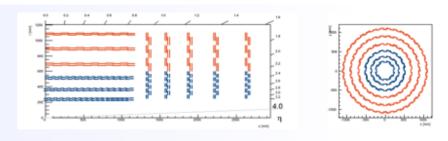
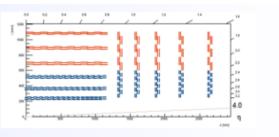


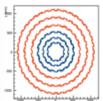

tkLayout - A Tracker Layout Modeling Tool


AIDA Final meeting 10/12/2014

Jelena Ilic STFC, Rutherford Appleton Laboratory

- What is tkLayout
- How it works
- Outputs
- Examples

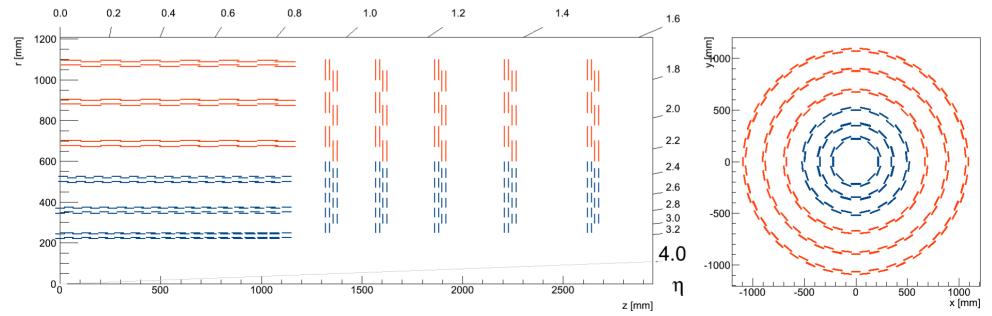

Authors: Stefano Mersi Nicoletta De Maio Giovani Bianchi Stefano Martina



tkLayout

- Tool to evaluate tracker layouts
 - Rapidly explore different proposals for the tracker geometry, evaluating the key characteristics of each
 - Estimates tracking performances
 - Estimates track-trigger performances
 - Narrows down the parameter space (e.g. number & position of layers, strip or pixel pitch...)
 - Does not depend on optimized track reconstruction algorithms
 - Makes geometry files in XML format, which can be used as input for a full simulation of the tracker with Geant4
- Small number of input parameters
- Fast
- Simple
- Places detector volumes in 3D space
- Automatically assigns materials to volumes
- It is not a replacement for a full MC simulation
 - physics channels
 - occupancy
 - efficiency

