



## AIDA Alignment Package

AIDA Final meeting, CERN 10/12/2014

Silvia Borghi, Christoph Hombach, Chris Parkes

#### **Outline:**

- Intro: Misalignment problem and strategies
- Testbeam: AIDA TimePix3 telescope alignment
- VELO & VELO upgrade: recent alignment & future plans



## Milestones and Deliverables:



#### The University of Manchester



#### Deliverables

- all deliverables are due in M38 i.e. now :
- D2.7 software toolkit for geometry description
- USolids & DD4hep
- CERN
- D2.8 software toolkit with tracking algorithms
- aidaTT, pile-up tracking (CMS), vertexing tools, CA to a
- DESY (INFN, HEPhy, Wigner)
- D2.9 particle flow software tools
- pandoraPFA, Arbor
- Cambridge (LLR)
- D2.10 alignment software tools
- LHCb and telescope alignment tools
- Manchester
- D2.11 trigger simulation tools
- trigger simulation tkLayout
- STFC

#### Frank Gaede, AIDA Annual Meeting,



| WP2 - Milestones |
|------------------|
|------------------|

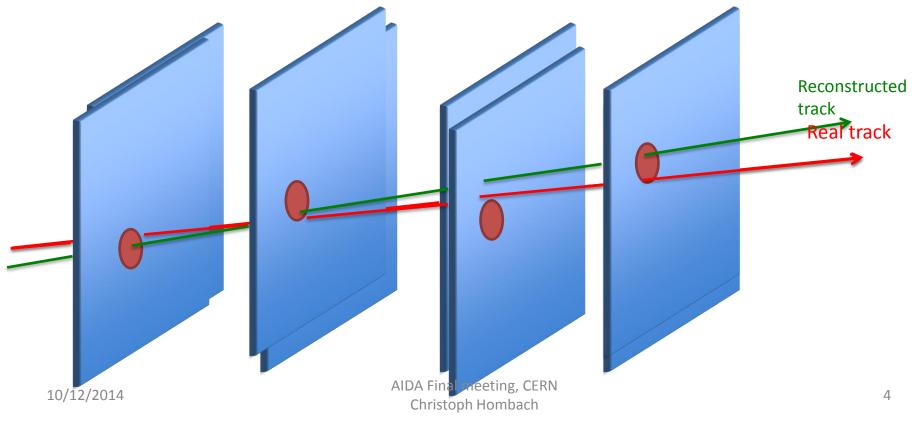
| Milestone<br>number <sup>59</sup> | Milestone name                                                     | Partners<br>(lead beneficiar | y)              | Comments                                                |      |
|-----------------------------------|--------------------------------------------------------------------|------------------------------|-----------------|---------------------------------------------------------|------|
| MS10                              | Running first prototype of the particle flow<br>algorithm.         | Ucam,LLR,CERN                | 10              | Application to LC<br>detector (Task 2.3)                | done |
| MS11                              | Running prototype of tracking toolkit includir<br>some algorithms  | DESY                         | 18              | Application to ILD-TPC<br>simulation (Task 2.2)         | done |
| MS12                              | Running prototype of the geometry toolkit                          | CERN, DESY,<br>LLR           | 26              | Application to ILD<br>detector simulation (Task<br>2.2) | done |
| MS13                              | Running prototype of the tracking code for the pile-up             | NFN, NTU, KFKI               | 36              | Application to sLHC<br>simulation (Task 2.3)            | done |
| MS14                              | Integration of tracking toolkit into LC softwa<br>framework        | DESY, CERN, OeAV             | v <sup>44</sup> | Validation of physics<br>performance (Task 2.3)         | next |
| MS15                              | Application of PFA tools to sLHC detectors                         | Ucam, LLR                    | 44              | Demonstration of<br>concept (Task 2.3)                  |      |
| MS16                              | Application of alignment tools to sLHC                             | UniMan                       | 44              | Validation of<br>performance (Task 2.3)                 |      |
| MS17                              | integration of pile-up tracking code in SER<br>software frameworks | NFN, NTU, KFKI               | 44              | validation of tracking<br>efficiency (Task 2.3)         |      |

