Particle Detectors

Summer Student Lectures 2008 Werner Riegler, CERN, werner.riegler@cern.ch

- ♦ History of Instrumentation ↔ History of Particle Physics
- The 'Real' World of Particles
- Interaction of Particles with Matter
- Tracking with Gas and Solid State Detectors
- Calorimetry, Particle ID, Detector Systems

Electromagnetic Interaction of Particles with Matter

Interaction with the atomic electrons. The incoming particle loses energy and the atoms are <u>excited</u> or <u>ionized.</u>

7/9/2008

Interaction with the atomic nucleus. The particle is deflected (scattered) causing <u>multiple scattering of</u> the particle in the material. During this scattering a <u>Bremsstrahlung</u> photon can be emitted. In case the particle's velocity is larger than the velocity of light in the medium, the resulting EM shockwave manifests itself as <u>Cherenkov Radiation</u>. When the particle crosses the boundary between two media, there is a probability of the order of 1% to produced and X ray photon, called <u>Transition radiation</u>.

Creation of the Signal

Charged particles traversing matter leave excited atoms, electron-ion pairs (gases) or electrons-hole pairs (solids) behind.

Excitation:

The photons emitted by the excited atoms in transparent materials can be detected with photon detectors like photomultipliers or semiconductor photon detectors.

Ionization:

By applying an electric field in the detector volume, the ionization electrons and ions are moving, which induces signals on metal electrodes. These signals are then read out by appropriate readout electronics.

Detectors based on registration of excited Atoms → Scintillators

Detectors based on Registration of excited Atoms \rightarrow Scintillators

Emission of photons of by excited Atoms, typically UV to visible light.

- a) Observed in Noble Gases (even liquid !)
- b) Inorganic Crystals
- → Substances with largest light yield. Used for precision measurement of energetic Photons. Used in Nuclear Medicine.
- c) Polyzyclic Hydrocarbons (Naphtalen, Anthrazen, organic Scintillators)
- → Most important category. Large scale industrial production, mechanically and chemically quite robust. Characteristic are one or two decay times of the light emission.

Typical light yield of scintillators:

Energy (visible photons) \approx few % of the total energy Loss. z.B. 1cm plastic scintillator, $\rho \approx 1$, dE/dx=1.5 MeV, ~15 keV in photons; i.e. ~ 15 000 photons produced.

W. Riegler/CERN

Scintillator Detectors

Detectors based on Registration of excited Atoms \rightarrow Scintillators

Organic ('Plastic') Scintillators

Inorganic (Crystal) Scintillators

Low Light Yield			Fast: 1-3ns			Large Light Yield		Slow: few 100			
Туре	Light" ou put	العينة (nm)	Atten uation" length (cm)	Risctime (ns)	Deca y" time (ns)	Pulse FWHM (ns)		Relative light output	λ _{max} emission (nm)	Decay time (15)	Density (g/cm ³)
NE 102A NE 104 NE 104B NE 104B	58 - 70 68 59 60	423 406 406 414	250 120 120 400	0.9 0.6-0.7 I 1.0	2.2-2.5 1.7-2.0 3.0 2.9-3.3	2.7-3.2 2.2-2.5 3 4.2	Inorganic crystals NaI(Tl) CsI(Tl) Bi ₄ Ge ₃ O ₁₂ (BGO)	230 250 23-86	415 560 480	230 900 300	3.67 4.51 7.13
NE 111 NE 114 Pilot B Pilot F Bilot U	40-55 42-50 60-68 64 58-67	375 434 408 425 391	8 350-400 125 300	0.13-0.4 ~1.0 0.7 0.9 0.5	1.3 - 1.7 4.0 1.6 - 1.9 2.1	1.2-1.6 5.3 2.4-2.7 3.0-3.3 1.2-1.9	Organic crystals Anthracene Trans-stilbene Naphthalene p.p'-Quarterphenyl	100 75 32 94	448 384 330-348 437	22 4.5 76-96 7.5	1.25 1.16 1.03 1.20
BC 404 BC 408 BC 420 ND 100 ND 120	68 64 64 60 65	408 425 391 434 423		0.7 0.9 0.5	1.8 2.1 1.5 3.3 2.4	22 ~2.5 1.3 3.3 2.7	Primary activators 2,5-Diphenyl-oxazole (PPO) 2-Phenyl-5-(4-biphenylyl)- 1,3,4-oxadiazole (PBD) 4,4"-Bis(2-butyloctyloxy)-p-	75 96	360-416 360-5	5*	
ND 160	68	408	125		1.8	2.7	quaterphenyl (BIBUQ)	60	365,393	1.30*	

LHC bunchcrossing 25ns

LEP bunchcrossing $25\mu s$

- -

Scintillators

Photons are being reflected towards the ends of the scintillator.

