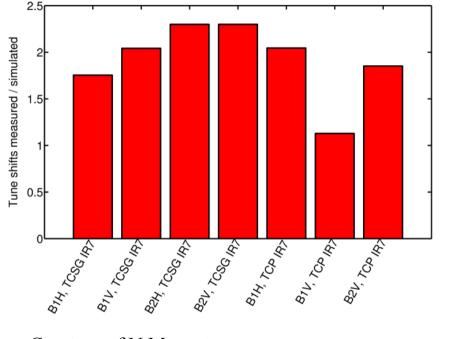
Update on the HL-LHC impedance budget

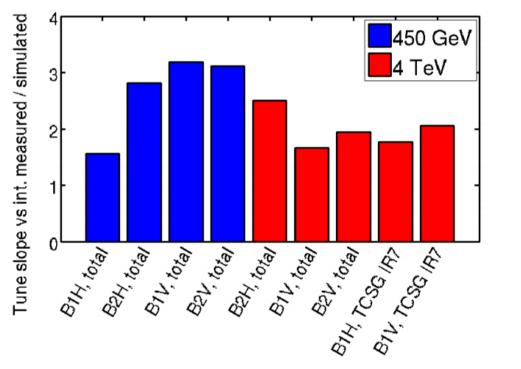
N.Biancacci

CERN, 15-10-2014

HL-LHC WP 2 Task 2.4

High Luminosity LHC


Acknowledgements: B.Salvant, E.Métral, N. Mounet, O. Frasciello, M. Zobov, A.Mostacci, J. Uythoven, A. Lechner, A. Marcone, R. Bruce.


Outline

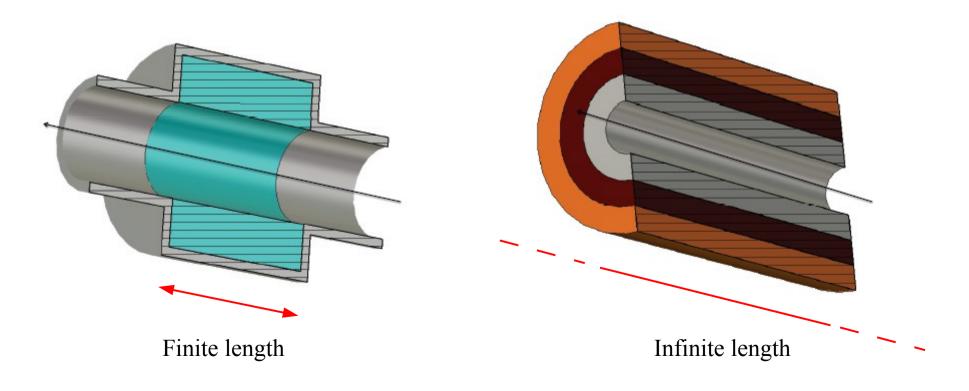
- Status of the LHC impedance model Vs measurements.
- Possible explanation for the LHC model discrepancy Vs measurements:
 - Finite length of collimators
 - Geometrical impedance contribution
 - Aging of collimators
- HL-LHC impedance reduction strategy:
 - Mo/MoC jaws
 - TCT low frequency mode
 - TDI re-design
- Conclusions and outlook

Observations:

- Factor ~3 discrepancy between measured and simulated tune shifts Vs intensity at 450 GeV.
- Factor ~2 discrepancy between measured and simulated tune shifts Vs intensity at 4TeV.

Courtesy of N.Mounet

Possible explanations:

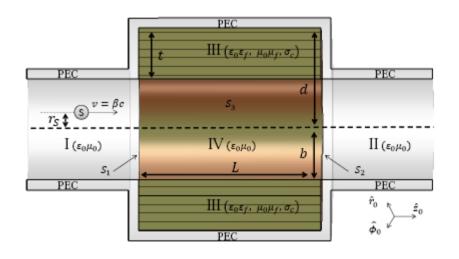

- 1. Effects of finite length on collimator impedance model.
- 2. Collimator geometrical impedance contribution.
- 3. Effect of radiation on jaws conductivity during the years.

Possible explanations:

- 1. Effects of finite length on collimator impedance model.
- 2. Collimator geometrical impedance contribution.
- **3.** Effect of radiation on jaws conductivity during the years.