#### Frank Gaede, AIDA Annual Meeting, 27.3.2014





### Introduction


### – Misalignment Problem & Strategies



## Alignment Introduction



- Track leaves hits on sensors
- **Misalignment problem:** Detector positions used in offline reconstruction do not correspond to the actual relative positions of the installed detector
  - Misplacements of det elements ->Hit positions are misplaced
- Reconstructed tracks are biased
  - Can lead to inefficient/wrong physical conclusions



## Solutions to the alignment problems The University of Manchester

#### • Assembly / survey measurements

- Survey measurements of mounting positions
- Measurements during / after installation

#### Offline track based alignment algorithm

- Use track parameter to determine alignment parameter
- Should be robust, stable and not too time consuming
- Precision of alignment parameter should be known to an order of the detector resolution

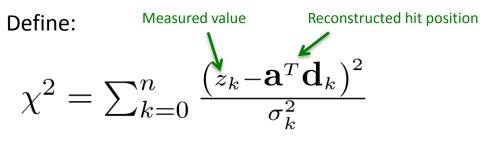
#### Will focus on track based alignment

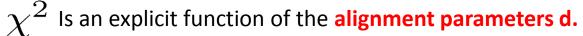




### AIDA Alignment web page

http://aidasoft.web.cern.ch/node/31


- Documents alignment papers /methods
  - Current/recent major particle physics experiments


|                                                                                    | IDA Common Software Tools                                                                                                    |          |       |               |  |  |  |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------|-------|---------------|--|--|--|
| Home Project Tasks and S                                                           | ubtasks Meetings                                                                                                             | Packages | Forum | Documentation |  |  |  |
| Home » Documentation                                                               |                                                                                                                              |          |       |               |  |  |  |
| Main menu                                                                          | Alignment                                                                                                                    |          |       |               |  |  |  |
| <ul> <li>nome</li> <li>Project</li> <li>Deliverables and<br/>Milestones</li> </ul> | Links                                                                                                                        |          |       |               |  |  |  |
| • Documents                                                                        | Methods                                                                                                                      |          |       |               |  |  |  |
| <ul> <li>Organization</li> <li>Tasks and Subtasks</li> </ul>                       | Millepede <u>webpage</u>                                                                                                     |          |       |               |  |  |  |
| Geometry     Tracking                                                              | Methods based on kalman: method1, method2                                                                                    |          |       |               |  |  |  |
| Alignment                                                                          | Experiments using:                                                                                                           |          |       |               |  |  |  |
| <ul> <li>Particle Flow</li> <li>Pile-up</li> </ul>                                 | <ul> <li>Particle Flow</li> <li>Pile-up</li> <li>Methods based on Millepede: CDF, HERA-B, LHCb, CMS, ALICE, BELLE</li> </ul> |          |       |               |  |  |  |
| • Meetings                                                                         | <ul> <li>Residual minimisation: DELPHI, NOMAD, CMS</li> </ul>                                                                |          |       |               |  |  |  |
| Packages     Methods based on Kalman Filter: LHCb, CMS                             |                                                                                                                              |          |       |               |  |  |  |
| • DD4hen                                                                           | • Methods based on Rainfair Filter. LHCb, CMS                                                                                |          |       |               |  |  |  |





7





- At its minimum the corresponding alignment parameters represent the misalignment
- Minimisation can be written in matrix-form.
- MILLEPEDE (by V. Blobel) is a method, that can invert large matrices fast.
  - Alignment problem gets solved by **inverting a large matrix.**
  - Simultaneous fit of global and local parameters.