A light guide brings the photons to the Photomultipliers where the photons are converted to an electrical signal.

By segmentation one can arrive at spatial resolution.

Because of the excellent timing properties (<1ns) the arrival time, or time of flight, can be measured very accurately \rightarrow Trigger, Time of Flight.

Typical Geometries:

The frequent use of Scintillators is due to:

Well established and cheap techniques to register Photons \rightarrow Photomultipliers and the fast response time \rightarrow 1 to 100ns

Schematic of a Photomultiplier:

- Typical Gains (as a function of the applied voltage): 10⁸ to 10¹⁰
- Typical efficiency for photon detection:
- < 20%
- For very good PMs: registration of single photons possible.
- Example: 10 primary Elektrons, Gain 10⁷ → 10⁸ electrons in the end in T ≈ 10ns. I=Q/T = 10⁸*1.603*10⁻¹⁹/10*10⁻⁹= 1.6mA.
- Across a 50 Ω Resistor \rightarrow U=R*I= 80mV.

Fiber Tracking

Light transport by total internal reflection

Circular geometries (barrel)

(R.C. Ruchti, Annu. Rev. Nucl. Sci. 1996, 46,281)

High geometrical flexibility Fine granularity Low mass Fast response (ns)

Fiber Tracking

Readout of photons in a cost effective way is rather challenging.

Scintillator Detectors

Detectors based on Registration of Ionization: Tracking in Gas and Solid State Detectors

Charged particles leave a trail of ions (and excited atoms) along their path: Electron-lon pairs in gases and liquids, electron hole pairs in solids.

The produced charges can be registered \rightarrow Position measurement \rightarrow Tracking Detectors.

Cloud Chamber: Charges create drops \rightarrow photography. Bubble Chamber: Charges create bubbles \rightarrow photography. Emulsion: Charges 'blacked' the film.

Gas and Solid State Detectors: Moving Charges (electric fields) induce electronic signals on metallic electrons that can be read by dedicated electronics.

 \rightarrow In solid state detectors the charge created by the incoming particle is sufficient.

 \rightarrow In gas detectors (e.g. wire chamber) the charges are internally multiplied in order to provide a measurable signal.

The induced signals are readout out by dedicated electronics.

The noise of an amplifier determines whether the signal can be registered. Signal/Noise >>1

The noise is characterized by the 'Equivalent Noise Charge (ENC)' = Charge signal at the input that produced an output signal equal to the noise.

ENC of very good amplifiers can be as low as 50e-, typical numbers are ~ 1000e-.

In order to register a signal, the registered charge must be q >> ENC i.e. typically q>>1000e-.

Gas Detector: q=80e- /cm \rightarrow too small.

Solid state detectors have 1000x more density and factor 5-10 less ionization energy. \rightarrow Primary charge is 10⁴-10⁵ times larger than is gases.

Gas detectors need internal amplification in order to be sensitive to single particle tracks.

Without internal amplification they can only be used for a large number of particles that arrive at the same time (ionization chamber).

Principle of Signal Induction by Moving Charges

Principle of Signal Induction by Moving Charges

Signal Theorems

Placing charges on metal electrodes results in certain potentials of these electrodes. A different set of charges results in a different set of potentials. The reciprocity theorem states that

Using this theorem we can answer the following general question: What are the signals created by a moving charge on metal electrodes that are connected with arbitrary discrete (linear) components ?

Signal Theorems

What are the charges induced by a moving charge on electrodes that are connected with arbitrary linear impedance elements ?

One first removes all the impedance elements, connects the electrodes to ground and calculates the currents induced by the moving charge on the grounded electrodes.

The current induced on a grounded electrode by a charge q moving along a trajectory x(t) is calculated the following way (Ramo Theorem):

One removes the charge q from the setup, puts the electrode to voltage V_0 while keeping all other electrodes grounded. This results in an electric field $E_n(x)$, the Weighting Field, in the volume between the electrodes, from which the current is calculated by

$$I_n(t) = -\frac{q}{V_0} \vec{E_n}[\vec{x}(t)] \frac{d\vec{x}(t)}{dt} = -\frac{q}{V_0} \vec{E_n}[\vec{x}(t)] \vec{v}(t)$$

These currents are then placed as ideal current sources on a circuit where the electrodes are 'shrunk' to simple nodes and the mutual electrode capacitances are added between the nodes. These capacitances are calculated from the weighting fields by

$$c_{nm} = \frac{\varepsilon_0}{V_w} \oint_{\boldsymbol{A}_n} \boldsymbol{E}_m(\boldsymbol{x}) d\boldsymbol{A} \qquad C_{nn} = \sum_m c_{nm} \qquad C_{nm} = -c_{nm} \quad n \neq m$$

