History/Energy line vs discovery

Higgs and super-symmetry ?

Behind the history plot is hidden the technological development required for each step

Obs: you can notice different particle species used in the different colliders electron-positrons and hadron colliders (either p-p as Tevratron, p-p as LHC)

The proper particle for the proper scope

Electrons (and positrons) are (so far) point like particles: no internal structure

 e^{-}

The energy of the collider, namely two times the energy of the beam colliding is totally transferred into the collision

Ecoll = Ebl + Eb2 = 2Eb = 200 GeV (LEP)

<u>Pros:</u> the energy can be precisely tuned to scan for example, a mass region. Precision measurement (LEP)

<u>Cons</u>: above a certain energy is no more possible to use electrons because of too high <u>synchrotron radiation</u> (last lecture) Protons (and antiprotons) are formed by quarks (uud) kept together by gluons

The energy of each beam is carried by the proton constituents, and it is not the entire proton which collides, but one of his constituent

Ecoll < 2Eb

<u>Pros:</u> with a single energy possible to scan different processes at different energies. Discovery machine (LHC)

<u>Cons:</u> the energy available for the collision is lower than the accelerator energy

CERN accelerator complex overview

LEP vs LHC: Magnets, a change in technology Bending Field $\rightarrow p(TeV) = 0.3 B(T) R(Km)$ (earth magnetic field is between 24,000 nT and 66,000 nT)

Tunnel R \approx 4.3 Km LHC 7 TeV \rightarrow B \approx 8.3 T \rightarrow <u>Superconducting coils</u> LEP 0.1 TeV \rightarrow B \approx 0.1 T \rightarrow Room temperature coils

Protons can go up in energy more than electrons because they **emit less synchrotron radiation.** Bending (dipoles) and focusing (quadrupoles) strengths require high magnetic fields generated by superconductors

Synahnoetopnraddiation

Radiation emitted by charged particles accelerated longitudinally and/or transversally **Power radiated** per particle goes like: 4th power of the energy

ρ

$$P = \frac{2c \times E^4 \times r_0}{3\rho^2 \left(m_0 \times c^2\right)^3}$$

(2nd power)⁻¹ of the bending radius (4th power)⁻¹ of the particle mass

 $r_0 r_{\oplus} = \frac{q^2 q^2}{4\pi 4\pi \cos m^2 c^2}$ particle classical radius

particle bending radius

Energy lost per turn per particle due to synchrotron radiation:

- e- W(MeV) = 8.85 x 10^{-5} x E^4 (GeV)/ ρ^2 (km) \approx 2 GeV (LEP)
- W(keV) = $7.8 \times 10^{-3} \times E^4(\text{TeV})/\rho^2(\text{km})$ \approx 6 keV (LHC) Ρ

We must protect the LHC coils even if energy per turn is so low

LHC beam screen with cooling pipes

Atmosphere pressure = 750 Torr Moon atmospheric pressure = 5 10⁻¹³ Torr Beam screen to protect Superconducting magnets from Synchrotron radiation.

Holes for vacuum pumping

Vacuum required to avoid unwanted collision far from the experiments and decrease the Luminosity

Typical vacuum: 10⁻¹³ Torr

There is ~6500 m³ of total pumped volume in the LHC, like pumping down a cathedral.

Two-in-one magnet design

The LHC is <u>one ring</u> where <u>two accelerators</u> are coupled by the magnetic elements.

Nb -Ti superconducting cable in a Cu matrix

Very, very short introduction to Superconductivity for accelerators

V. V. S. Introduction to Superconductivity II

Beam losses can eat the temperature margin because of energy deposition

Limit of accepted losses: ~ 10 mW/cm^3 to avoid ΔT > 2 K, the temperature margin

IBI (T)

8.70

.358 - 7.80

.909 - 7.35

.460 - 6.909

6.011 - 6.460

5.562 - 6.011

5.113 - 5.562

4.664 - 5.113

2.868 - 3.317

4.215 - 4.664

3.766 - 4.215

3.317 - 3.76

1.970 - 2.419

1.521 - 1.970

1.072 - 1.521

0.623 - 1.072

0.174 - 0.623

2.419 - 2.86

536.4 546.5 526.3 536.4 526.3 516.1 506.0 -516.1 506.0 495.9 -485.8 - 495.9 485.8 475.7 -465.6 -475.7 465.6 455.5 -445.3 -455.5 445.3 435.2 -435.2 425 1 425.1 415.0

566.7 - 576.8 556.6 - 566.7

566.7

546.5 -

IJI (A/mm²)

Temperature margin (K)

104.9

394.8 - 404.9 384.6 - 394.8

415.0

040 6 274 6.040 5 806 5 572 -5,572 5.338 5,338 5.104 -5.104 4 870 -4.870 4 637 -4,637 4.403 -4.169 - 4.403 3 935 -4 169 3.701 -3,935 3 467 - 3 701 3,234 -3,467 3,234 3.000 -3 000 2 766 -2.766 2.532 -2.298 -2.532

> 2.064 - 2.298 1.831 - 2.064

How much is 10 mW/cm³?

A fluorescente (known as neon) tube can be typically 1.2 m long with a diameter of 26 mm, with an input power of 36 W.

This makes a power density of about 56 mW/cm³.

The power of a neon tube can quench about 5 LHC dipoles at collision energy.... because one does not need 10 mW/cm³ for the entire volume of a magnet, but for about 1 cm³.

If you do the same basic computation with a normal 100 W resistive bulbs is even worst

When something goes wrong.... bad quench...