A New Method for the High-Precision Alignment of Track Detectors, Volker Blobel and Claus Kleinwort, Report DESY 02-077 (June 2002) 10/12/2014 Arida Final meeting, CERN Christoph Hombach



BACH



- **BACH**: **B**asis of **A**lignment **CH**ain
- Standalone software, only depends on ROOT and BOOST
- Designed to test and verify alignment algorithms
  - Provides new users a development framework
  - Gives an example of a simple analysis chain and a full alignment algorithm
- Example based on telescope detector design
  - Simple geometry configurable
- Includes complete analysis chain:
- -> Simulation -> Clustering
  - -> Pattern Recognition -> Track Fit -> Alignment
- Submitted to AIDA software package
- Documented in AIDA-NOTE-2014-001
- Source code available via svn:

svn co https://svnsrv.desy.de/public/aidasoft/AIDAAlign/trunk/Tb Tb





### Testbeam

### - AIDA TimePix3 Telescope

## AIDA TimePix3 Telescope



#### The University of Manchester

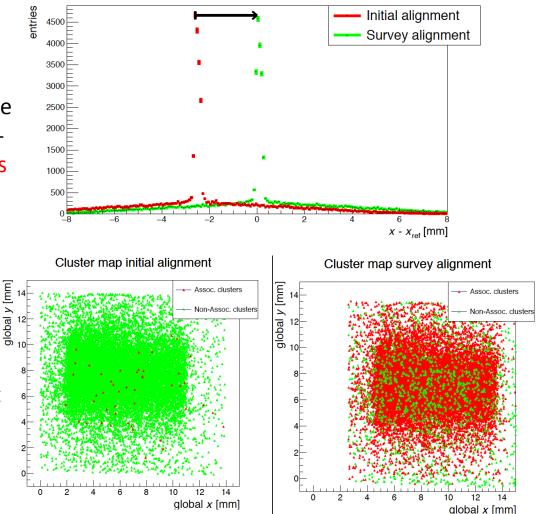
- LHCb testbeam programme motivated by the upgrade of the experiment
- First period in July/August 2014 at T9 beam line
- Second period in October/November 2014 at the SPS H8 beam line
- Telescope:
  - Two arms with four modules each
  - Each module is moveable
  - Moveable DUT centered between arms
  - Wide range of users
- TimePix3 ASIC key features:
  - high data rate (up to 10 million tracks/s)
  - availability of both deposited charge and timing information for each 55 x 55 μm pixel cell



- Resulting in high spactial resolution and robust track reconstruction

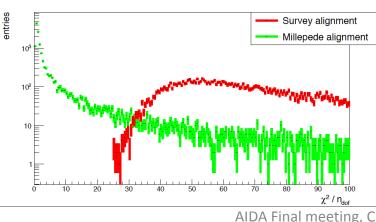
## AIDA Telescope software

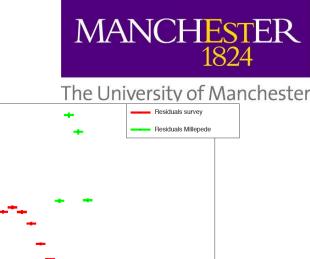
- Kepler: A new Gaudi-based software package to analyse testbeam results offline
- Part of LHCb-software
- Provides algorithms for
  - Event building
  - Clustering
  - Tracking
  - many user specific applications
- AIDA alignment package is fully integrated
- Alignment steps:
  - survey alignment
  - track-based alignment with Millepede
  - alignment of **DUT**
- Alignment works 'out of the box'
  - a simple alignment recipe allows the user to perform the alignment on a run-by-run basis
  - Takes O(~some minutes) to get the full alignment






## AIDA Rough alignment





- Usually the initial alignment is so poor , that it is impossible to reconstruct tracks
- A initial rough alignment can be done
- By looping over all clusters in a timeframe, the distribution of differences of x- and y- positions between a reference frame the module to align should peek at 0 (straight tracks)
- Rough alignment parameter are obtained at the maximum of the distribution
- After that the alignment should be good enough (<1mm) to reconstruct tracks.