Signal Theorems

The following relations hold for the induced currents:

1) The charge induced on an electrode in case a charge in between the electrode has moved from a point x_0 to a point x_1 is

$$Q_n^{ind} = \int_{t_0}^{t_1} I_n^{ind}(t) dt = -\frac{q}{V_w} \int_{t_0}^{t_1} \boldsymbol{E}_n[\boldsymbol{x}(t)] \, \dot{\boldsymbol{x}}(t) dt = \frac{q}{V_w} [\psi_n(\boldsymbol{x}_1) - \psi_n(\boldsymbol{x}_0)]$$

3) In case there is one electrode enclosing all the others, the sum of all induced currents is zero at any time.

7/9/2008

W. Riegler, Particle

Signals in a Parallel Plate Geometry

The total induced charge on a specific electrode, once all the charges have arrived at the electrodes, is equal to the charge that has arrived at this specific electrode.

Detectors based on Ionization

- -----> Gas detectors:
 - Wire Chambers
 - Drift Chambers
 - Time Projection Chambers
 - Transport of Electrons and lons in Gases

Solid State Detectors

- Transport of Electrons and Holes in Solids
- Si- Detectors
- Diamond Detectors

Gas Detectors with internal Electron Multiplication

Principle: At sufficiently high electric fields (100kV/cm) the electrons gain energy in excess of the ionization energy \rightarrow secondary ionzation etc. etc.

 $dN = N \alpha dx$ $\alpha...Townsend Coefficient$

 $N(x) = N_0 \exp(\alpha x)$ N/ $N_0 = A$ (Amplification, Gas Gain)

Avalanche in a homogeneous field:

Problem: High field on electrode surface → breakdown

In an inhomogeneous Field: $\alpha(E) \rightarrow N(x) = N_0 \exp \left[\frac{1}{2} \alpha(E(x')) dx' \right]$

Wire Chamber: Electron Avalanche

Wire with radius (10-25 μ m) in a tube of radius b (1-3cm):

$$E(r)=rac{\lambda}{2\piarepsilon_0}rac{1}{r}=rac{V_0}{\lnrac{b}{a}}rac{1}{r},\qquad V(r)=rac{V_0}{\lnrac{b}{a}}\lnrac{r}{a},$$

Electric field close to a thin wire (100-300kV/cm). E.g. V_0 =1000V, a=10 μ m, b=10mm, E(a)=150kV/cm

Electric field is sufficient to accelerate electrons to energies which are sufficient to produce secondary ionization \rightarrow electron avalanche \rightarrow signal.

Wire Chamber: Electron Avalanches on the Wire

Wire Chamber: Signals from Electron Avalanches

The electron avalanche happens very close to the wire. First multiplication only around R =2x wire radius. Electrons are moving to the wire surface very quickly (<<1ns). Ions are difting towards the tube wall (typically several 100 μ s.)

The signal is characterized by a very fast 'spike' from the electrons and a long lon tail.

The total charge induced by the electrons, i.e. the charge of the current spike due to the short electron movement amounts to 1-2% of the total induced charge.

Detectors with Electron Multiplication

Rossi 1930: Coincidence circuit for n tubes

Cosmic ray telescope 1934

Geiger mode, large deadtime

Position resolution is determined by the size of the tubes.

Signal was directly fed into an electronic tube.

Multi Wire Proportional Chamber

Abbildung 2.27: Vieldrahtproportionalkammer.

Classic geometry (Crossection), Charpak 1968 :

One plane of thin sense wires is placed between two parallel plates.

Typical dimensions:

Wire distance 2-5mm, distance between cathode planes ~10mm.

Electrons (v \approx 5cm/µs) are collected within \approx 100ns. The ion tail can be eliminated by electronics filters \rightarrow pulses of <100ns length.

For 10% occupancy \rightarrow every μ s one pulse

- → 1MHz/wire rate capabiliy !
- → Compare to Bubble Chamber with 10 Hz !

Multi Wire Proportional Chamber

Abbildung 2.27: Vieldrahtproportionalkammer.

In order to eliminate the left/right ambiguities: Shift two wire chambers by half the wire pitch.

For second coordinate:

 \rightarrow Another chamber at 90^o relative rotation

 \rightarrow Signal propagation to the two ends of the wire.

 \rightarrow Pulse height measurement on both ends of the wire. Because of resisitvity of the wire, both ends see different charge.

Segmenting of the cathode into strips or pads:

The movement of the charges induces a signal on the wire AND on the cathode. By segmentation of the cathode plane and charge interpolation, resolutions of 50 μ m can be achieved.