In other words:

"What is the effect of *finite length* on impedance Vs the 2D *infinite length* approximation?"



Possible explanations:

- 1. Effects of finite length on collimator impedance model.
- 2. Collimator geometrical impedance contribution.
- **3.** Effect of radiation on jaws conductivity during the years.

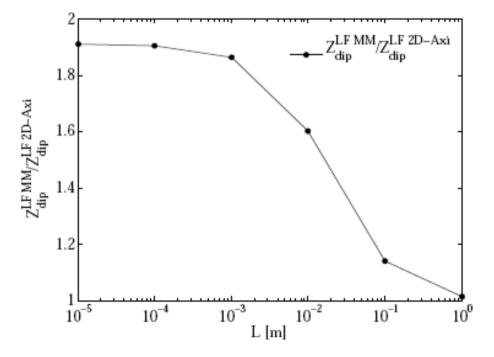
In other words:

"What is the effect of *finite length* on impedance Vs the 2D *infinite length* approximation?"

We applied the Mode Matching method in order to solve the related EM problem:

1) Decompose EM fields in sub-volumes.

2) Match opportunely the EM fields at the surfaces in between.


3) Compute ratio between the impedance of finite length Vs the infinite length approximated one.

Possible explanations:

- 1. Effects of finite length on collimator impedance model.
- 2. Collimator geometrical impedance contribution.
- **3.** Effect of radiation on jaws conductivity during the years.

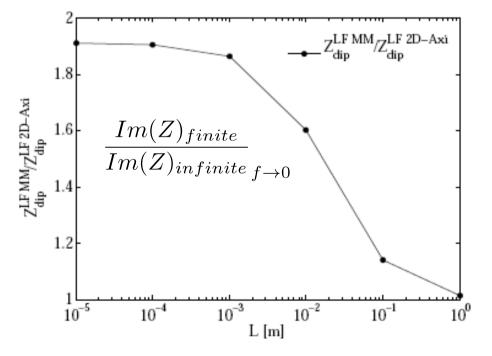
In other words:

"What is the effect of *finite length* on impedance Vs the 2D *infinite length* approximation?"

We applied the Mode Matching method in order to solve the related EM problem:

1) Decompose EM fields in sub-volumes.

2) Match opportunely the EM fields at the surfaces in between.


3) Compute ratio between the impedance of finite length Vs the infinite length approximated one.

Possible explanations:

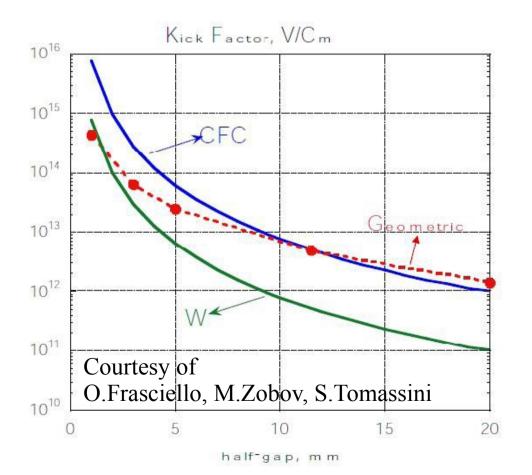
- 1. Effects of finite length on collimator impedance model.
- 2. Collimator geometrical impedance contribution.
- **3.** Effect of radiation on jaws conductivity during the years.

In other words:

"What is the effect of *finite length* on impedance Vs the 2D *infinite length* approximation?"

Example of dipolar impedance of a carbon collimator (resistivity=1e-6):

- Relative increase of the low frequency reactive impedance only for very narrow lengths.
- Negligible effect for long devices (meters).