# AIDA Track-based alignment

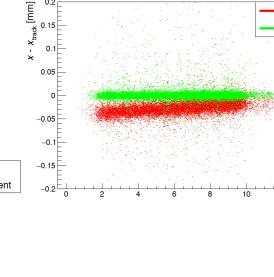
- To reach a tracking precision of a few  $\mu$ m one has to align for the x- and y-translations and rotations around x, y and z.
- The MILLEPEDE approach minimises the track  $\chi^2$  distribution
- A sensible set of constraints are applied:
  - One module is kept fixed
    - $\rightarrow$  defines global coordinate system and avoids global translations and rotations
  - The average translations and rotations are 0
    - $\rightarrow$  avoids global shearings or 'screwdriver'
- Telescope is perfectly aligned after this procedure!





0.04

x - x<sub>track</sub> [mm]


Residuals survey

Residuals Millepede

local x [mm]

0.06

0.02



-0.04

-0.02

. 4500

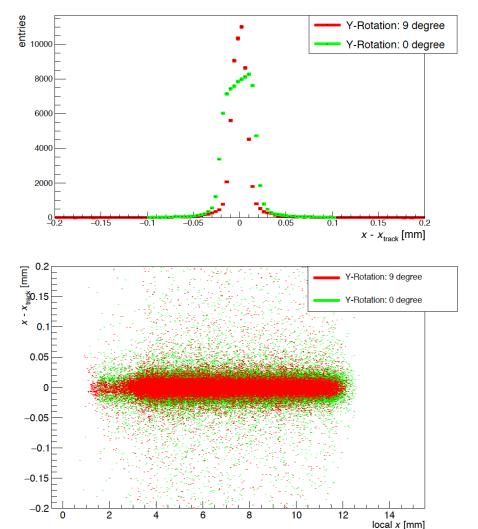
4000

3500

3000 2500

2000

1500


1000 500

0.2



## **AIDA** DUT hit resolution

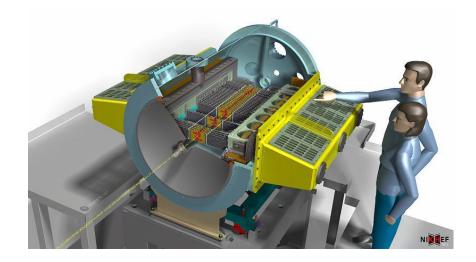
- The DUT is aligned separately from the telescope
- After the telescope is aligned, the DUT alignment is straightforward
- The DUT is aligned keeping the telescopemodules fixed
- Good telescope alignment guarantees
  - a good track-resolution
  - no further constraints need to be applied
- Resolution studies of the device can be e.g. for various angles wrt the beam

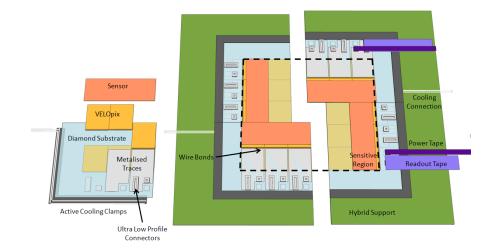








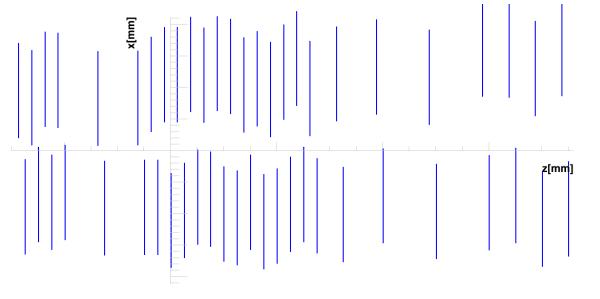

### • LHCb VELO & VELO upgrade


## - Alignment





- Designed to cope with LHC conditions after LS2 shutdown beginning in 2019
- Capable of 40MHz readout at a luminosity of 2 x 10<sup>33</sup>cm<sup>-2</sup>s<sup>-1</sup>
- Consists of two moveable halves with 26 modules each
- Each module has an array of 4 sensors consisting of 3 TimePix chips
- Closest distance of approach to the LHC beams of just 5.1mm for the first sensitive pixel, 4  $\mu$ m hit resolution and 30 fs time resolution