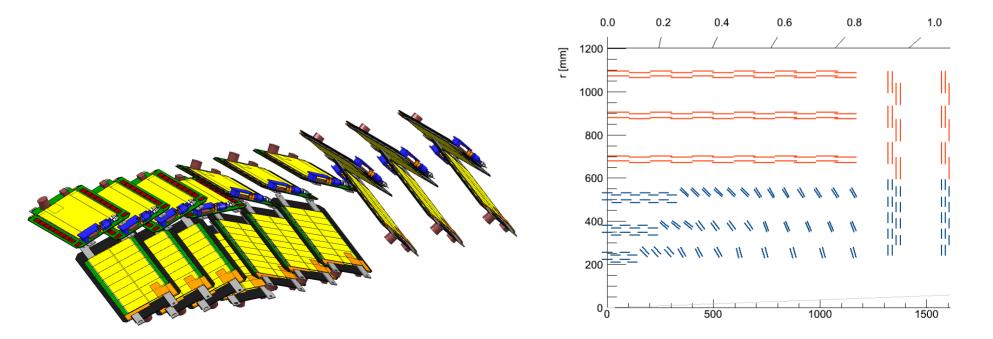
Building Geometry


<u>General geometrical layout of tracker</u> 2. <u>Details about modules</u>

- number of discs/layers
- volume boundaries
- module shapes

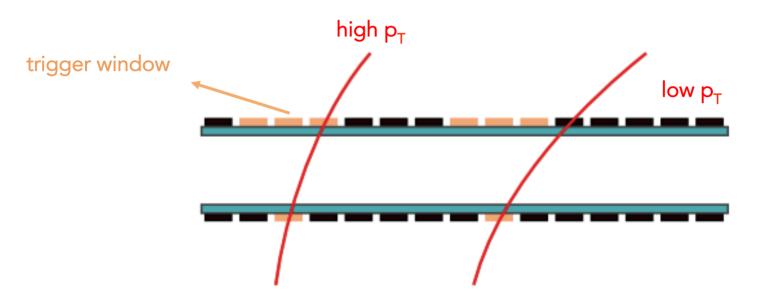
Details about materials 3.

The material is assigned to each module volume without any detail about the geometric distribution of material within the module itself.


- type of modules in particular layer
- no of sensors,
- distance between modules,
- (size of trigger windows)

Modules

- Various types of modules available
 - pixel (single sided pixel module)
 - r-phi (single sided strip module)
 - stereo (double sided strip module)
 - p_T modules (provide local measurement of the p_T)
- Different shapes
 - rectangular
 - trapezoidal


- Different orientation
 - parallel to the beam
 - orthogonal to the beam
 - tilted

Modules

p_{T} modules (PS, 2S and 2P)

- The more complex modules (developed for CMS tracker upgrade)
- Low p_T track filtering
- Consist of two closely placed sensors, with a variable separation between them

- The high- p_T tracks will cross almost orthogonal to the surface
- The low- p_T tracks will cross at a wider angle
- Optimise trigger windows and (or) sensors spacing to obtain consistent ${\rm p}_{\rm T}$ selection (one of the parameters in tkLayout is *triggerWindowSize*)

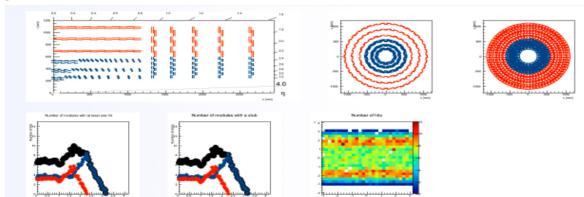
Tracking performances

<u>The estimate of tracking performances of the analyzed geometry is made starting</u> <u>from the first principles.</u>

- A charged particle moving in a homogeneous magnetic field follows circular trajectory in the plane perpendicular to the field and a linear one in the plane parallel to the field (high p_T assumed)
- perform two independent fits to projections of particle's trajectory in these two planes
 - has been tested by simulating the current CMS tracker and comparing the actual resolution with that predicted by tkLayout

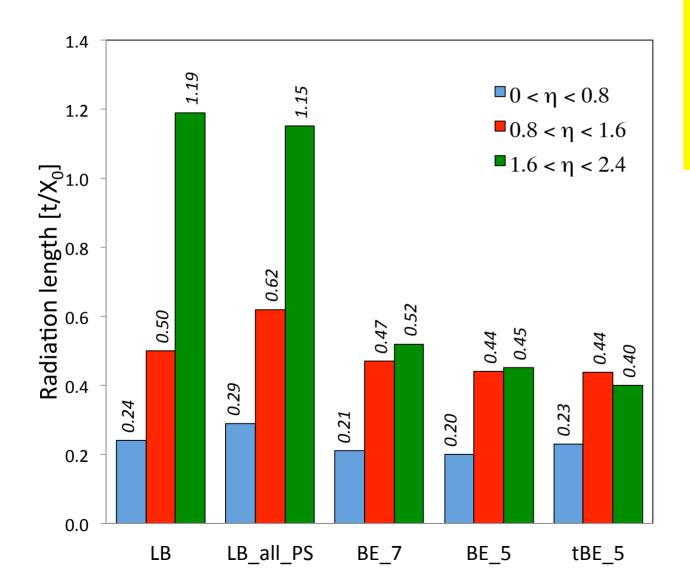
<u>No fit actually needed – the error matrix can be calculated analytically</u>

- use measurement errors to estimate the errors in track fit parameters (intrinsic resolution of the interaction points)
- add effects of the multiple scattering (deviation from the ideal track)