Multi Wire Proportional Chamber

Cathode strip:

Width (1 σ) of the charge distribution \approx distance between Wires and cathode plane.

'Center of gravity' defines the particle trajectory.

In an alternating sequence of wires with different potentials one finds an electric field between the 'sense wires' and 'field wires'.

The electrons are moving to the sense wires and produce an avalanche which induces a signal that is read out by electronics.

The time between the passage of the particle and the arrival of the electrons at the wire is measured.

The drift time T is a measure of the position of the particle !

By measuring the drift time, the wire distance can be increased (compared to the Multi Wire Proportional Chamber) \rightarrow save electronics channels !

Drift Chambers, typical Geometries

Electric Field \approx 1kV/cm

W. Klempt, Detection of Particles with Wire Chambers, Bari 04

The Geiger Counter reloaded: Drift Tube

r

Radius

Primary electrons are drifting to the wire.

Electron avalanche at the wire.

The measured drift time is converted to a radius by a (calibrated) radius-time correlation.

Many of these circles define the particle track.

ATLAS Muon Chambers

ATLAS MDTs, 80µm per tube

The Geiger counter reloaded: Drift Tube

Atlas Muon Spectrometer, 44m long, from r=5 to11m. 1200 Chambers 6 layers of 3cm tubes per chamber. Length of the chambers 1-6m ! Position resolution: 80μ m/tube, <50 μ m/chamber (3 bar) Maximum drift time ≈700ns Gas Ar/CO₂93/7

Large Drift Chambers

Central Tracking Chamber CDF Experiment.

660 drift cells tilted 45° with respect to the particle track.

Drift cell

Transport of Electrons in Gases: Drift-velocity

Electrons are completely 'randomized' in each collision. The actual drift velocity v along the electric field is quite different from the average velocity u of the electrons i.e. \rightarrow about 100 times smaller.

The velocities v and u are determined by the atomic crossection $\sigma(\epsilon)$ and the fractional energy loss $\Delta(\epsilon)$ per collision (N is the gas density i.e. number of gas atoms/m³, m is the electron mass.):

$$v = \sqrt{\frac{eE}{mN\sigma}\sqrt{\frac{\Delta}{2}}}$$
 $u = \sqrt{\frac{eE}{mN\sigma}\sqrt{\frac{2}{\Delta}}}$

Because $\sigma(\epsilon)$ und $\Delta(\epsilon)$ show a strong dependence on the electron energy in the typical electric fields, the electron drift velocity v shows a strong and complex variation with the applied electric field.

v is depending on E/N: doubling the electric field and doubling the gas pressure at the same time results in the same electric field.

Transport of Electrons in Gases: Drift-velocity

Typical Drift velocities are v=5-10cm/ μ s (50 000-100 000m/s). The microscopic velocity u is about ca. 100mal larger.

Only gases with very small electro negativity are useful (electron attachment) \rightarrow Noble Gases (Ar/Ne) are most of the time the main component of the gas. \rightarrow Admixture of CO₂, CH₄, Isobutane etc. for 'quenching' is necessary (avalanche multiplication – see later).

Transport of Electrons in Gases: Diffusion

An initially point like cloud of electrons will 'diffuse' because of multiple collisions and assume a Gaussian shape. The diffusion depends on the average energy of the electrons. The variance σ^2 of the distribution grows linearly with time. In case of an applied electric field it grows linearly with the distance.

Thermodynamic limit:

$$\epsilon = \frac{3}{2}kT \qquad \rightarrow \qquad \sigma_x = \sqrt{\frac{2kTl}{eE}}$$

Because
$$\varepsilon = \varepsilon(E/P)$$
 $\sigma = \frac{1}{\sqrt{P}} F\left(\frac{E}{P}\right)$
Transport of Electrons in Gases: Diffusion

The electron diffusion depends on E/P and scales in addition with $1/\sqrt{P}$.

At 1kV/cm and 1 Atm Pressure the thermodynamic limit is σ =70µm for 1cm Drift.

'Cold' gases are close to the thermodynamic limit i.e. gases where the average microscopic energy $\mathcal{E}=1/2mu^2$ is close to the thermal energy 3/2kT.

CH₄ has very large fractional energy loss → low ε → low diffusion.

Argon has small fractional energy loss/collision \rightarrow large $\varepsilon \rightarrow$ large diffusion.

Drift of lons in Gases

Because of the larger mass of the lons compared to electrons they are not randomized in each collision.

The crossections are \approx constant in the energy range of interest.

Below the thermal energy the velocity is proportional to the electric field $v = \mu E$ (typical). Ion mobility $\mu \approx 1-10$ cm²/Vs.

Above the thermal energy the velocity increases with \sqrt{E} .