Negligible for the LHC collimators

Possible explanations:

1. Effects of finite length on collimator impedance model.

2. Collimator geometrical impedance contribution.

3. Effect of radiation on jaws conductivity during the years.

Geometrical flat transitions accounted with G.Stupakov formula:

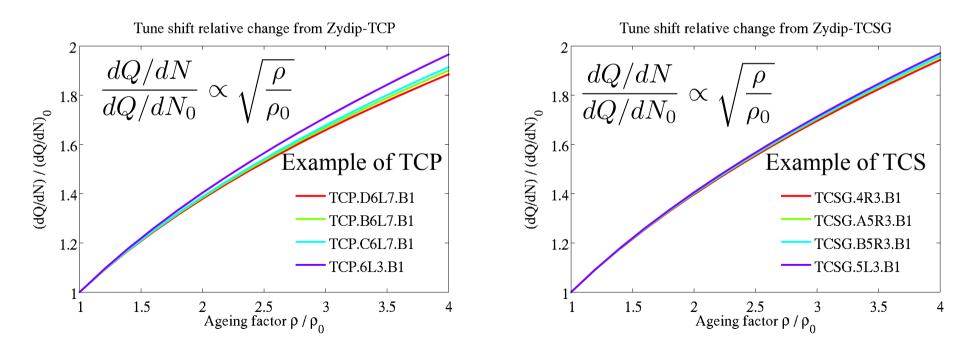
$$Z_T = j \frac{Z_0 w}{4} \int \frac{(g')^2}{g^3} \, \mathrm{d}z$$

Results:

- Strong impact for CFC collimators above 8mm half gap..
- Strong impact for W (tungsten) collimators all over the gap range.

Upto 20-30% at 1 GHz!

Possible explanations:


1. Effects of finite length on collimator impedance model.

2. Collimator geometrical impedance contribution.

3. Effect of radiation on jaws conductivity during the years.

- The primary and secondary collimators are more exposed to radiation.
- Studied the effect of "aging" the CFC in TCP and TCSG increasing the resistivity by a factor:

Aging factor = ρ/ρ_0

Strong impact. Confirmation is needed through updated conductivity measurements.

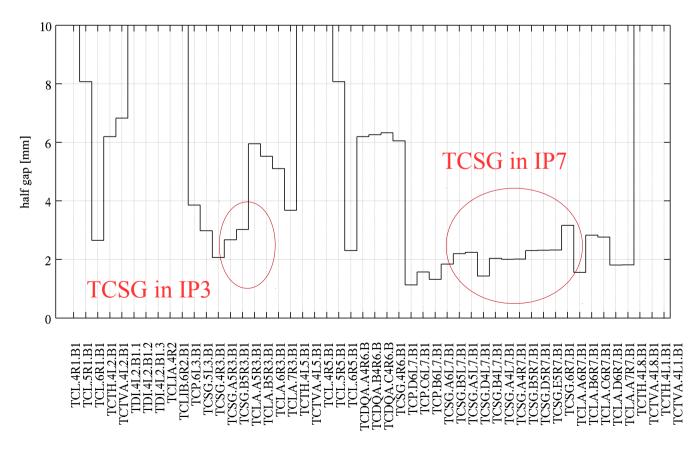
HL-LHC impedance reduction strategy:

1. New Molybdenum jaws in IP3 and IP7 \rightarrow Impedance reduced of order of magnitude!

Possible different material scenarios:

MoC: Molybdenum Carbon only.
Mo: Molybdenum only.
Mo coating on CFC.
MoC on CFC.

Studied the HL-LHC impedance model with 15 cm round optics.

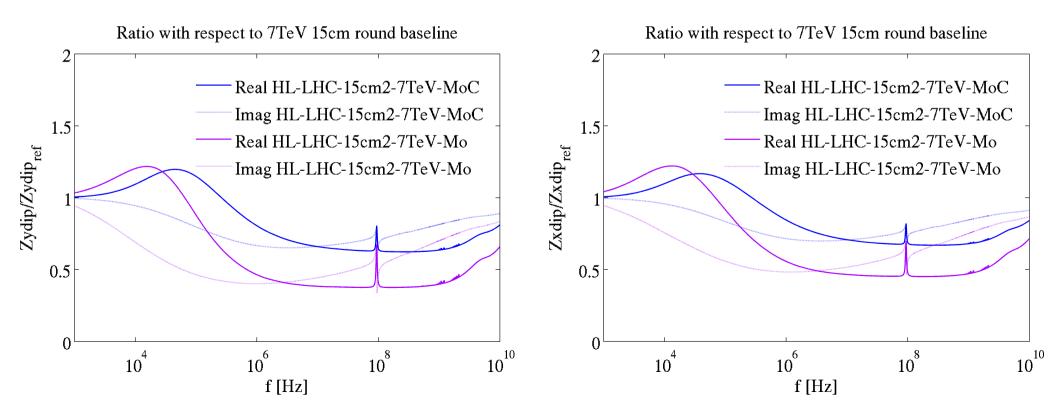

HL-LHC impedance reduction strategy:

1. New Molybdenum jaws in IP3 and IP7 \rightarrow Impedance reduced of order of magnitude!

Possible different impedance reduction scenarios:

- 1. MoC: Molybdenum Carbon only.
- 2. Mo: Molybdenum only.
- 3. Mo coating on CFC.
- 4. Mo coating on MoC.

