable	Description	SM	$f_V^L f_V^R$	$f_V^L f_T^L$	tug	tcg
(1)		BNN	BNN		BNN	BNN
$p_{\mathrm{T}}(b_1)$	p_T of the leading-b-jet (the b-tagged jet with the	V		V	V	V
	highest p_T) — hereinafter we use the notations					
	"leading" and "second-leading" for jets corre-					
	spondingly to their order in p_T , the decreasing					
	one					
$p_{\mathrm{T}}(b_2)$	p_T of the second-leading b-jet	V				V
$p_{\mathrm{T}}(j_1j_2)$	a vector sum of p_T of the first and the second-	V		V	V	V
	leading jets					
$p_{\mathrm{T}}(\sum_{i\neq i_{best}} \vec{p_T}(j_i))$	a vector sum of p_T of all jets without the best jet.	V			V	V
	The notation "best jet" is used for the jet which					
	gives the invariant mass of the top quark closest					
	to the value of 172.5 GeV, which is used in the					
	MC simulation					
$p_{\mathrm{T}}(j_L)$	p_T of the light-flavour jet (untagged jet with the	V			V	V
	highest value of $ \eta $)					
$p_{\mathrm{T}}(\mu)$	transverse momenta of the muon	V	V	V		V
$p_{\mathrm{T}}(W,b_1)$	p_T of the W boson and the leading-b-jet	V		V	V	V
$p_{\mathrm{T}}(W)$	p_T of the W boson				V	V
H_T	scalar sum of p_T of all jets			V		
E _T E _T E _T	missing transverse energy (energy of the recon-		V	•		V
T	structed neutrino)		•			•
$\eta(\mu)$	η of the muon	V			V	V
$\eta(j_L)$	η of the light-flavour jet	V		V	V	V
$M(j_1j_2)$	the invariant mass of the leading-jet and the	V		V	•	
(/1/2)	second-leading jets	'		•		
$M(\sum_{i \neq i_{best}} (j_i))$	the invariant mass of all jets without the best	V				V
1V1 (∠1≠1 _{best} (J1))	one	\ \				•
M(jW)	the invariant mass of the W boson and all jets	V				
$M(W,b_1)$	the invariant mass of the W boson and the	V			V	V
	leading-b-jet	'			,	•
$M(\sum_{i}(j_{i}))$	the invariant mass of all jets				V	V
$\Delta R(j_1, j_2)$	equal to $\sqrt{(\eta(j_1) - \eta(j_2))^2 + (\phi(j_1) - \phi(j_2))^2}$	V			V	V
		V		X 7	V	V
$\Delta R(\mu, j_2)$	equal to $\sqrt{(\eta(\mu) - \eta(j2))^2 + (\phi(\mu) - \phi(j2))^2}$			V	X 7	X 7
$\Delta\phi(\mu, E_{\mathrm{T}}^{\mathrm{miss}})$	azimuthal angle between the lepton and the re-			V	V	V
	constructed neutrino					
$cos(\theta_{\mu,j_L}) _{top}$	the cosine of the angle between the lepton and	V	V		V	V
	the light flavour jet in the top quark rest frame,					
	the top quark is reconstructed with the leading-					
	b-jet					
$cos(\theta_{\mu,W}) _{W}$	the cosine of the angle between the lepton and		V	V	V	V
	the W boson in the W boson rest frame					
$cos(\theta_{W,j_L}) _{top}$	the cosine of the angle between the W boson		V			
	and the light-flavour jet in the top quark rest					
	frame					
$cos(\theta_{\mu,j_1}) _{top}$	the cosine of the angle between the lepton and					V
([-1]1 / 1 F	the first jet in the top quark rest frame					
	a charge of the lepton				V	V

A. Jung

Ttbar + X: W, Z, y

Systematic source	Uncertainty, %
Template modeling	
- Bck. template modeling: γ leakage	3.7
- Signal template modeling	6.6
Signal modeling	
- MC generator	1.7
- PDF	1.1
- Parton shower	7.3
- QED FSR	3.4
- Color reconnection	0.2
- Underlying event	0.0
- Ren/Fac. Scale	1.1
Photon modeling	
- Photon identification efficiency	7.3
- Photon scale	2.7
- Photon resolution	4.0
Electron modeling	
- Trigger efficiency	0.3
- Reconstruction efficiency	0.5
- Identification efficiency	1.2
- Energy scale	0.3
- Energy resolution	0.1
Muon modeling	
- Trigger efficiency	1.7
- Reconstruction efficiency	0.4
- Identification efficiency	1.0
- Momentum scale	0.3
- Momentum resolution	0.7
Jet modeling	
- Jet reconstruction efficiency	0.1
- Jet energy scale	15.0
- Jet energy resolution	6.5
- Jet vertex fraction	2.6
b-tagging	
- b-tag efficiency	8.1
- Mistag rate	1.1
MET modeling	
- Soft-jets and Cell-Out terms	0.3
- Pile-up	0.0
Luminosity	1.8
Background contributions	
- e-fakes	5.0
- QCD multijets $+\gamma$	1.5
- W +jets+ γ	5.4
$Z+\text{jets}+\gamma$	1.3
- Dibosons $+\gamma$	0.4
- Single top+ γ	0.4
2910 tob 1 /	0.

Top quark: FCNC's

Ttbar + X: W, Z, γ