V= μ E, μ (Ar)=1.5cm²/Vs \rightarrow 1000V/cm \rightarrow v=1500cm/s=15m/s \rightarrow 3000-6000 times slower than electrons !

Time Projection Chamber (TPC):

Gas volume with parallel E and B Field. B for momentum measurement. Positive effect: Diffusion is strongly reduced by E//B (up to a factor 5).

Drift Fields 100-400V/cm. Drift times 10-100 $\mu s.$ Distance up to 2.5m !

O. Kilaland CERN 2005

STAR TPC (BNL)

Event display of a Au Au collision at CM energy of 130 GeV/n.

Typically around 200 tracks per event.

Great advantage of a TPC: The only material that is in the way of the particles is gas \rightarrow very low multiple scattering \rightarrow very good momentum resolution down to low momenta !

7/9/2008

W. Riegler, Particle

ALICE TPC: Detector Parameters

- Gas Ne/ CO₂ 90/10%
- Field 400V/cm
- Gas gain >10⁴
- Position resolution σ = 0.25mm
- Diffusion: $\sigma_t = 250 \mu m \sqrt{cm}$
- Pads inside: 4x7.5mm
- Pads outside: 6x15mm
- B-field: 0.5T

ALICE TPC: Construction Parameters

- Largest TPC:
 - Length 5m
 - Diameter 5m
 - Volume 88m³
 - Detector area 32m²
 - Channels ~570 000
- High Voltage:
 - Cathode -100kV
- Material X₀
 - Cylinder from composite materials from airplane

industry ($X_0 = ~3\%$)

ALICE TPC: Pictures of the Construction

Precision in z: 250µm

End plates 250µm

Wire chamber: $40 \mu m$

W. Riegler/CERN

ALICE TPC Construction

My personal contribution:

A visit inside the TPC.

ALICE : Simulation of Particle Tracks

- Simulation of particle tracks for a Pb Pb collision (dN/dy ~8000)
- Angle: Θ=60 to 62°
- If all tracks would be shown the picture would be entirely yellow !
- Up to 40 000 tracks per event !
- TPC is currently under commissioning

TPC installed in the ALICE Experiment

First Cosmic Muon Event Displays from the ALICE TPC June 2008 !

7/9/2008

Position Resolution/Time resolution

Up to now we discussed gas detectors for tracking applications. Wire chambers can reach tracking precisions down to 50 micrometers at rates up to <1MHz/cm².

What about time resolution of wire chambers ?

It takes the electrons some time to move from thir point of creation to the wire. The fluctuation in this primary charge deposit together with diffusion limits the time resolution of wire chambers to about 5ns (3ns for the LHCb trigger chambers).

By using a parallel plate geometry with high field, where the avalanche is starting immediately after the charge deposit, the timing fluctuation of the arriving electrons can be eliminated and time resolutions down to 50ps can be achieved !

Resistive Plate Chambers (RPCs)

Keuffel 'Spark' Counter:

High voltage between two metal plates. Charged particle leaves a trail of electrons and ions in the gap and causes a discharge (Spark).

→Excellent Time Resolution(<100ps).

Discharged electrodes must be recharged \rightarrow Dead time of several ms.

Parallel Plate Avalanche Chambers (PPAC):

At more moderate electric fields the primary charges produce avalanches without forming a conducting channel between the electrodes. No Spark \rightarrow induced signal on the electrodes. Higher rate capability.

However, the smallest imperfections on the metal surface cause sparks and breakdown. \rightarrow Very small (few cm²) and unstable devices.

In a wire chamber, the high electric field (100-300kV/cm) that produces the avalanche exists only close to the wire. The fields on the cathode planes area rather small 1-5kV/cm.

Parallel-Plate Counters

J. WARREN KEUFFEL* California Institute of Technology, Pasadena, California (Received November 8, 1948)

Resistive Plate Chambers (RPCs)

 \rightarrow Place resistive plates in front of the metal electrodes.

No spark can develop because the resistivity together with the capacitance (tau ~ $e*\rho$) will only allow a very localized 'discharge'. The rest of the entire surface stays completely unaffected.

→ Large area detectors are possible !

Resistive plates from Bakelite ($\rho = 10^{10}-10^{12} \Omega$ cm) or window glass ($\rho = 10^{12}-10^{13} \Omega$ cm).

Gas gap: 0.25-2mm. Electric Fields 50-100kV/cm. Time resolutions: 50ps (100kV/cm), 1ns(50kV/cm)

Application: Trigger Detectors, Time of Flight (TOF)

Resistivity limits the rate capability: Time to remove avalanche charge from the surface of the resistive plate is $(tau \sim e*\rho) = ms to s.$

```
Rate limit of kHz/cm<sup>2</sup> for 10^{10} \Omegacm.
```


ALICE TOF RPCs

Several gaps to increase efficiency. Stack of glass plates.