Studied the HL-LHC impedance model with 15 cm round optics.



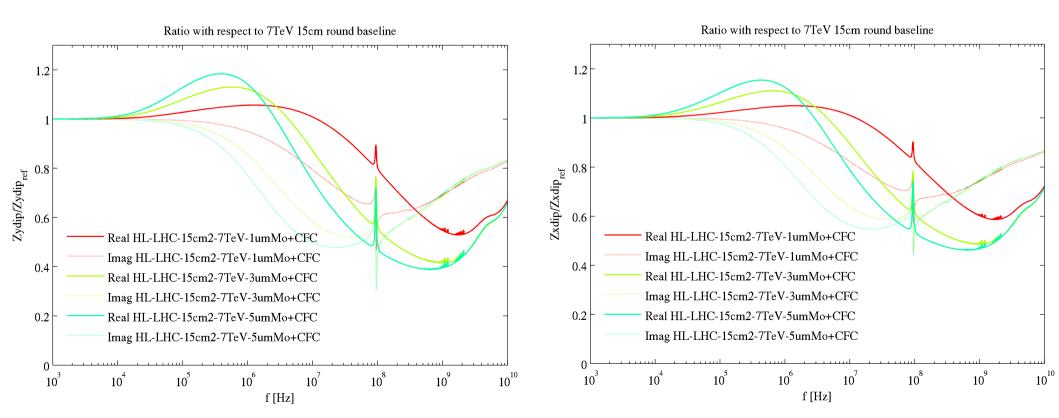
HL-LHC impedance reduction strategy:

1. New Molybdenum jaws in IP3 and IP7 \rightarrow Impedance reduced of order of magnitude!

Possible different impedance reduction scenarios:

- 1. MoC: Molybdenum Carbon only.
- 2. Mo: Molybdenum only.
- 3. Mo coating on CFC.
- 4. Mo coating on MoC.

HL-LHC impedance reduction strategy:

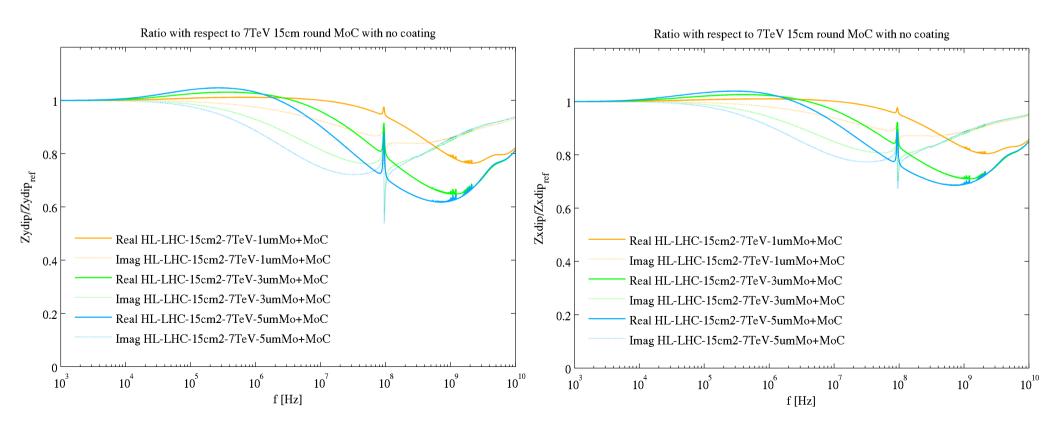

1. New Molybdenum jaws in IP3 and IP7 \rightarrow Impedance reduced of order of magnitude!

Possible different impedance reduction scenarios:

1. MoC: Molybdenum Carbon only.

- 2. Mo: Molybdenum only.
- 3. Mo coating on CFC.