- Similar alignment parameters as in VELO:
  - detector in global frame
  - detector halves
  - modules
- Alignment parameters are included in VELO upgrade software, some tuning is ongoing to perform the full alignment
- Should be ready after Christmas





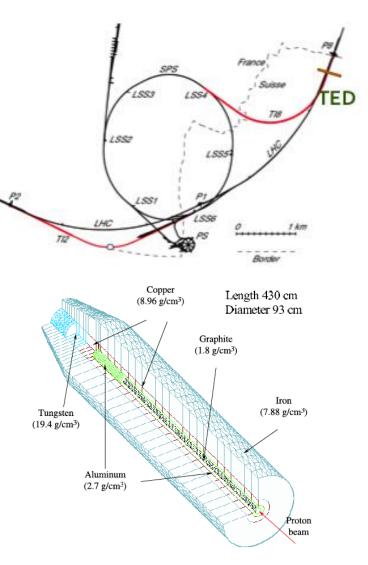

- During LHC injection the beam is dumped on an absorber (TED) at the end of injection line
- The TED for beam 2 is located as ~340m before LHCb
- LHCb can reconstruct particles induced by the collision of beam 2 against the TED



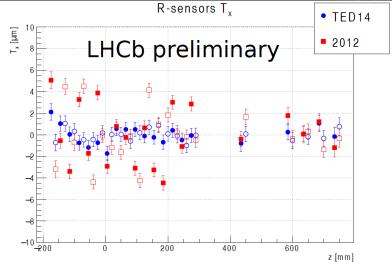
Photo during installation



The University of Manchester



10/12/2014


AIDA Final meeting, CERN Christoph Hombach

# AIDA TED data in the VELO



- Particle trajectories are almost parallel to the beam direction
- Very good sample for VELO alignment
- These kind of data was used in 2008 and 2009 for the detector commissioning
- LHC injection test in November 2014 provided a small data sample used to evaluate VELO alignment
- Observed small variations as expected:
  - $\sim 3\mu m$  for Tx and Ty,  $\sim 30\mu rad$  for Rz
- Improvements observed in the monitoring plot based on residuals

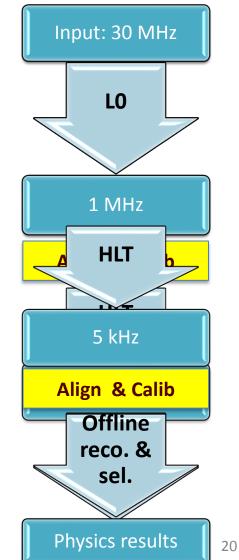




## AIDA Real-time alignment

#### Run 1 strategy

- Run HLT with preliminary alignment (and calibration)
- Final alignment and calibration evaluated for the end of the year reprocessing data
- Final alignment and calibration for the data used for reprocessing during long TS


#### Run 2 strategy

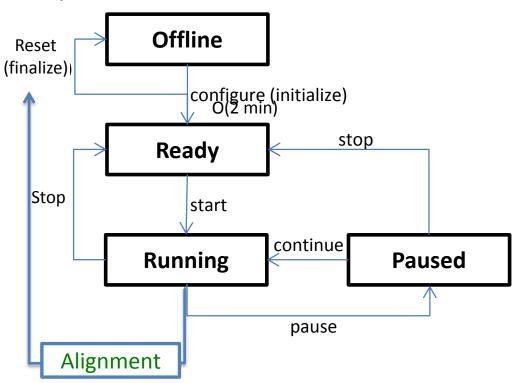
- Minimization of the online and offline differences
- Evaluation of the alignment before HLT
- Run HLT and offline with same alignment and calibration
  - Used for all physics results during run2
  - Data reprocessing foreseen only at the end of Run2