Small gap for good time resolution: 0.25mm.

Fishing lines as high precision spacers !

Large TOF systems with 50ps time resolution made from window glass and fishing lines !

Before RPCs → Scintillators with very special photomultipliers – very expensive. Very large systems are unaffordable.

GEMs & MICROMEGAS

MICROMEGAS

Narrow gap (50-100 µm) PPC with thin cathode mesh Insulating gap-restoring wires or pillars

Y. Giomataris et al, Nucl. Instr. and Meth. A376(1996)239 7/9/2008 GEM

Thin metal-coated polymer foils 70 µm holes at 140 mm pitch

F. Sauli, Nucl. Instr. and Methods A386(1997)531

W. Riegler, Particle

MPGDs with Integrate Micromesh, INGRID

Going even another step further, by wafer post-processing techniques, MPGD structure scan be put on top of a pixelized readout chip, making the entire detector a monolithic unit ! \rightarrow IntegratedGrid (INGRID). In addition a TDC was put on each pixel measuring drift times \rightarrow

Single ionization electrons are seen.

Fantastic position resolution ...

Micromesh on a pixelized readout chip produced by Opto-Chemical Wafer Post-Processing Techniques.

With 3cm Drift gap: 5 cm³ Mini TPC ! Tracks from Sr90 source in 0.2T Magnetic Field !

7/9/2008

W. Riegler, Particle Detectors

Detector Simulation

Detector Simulation

Electrons paths and multiplication

7/9/2008

W. Riegler, Particle

Summary on Gas Detectors

Wire chambers feature prominently at LHC. A decade of very extensive studies on gases and construction materials has lead to wire chambers that can track up to MHz/cm² of particles, accumulate up to 1-2C/cm of wire and 1-2 C/cm² of cathode area.

While silicon trackers currently outperform wire chambers close to the interaction regions, wire chambers are perfectly suited for the large detector areas at outer radii.

Large scale next generation experiments foresee wire chambers as large area tracking devices.

The Time Projection Chamber – if the rate allows it's use – is unbeatable in terms of low material budget and channel economy. There is no reason for replacing a TPC with a silicon tracker.

Gas detectors can be simulated very accurately due to excellent simulation programs.

Novel gas detectors, the Micro Pattern Gas Detectors, have proven to work efficiently as high rate, low material budget trackers in the 'regime' between silicon trackers and large wire chambers.

7/9/2008

'VERTEX' – Detectors

By direct measurement of the 'decay-position' of the particle one can measure the lifetime and therefore identify the particle.

Mainly for Charm, Beauty Hadron and Tau-Lepton Physics.

Typical Lifetimes: 10⁻¹² to 10⁻¹³ s

Typical decay distances: 20-500 µm

Typical required Resolution: ~10 μm

Silicon Strip or Pixel Detectors.

Detectors based on Ionization

Gas detectors:

- Wire Chambers
- Drift Chambers
- Time Projection Chambers
- Transport of Electrons and lons in Gases

- Transport of Electrons and Holes in Solids
- Si- Detectors
- Diamond Detectors

In gaseous detectors, a charged particle is liberating electrons from the atoms, which are freely bouncing between the gas atoms.

An applied electric field makes the electrons and ions move, which induces signals on the metal readout electrodes.

For individual gas atoms, the electron energy levels are discrete.

In solids (crystals), the electron energy levels are in 'bands'.

Inner shell electrons, in the lower energy bands, are closely bound to the individual atoms and always stay with 'their' atoms.

In a crystal there are however energy bands that are still bound states of the crystal, but they belong to the entire crystal. Electrons in this bands and the holes in the lower band can freely move around the crystal, if an electric field is applied.

In case the conduction band is filled the crystal is a conductor.

In case the conduction band is empty and 'far away' from the valence band, the crystal is an insulator.

In case the conduction band is empty but the distance to the valence band is small, the crystal is a semiconductor.

The energy gap between the last filled band – the valence band – and the conduction band is called band gap E_{g} .

The band gap of Diamond/Silicon/Germanium is 5.5, 1.12, 0.66 eV.

The average energy to produce an electron/hole pair for Diamond/Silicon/Germanium is 13, 3.6, 2.9eV.

In case an electron in the valence band gains energy by some process, it can be excited into the conduction band and a hole in the valence band is left behind.

Such a process can be the passage of a charged particle, but also thermal excitation \rightarrow probability is proportional Exp(-E_g/kT).

The number of electrons in the conduction band is therefore increasing with temperature i.e. the conductivity of a semiconductor increases with temperature.