4. Mo coating on MoC.

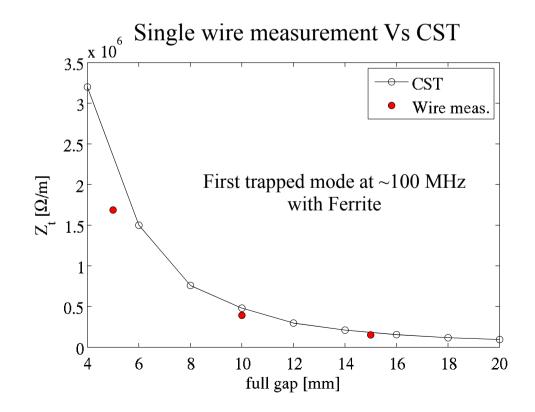

HL-LHC impedance reduction strategy:

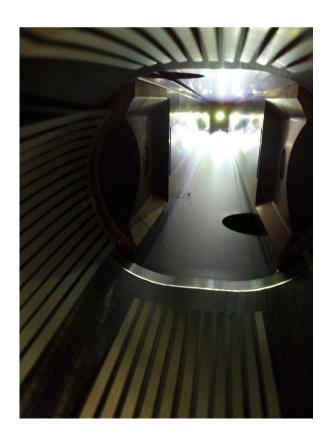
1. New Molybdenum jaws in IP3 and IP7 \rightarrow Impedance reduced of order of magnitude!

Possible different impedance reduction scenarios:

- 1. MoC: Molybdenum Carbon only.
- 2. Mo: Molybdenum only.
- 3. Mo coating on CFC.

4. Mo on MoC.

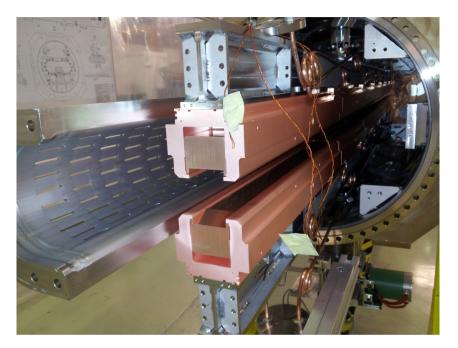

TCT – TCSG.4R6 trapped mode


Present TCT-TCSG in IP6 design:

1. Potentially harmful low frequency modes.

Impedance bench measurements:

- 1. Confirm the presence of the mode.
- 2. Parallel simulations will disentangle the nature of the mode (longitudinal Vs transverse)
- 3. For the moment good agreement between simulation and measurements (Zt Vs gap)
- 4. More simulations in collaboration with INFN-LNF will be soon available.


New TDI design

Present TDI design:

Heating issues.
Presence of many harmful trapped modes.

Impedance bench measurements:

1. Confirmed the presence of the low frequency modes.

Short term: post-LS1 mitigation:

1. Change of the beam screen from copper to stainless steel \rightarrow more robustness.

2. 1um Ti + 2um Cu coating \rightarrow power loss reduction.

Long term: Device re-design from scratch:

1. Iterations with the collimation and INFN-LNF group to take into account:

- mechanical feasibility (number of modules, transition geometry, gaps, etc..)
- impedance compatibility (transition + jaw material)

Conclusions and next steps

Update on the HL-LHC impedance model:

- **1. Finite length:** crosschecked the impact of the infinite length approximation with the rigorous application of the Mode Matching \rightarrow negligible impact on collimator impedance.
- **2. Geometrical impedance:** high impact on tungsten jaws and on CFC ones for h.g > 8mm.
- **3. Aging of collimators:** could explain why we have higher measured impedance. We would need measurements of conductivity Vs dose or some estimation.
- **4. Mo-MoC scenarios:** updated alternatives for full Mo, MoC replacement of CFC jaws and coatings.
- **5. TCT mode:** potentially harmful mode also in the HL-LHC scenario \rightarrow DELPHI simulations planned.
- 6. TDI: short-term solution for the post-LS1 LHC. Iterative re-design ongoing!