The University of Manchester

#### Run 2 strategy



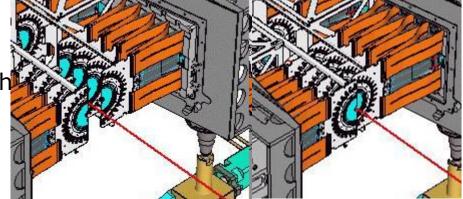

#### AUTOMATIC PROCEDURE AUTOMATIC PROCEDURE MANCHESTER 1824 The University of Manchester

#### Procedure

- 1. Collect enough data with a dedicated selection for each alignment
- 2. Run the alignment
- 3. Compare old/new alignment
- 4. Update the alignment constants if needed
- Alignment method based on a kalman filter
   [NIM A600 (2009) 471, NIM A472 (2013) 48]
- Implemented in the online system
- Parallelization on several nodes (up 1500) for the reconstruction
- Minimization performed in a single node
- Evaluation of the alignment in O(min)

#### **Job configuration**

parallelization on several nodes








Fully open

**Closed pos.** 



- VELO centred around the beam for each fill when the beam declared stable
- Stability of 2 half alignment
  - x: RMS 3.7  $\mu$ m ; max var. ± 9  $\mu$ m
  - y: RMS 2.5  $\mu$ m ; max var. ± 6  $\mu$ m

## O Alignment to be determined at the begin of each fill

- Tracker system align wrt VELO using mass constraint (J/ $\psi$ , D<sup>0</sup> mass)
- Preliminary studies show time variation over a period of about 2 weeks, partially due to magnet polarity switch
- O Alignment update expected each few weeks

| Number of alignment constants |     |  |  |  |
|-------------------------------|-----|--|--|--|
| VELO                          | 86  |  |  |  |
| TT                            | 135 |  |  |  |
| IT                            | 64  |  |  |  |
| OT                            | 496 |  |  |  |



Summary

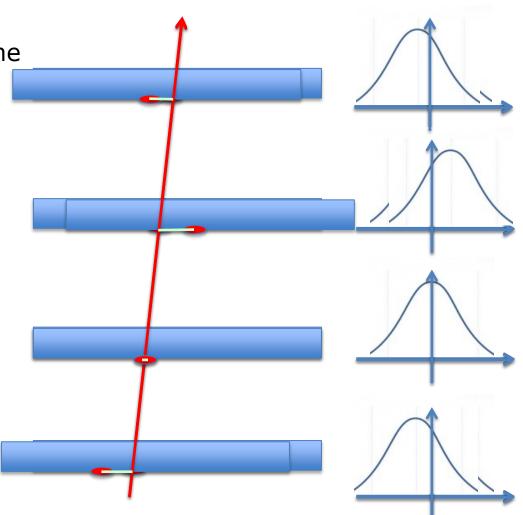


The University of Manchester

- AIDA Alignment Overview Web Page
  - <u>http://aidasoft.web.cern.ch/node/31</u>
- AIDA alignment package
  - BACH: First implementation in telescope simulation
  - AIDA alignment package fully implemented in Kepler
  - $\rightarrow$  Proves alignment principle works in real-life situation

#### LHCb VELO alignment

- TED runs show improvements over 2012 alignment
- Work on an automatic alignment procedure for Run II is ongoing
- LHCb Velo Upgrade alignment
  - Implementation of alignment in LHCb Upgrade software is ongoing










- In a perfect aligned detector the residual-distribution (distance between measured hit and track) is centered around zero.
- Distribution gets shifted (spread), when modules are misaligned.
- Residual depends on
  - track (local) parameter
  - alignment (global) parameter.





Weak modes



The University of Manchester

- Detector deformations, that have no impact on  $\chi^2$
- Solution is blind to multiple minima

Linear transformations: global Translation

For parallel tracks:

global Rotation Twist

Shearing

Scaling



## Dealing with weak mode



The University of Manchester

- Constraints, like fixing module position
- Constraint-equations
  - additional terms to  $\chi^2\,$  that depend on alignment parameters
  - Like, set average translations to 0
- Use set of tracks with different characteristics
  - Parallel tracks, vertex tracks

cartoons