	Diamond	SiC (4H)	GaAs	Si	Ge
Atomic number Z	6	14/6	31/33	14	32
Bandgap E _g [eV]	5.5	3.3	1.42	1.12	0.66
E(e-h pair) [eV]	13	7.6-8.4	4.3	3.6	2.9
density [g/cm ³]	3.515	3.22	5.32	2.33	5.32
e-mobility μ _e [cm²/Vs]	1800	800	8500	1450	3900
h-mobility $\mu_h [cm^2/Vs]$	1200	115	400	450	1900

It is possible to treat electrons in the conduction band and holes in the valence band similar to free particles, but with and effective mass different from elementary electrons not embedded in the lattice.

This mass is furthermore dependent on other parameters such as the direction of movement with respect to the crystal axis. All this follows from the QM treatment of the crystal.

If we want to use a semiconductor as a detector for charged particles, the number of charge carriers in the conduction band due to thermal excitation must be smaller than the number of charge carriers in the conduction band produced by the passage of a charged particle.

Diamond (E_g =5.5eV) can be used for particle detection at room temperature, Silicon (E_q =1.12 eV) and Germanium (E_{α} =0.66eV) must be cooled, or the free charge carriers must be eliminated by other tricks \rightarrow doping \rightarrow see later.

The average energy to produce an electron/hole pair for Diamond/Silicon/Germanium is 13, 3.6, 2.9eV.

Comparing to gas detectors, the density of a solid is about a factor 1000 larger than that of a gas and the energy to produce and electron/hole pair e.g. for Si is a factor 7 smaller than the energy to produce an electron-ion pair in Argon.

The number of primary charges in a Si detector is therefore about 10^4 times larger than the one in gas \rightarrow while gas detectors need internal charge amplification, solid state detectors don't need internal amplification.

While in gaseous detectors, the velocity of electrons and ions differs by a factor 1000, the velocity of electrons and holes in many semiconductor detectors is quite similar.

Diamond → A solid state ionization chamber

Diamond Detector

Typical thickness – a few 100µm.

<1000 charge carriers/cm³ at room temperature due to large band gap.

Velocity: μ_e =1800 cm²/Vs, μ_h =1600 cm²/Vs Velocity = μ E, 10kV/cm \rightarrow v=180 μ m/ns \rightarrow Very fast signals of only a few ns length !

Diamond Detector

Silicon Detector

Velocity:

 $\mu_e\text{=}1450\ \text{cm}^2\text{/Vs},\ \mu_h\text{=}505\ \text{cm}^2\text{/Vs},\ 3.63\text{eV}$ per e-h pair.

~11000 e/h pairs in 100µm of silicon.

However: Free charge carriers in Si: T=300 K: $n/h = 1.45 \times 10^{10} / \text{ cm}^3$ but only 33000e-/h in 300µm produced by a high energy particle.

Why can we use Si as a solid state detector ???

+4 +4 +4 Si Si Si +4 Si Si Si +4 +4 +4 Si Si Si

doping

Doping of Silicon

In a silicon crystal at a given temperature the number of electrons in the conduction band is equal to the number of holes in the valence band.

Doping Silicon with Arsen (+5) it becomes and n-type conductor (more electrons than holes).

Doping Silicon with Boron (+3) it becomes a p-type conductor (more holes than electrons).

Bringing p and n in contact makes a diode.

Si-Diode used as a Particle Detector !

At the p-n junction the charges are depleted and a zone free of charge carriers is established.

By applying a voltage, the depletion zone can be extended to the entire diode \rightarrow highly insulating layer.

An ionizing particle produces free charge carriers in the diode, which drift in the electric field and induce an electrical signal on the metal electrodes.

As silicon is the most commonly used material in the electronics industry, it has one big advantage with respect to other materials, namely highly developed technology.

- Electron
- Positive ion from removal of electron in n-type impurity
- Negative ion from filling in p-type vacancy
- Hole

Under-Depleted Silicon Detector

Fully-Depleted Silicon Detector

Over-Depleted Silicon Detector

In contrast to the (un-doped) diamond detector where the bulk is neutral and the electric field is therefore constant, the sensitive volume of a doped silicon detector is charged (space charge region) and the field is therefore changing along the detector.

╋

 \rightarrow Velocity of electrons and holes is not constant along the detector.
Depletion Voltage

The capacitance of the detector decreases as the depletion zone increases.

Silicon Detector

N (e-h) = 11 000/100μm Position Resolution down to ~ 5μm !

Silicon Detector

Every electrode is connected to an amplifier \rightarrow Highly integrated readout electronics.

Two dimensional readout is possible.