Next steps:

- 1. Replacement of the BPM broadband model with accurate impedance estimations.
- 2. Update of the other broadband impedances (valves, Y chamber, ...) from design report.
- 3. Update of the Crab Cavities design \rightarrow impedance HOM updated list.
- 4.....

Thanks!

Some material electrical properties

Material properties:

- Stainless steel 604L: $\rho_{DC} = 720n\Omega/m$
- Graphite SGL R4550: $\rho_{DC} = 15\mu\Omega/m$ $\tau_{AC} = 1.3ps$
- CFC Tatsuno AC150: $\rho_{DC} = 5\mu\Omega/m$
- Tungsten:

 $\rho_{DC} = 54n\Omega/m \qquad \quad \tau_{AC} = 0.005ps$

- Titanium (in TDI): $\rho_{DC} = 2.5 \mu \Omega/m$
- hBN:

 $\rho_{DC} = 4 \cdot 10^{12} \Omega/m$

• Aluminum:

 $\rho_{DC} = 27n\Omega/m \qquad \quad \tau_{AC} = 0.008ps$

- Copper: $\rho_{DC} = 17n\Omega/m$ $\tau_{AC} = 0.027ps$
- Molybdenum: $\rho_{DC} = 53.5n\Omega/m$ $\tau_{AC} = 0.01ps$
- Molybdenum-Carbon: $\rho_{DC} = 1\mu\Omega/m$

Parameter	Nominal LHC (design report)	HL-LHC 25ns (standard)	HL-LHC 25ns (BCMS)	HL-LHC 50ns
Beam energy in collision [TeV]	7	7	7	7
N _b	1.15E+11	2.2E+11	2.2E+11	3.5E+11
n _b	2808	2748	2604	1374
Number of collisions in IP1 and IP5 ¹	2808	2736	2592	1368
N _{tot}	3.2E+14	6.0E+14	5.7E+14	4.9E+14
beam current [A]	0.58	1.09	1.03	0.89
x-ing angle [µrad]	285	590	590	590
beam separation [\sigma]	9.4	12.5	12.5	11.4
β* [m]	0.55	0.15	0.15	0.15
ε __ [μm]	3.75	2.50	2.50	3
ε _L [eVs]	2.50	2.50	2.50	2.50
r.m.s. energy spread	1.13E-04	1.13E-04	1.13E-04	1.13E-04
r.m.s. bunch length [m]	7.55E-02	7.55E-02	7.55E-02	7.55E-02
IBS horizontal [h]	80 -> 106	18.5	18.5	17.2
IBS longitudinal [h]	61 -> 60	20.4	20.4	16.1
Piwinski parameter	0.65	3.14	3.14	2.87
Total loss factor R0 without crab-cavity	0.836	0.305	0.305	0.331
Total loss factor R1 with crab-cavity	(0.981)	0.829	0.829	0.838
beam-beam / IP without Crab Cavity	3.1E-03	3.3E-03	3.3E-03	4.7E-03
beam-beam / IP with Crab cavity	3.8E-03	1.1E-02	1.1E-02	1.4E-02
Peak Luminosity without crab-cavity [cm ⁻² s ⁻¹]	1.00E+34	7.18E+34	6.80E+34	8.44E+34
Virtual Luminosity with crab-cavity: Lpeak*R1/R0 [cm ⁻² s ⁻¹]	(1.18E+34)	19.54E+34	18.52E+34	21.38E+34
Events / crossing without levelling and without crab-cavity	27	198	198	454
Levelled Luminosity [cm ⁻² s ⁻¹]	-	5.00E+34 5	5.00E+34	2.50E+34
Events / crossing (with leveling and crab-cavities for HL-LHC) *	27	138	146	135
Peak line density of pile up event [event/mm] (max over stable beams)	0.21	1.25	1.31	1.20
Leveling time [h] (assuming no emittance growth)*	-	8.3	7.6	18.0
Number of collisions in IP2/IP8	2808	2452/2524 7	2288/2396	04/1262
N _b at LHC injection ²	1.20E+11	2.30E+11	2.30E+11	3.68E+11
n _b /injection	288	288	288	144
N _{tot} /injection	3.46E+13	6.62E+13	6.62E+13	5.30E+13
ε _n at SPS extraction [μm] ³	3.40	2.00	< 2.00 6	2.30