PS: they are not straight, small bending of 5.1 mrad

At 7 TeV:

 $I_{max} = 11850 \text{ A Field} = 8.33 \text{ T}$ Stored energy= 6.93 MJ Weight = 27.5 Tons Length =15.18 m at room temp. Length (1.9 K)=15 m - ~10 cm

Test bench for magnetic measurements at 1.9 K

LHC during installation

How to detect losses: BLMs installed in the tunnel

BLM: Beam loss monitor

Triplets before lowering in the tunnel

Which coolant ? Liquid superfluid helium

LHC cryogenics will need <u>40,000</u> leak-tight pipe junctions. <u>12 million litres</u> of liquid nitrogen will be vaporised during the initial cooldown of <u>31,000 tons</u> of material and the total inventory of liquid helium will be <u>700,000 I (about 100 tonnes)</u>

2-in-1 design true also for the optics: a quadrupole F for beam 1 (circulating clockwise) is D for beam 2 circulating anticlockwise

Quadrupoles are also two-in one

Magnets for the LHC, total budget, every magnet has a role in the optics design

Name	Quantity	Purpose
MB	1232	Main dipoles
MQ	400	Main lattice quadrupoles
MSCB	376	Combined chromaticity/ closed orbit correctors
MCS	2464	Dipole spool sextupole for persistent currents at injection
MCDO	1232	Dipole spool octupole/decapole for persistent currents
МО	336	Landau octupole for instability control
MQT	256	Trim quad for lattice correction
MCB	266	Orbit correction dipoles
MQM	100	Dispersion suppressor quadrupoles
MQY	20	Enlarged aperture quadrupoles
In total 6628 cold magnets		

LHC: the issue of stored beam energy

Why do we have to protect the machine ?

Total stored beam energy at top energy (7 TeV), nominal beam, 334 MJ (or 120 kg TNT) Nominal LHC parameters: 1.15 10¹¹ protons per bunch 2808 bunches

0.5 A beam current

British aircraft carrier:

HMS Illustrious and Invincible weigh 20,000 tons all-up and fighting which is 2 x 10⁷ kg. Or the USS Harry S.Truman (Nimitz-class) - 88,000 tons.

Energy of nominal LHC beam = 334 MJ or $3.34 \times 10^8 \text{ J}$

which corresponds to the aircraft carrier navigating

at v=5.8 m/s or 11.2 knots (or around 5.3 knots if you're an American aircraft carrier)

So, what if something goes wrong?

What is needed to intercept particles at large transverse amplitude or with the wrong energy to avoid quenching a magnet?

3 years ago something went wrong during a test ...

LHC extraction from the SPS 450 GeV/c, 288 bunches Transverse beam size 0.7 mm (1 σ) 1.15 x 10¹¹ p+ per bunch, for total intensity of 3.3 x 10¹³ p+ Total beam energy is 2.4 MJ, lost in extraction test (LHC 334 MJ)

Outside beam pipe

Inside beam pipe

about 110 cm

B.Goddard CERN AB/BT

Tevatron accident in 2003 (courtesy of N. Mokhov)

Accident caused by uncontrolled movement of beam detectors (Roman Pots) which caused a secondary particle shower magnet quench → no beam dump → damage on approximatively 550 turns

Tungsten collimator. Tmelting = 3400 °C I.5 m long stainless steel collimator

2 stage collimation

Courtesy of S. Redaelli

Collimator in the tunnel during installation

Beam Hitting detector screens

What can influence an accelerator?

The physics case:

the Z mass at LEP has been measured with an error of 2 MeV. Energy of the accelerator has to be know better than 20 ppm.

Energy measurements obtained by during last years of LEP operation

Nominal (GeV)	$ \begin{array}{c} E_{CM} (\text{LEP}) \\ (\text{GeV}) \end{array} $
181	180.826 ± 0.050
182	181.708 ± 0.050
183	182.691 ± 0.050
184	183.801 ± 0.050
Combined	182.652 ± 0.050

What can influence the energy of a collider?

"Rappel" of strong focusing synchrotron optics

Stable orbit is bent by the main dipoles, centered in the quadrupoles, no field

Energy fixed by bending strength and cavity frequency

$$\begin{split} f_{RF} &= h \cdot f_{rev} \\ f_{rev} &= \frac{v}{C_c} = \frac{v}{2\pi\rho} = \frac{1}{2\pi} \cdot \frac{qB_0}{m_0\gamma} \\ \text{A variation of the Circumference C induces} \\ \text{changes in the energy proportional to } \alpha, \text{ the momentum compaction factor:} \\ \frac{\Delta E(t)}{E_0} &= -\frac{1}{\alpha} \frac{\Delta C(t)}{C_c} \\ \end{split}$$

In LEP α = 1.86 10⁻⁴ a small variation the circumference induces a large variation in energy

Moon tides can change earth geometry

Moon induces a earth deformation similar to water tide.

The effect is modulated by the different tide intensities and by the SUN tides

The problem: an accelerator is not in the middle of nothing

Influence of train leakage current

The evidence, TGV to Paris at 16:50 ...

Correlation between trains and LEP energy

Conclusion/future..

- As last transparency, what about the future.
- The "after LHC" is going to be a LINEAR COLLIDER with leptons:
 - Linear because of synchrotron radiation
 - with electrons (lepton) because of precision measurements

• Thanks for your attention.

The LHC optics in one slide

Near the IPs

http://petermccready.com/portfolio/

Triplets before lowering in the tunnel