Large Silicon Systems

CMS tracker (~2007)

- 12000 modules
- ~ 445 m² silicon area
- ~ 24,328 silicon wafers
- ~ 60 M readout channels

CDF SVX IIa (2001-)

- ~ 11m² silicon area
- ~ 750 000 readout channels

Picture of an CMS Si-Tracker Module

Outer Barrel Module

Large Silicon Systems

CMS tracker (~2007)

- 12000 modules
- ~ 445 m² silicon area
- ~ 24,328 silicon wafers
- ~ 60 M readout channels

CDF SVX IIa (2001-)

- ~ 11m² silicon area
- ~ 750 000 readout channels

CMS Tracker

2b - Tracking with Solid State Detectors

Collected Charge for a Minimum Ionizing Particle (MIP)

- Mean energy loss dE/dx (Si) = 3.88 MeV/cm ⇒ 116 keV for 300µm thickness
- Most probable energy loss
 ≈ 0.7 ×mean
 ⇒ 81 keV
- 3.6 eV to create an e-h pair \Rightarrow 72 e-h / μ m (mean) \Rightarrow 108 e-h / μ m (most probable)
- Most probable charge (300 μm)
 - ≈ 22500 e ≈ 3.6 fC

Silicon Drift Detector (like gas TPC !)

Silicon Drift Detector (like gas TPC !)

Pixel-Detectors

Problem:

2-dimensional readout of strip detectors results in 'Ghost Tracks' at high particle multiplicities i.e. many particles at the same time.

Solution: Si detectors with 2 dimensional 'chessboard' readout. Typical size 50 x 200 $\mu m.$

Problem: Coupling of readout electronics to the detector.

Solution: Bump bonding.

Bump Bonding of each Pixel Sensor to the Readout Electronics

ATLAS: 1.4x10⁸ pixels

Radiation Effects 'Aging'

Increase in leakage current

Increase in depletion voltage

Decrease in charge collection efficiency due to underdepletion and charge trapping.

Silicon Detectors: towards higher Radiation Resistance

Typical limits of Si Detectors are at 10¹⁴⁻10¹⁵ Hadrons/cm²

LHC

We can identify 3 different regions to match radiation damage and occupancy in the current LHC detector

SLHC

Radiation fluence increases by about a factor of 10 from one region to the other and by a factor of 10 between LHC and SLHC.

R	Φ	Technology
>50 cm	10 ¹³	p-on-n strip 500 μm thick, high resistivity (≈5 KΩ·cm), pitch ~ 200 μm
20-50 cm	10 ¹⁴	p-on-n strips 320 μm thick, low resistivity (≈2 KΩ·cm), pitch ~80 μm
<20 cm	10 ¹⁵	n-on-n pixels 270 μm thick sensors low resistivity (≈2 KΩ·cm) oxygenated

R	Φ	CCE	Technology
>50 cm	10 ¹⁴	20ke	Present rad- hard technology (or n-on-p)
20-50 cm	10 ¹⁵	10ke	Present n+-n LHC pixel (or n-on-p)
<20 cm	10 ¹⁶	>5Ke	RD needed

R&D Strategy:

Defect Engineering Oxygen enriched Si

New Materials Diamonds Czochralski Si

New Geometries

. . .

Low Temperature Operation

High Resolution Low Mass Silicon Trackers, Monolithic Detectors

Linear Collider Physics requirement:

δ (**IP**) < 5 μ**m** ⊕ **10** μ**m/(p sin^{3/2} θ)** (best SLD 8 μm ⊕ 33 μm/(p sin^{3/2} θ))

chip	chip		Hybrid Active Pixel: Chip bump bonded to sensor RD: make it thinner (LHC sensors 2% X ₀ /layer), improve space point resolution with interleaved pixels		
ſ			chip and transferred through silicon RD: readout speed, radiation hardness, material support		
CMOS sensors (MAPS, FAPS): standard CMOS wafer integrates all functions. RD: fast readout, non-standard technologic		CMOS sensors (MAPS, FAPS): standard CMOS wafer integrates all functions. RD: fast readout, non-standard technologies			
Mimosa n	p 9	chip	DEPFET, CMOS on SOI (talk by Kucewiz) : Fully depleted sensor with integrated preamp RD:pixel size, power, thinning, speed		

Large variety of monolithic pixel Detectors explored, mostly adapted to low collision rates of LC.

Summary on Solid State Detectors

Solid state detectors provide very high precision tracking in particle physics experiments (down to 5um) for vertex measurement but also for momentum spectroscopy over large areas (CMS).

Technology is improving rapidly due to rapis Silicon development for electronics industry.

Typical number where detectors start to strongly degrade are 10¹⁴-10¹⁵ hadron/cm².

Diamond, engineered Silicon and novel geometries provide higher radiation resistance.

Clearly, monolithic solid state detectors are the ultimate goal. Current developments along these lines are useful for low rate applications.