Outputs

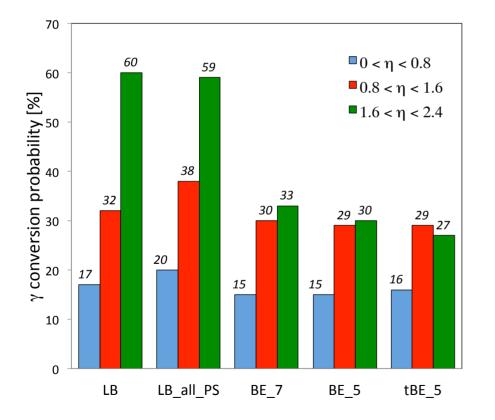
• tkLayout writes outputs to web page

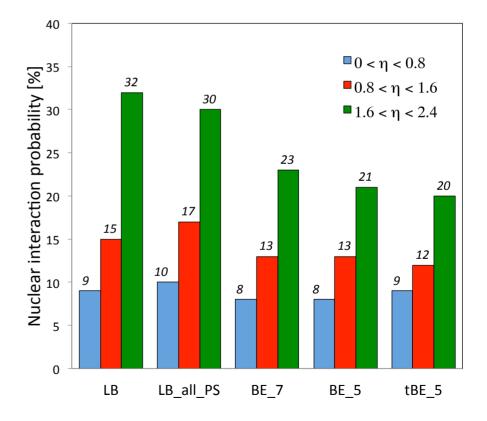
⊖ ⊖ ⊖ ShortTilted3xPS_3x	k2S_5disks_longer_uncut – Geometry
🔺 🕨 🙆 🗛 🖨 🖄 🕂 🖁 mersi.web.cern.ch/mersi/lay	youts/.current/ShortTilted3xPS_3x2S_5disks_longer_uncut/index.html C Reader
💭 🎆 razno 🔻 Google Jelena 🔻 Stribor 🔻	
ShortTilted3xPS_3x2S_5disks_longer_uncut - Geometry	3xPS_3x2S - Geometry
ShortTilted3xPS_3x2S_5c	lisks longer uncut
layouts	
geometry geometry (pixel) bandwidth trigger cpus p	ower material (outer) material (pixel) weights (outer) resolution
resolution (pixel) resolution (trigger) trigger info log	g page
layers and disks	
	otal
Layer 1 2 3 1 2 3 T	otal
Layer 1 2 3 1 2 3 T r 244.467 368.392 521.857 686.000 887.901 1080.000	otal 372
Layer 1 2 3 1 2 3 T r 244.467 368.392 521.857 686.000 887.901 1080.000	
Layer 1 2 3 1 2 3 T r 244.467 368.392 521.857 686.000 887.901 1080.000 # mod 522 910 1476 1152 1488 1824 7	372
Layer 1 2 3 1 2 3 T r 244.467 368.392 521.857 686.000 887.901 1080.000 # mod 522 910 1476 1152 1488 1824 7 # rods 18 26 36 48 62 76	372
Layer 1 2 3 1 2 3 T r 244.467 368.392 521.857 686.000 887.901 1080.000 # mod 522 910 1476 1152 1488 1824 7 # rods 18 26 36 48 62 76 Disk 1 2 3 4 5 Total	372
Layer 1 2 3 1 2 3 T r 244.467 368.392 521.857 686.000 887.901 1080.000 # mod 522 910 1476 1152 1488 1824 74 # rods 18 26 36 48 62 76 Disk 1 2 3 4 5 Total z 1349.445 1597.452 1891.039 2238.583 2650.000	372
Layer 1 2 3 1 2 3 T r 244.467 368.392 521.857 686.000 887.901 1080.000 # mod 522 910 1476 1152 1488 1824 7 # rods 18 26 36 48 62 76 Disk 1 2 3 4 5 Total z 1349.445 1597.452 1891.039 2238.583 2650.000 # mod 676 676 676 676 676 676 Ring 1 2 3 4 5 6 7	372


modules

plots

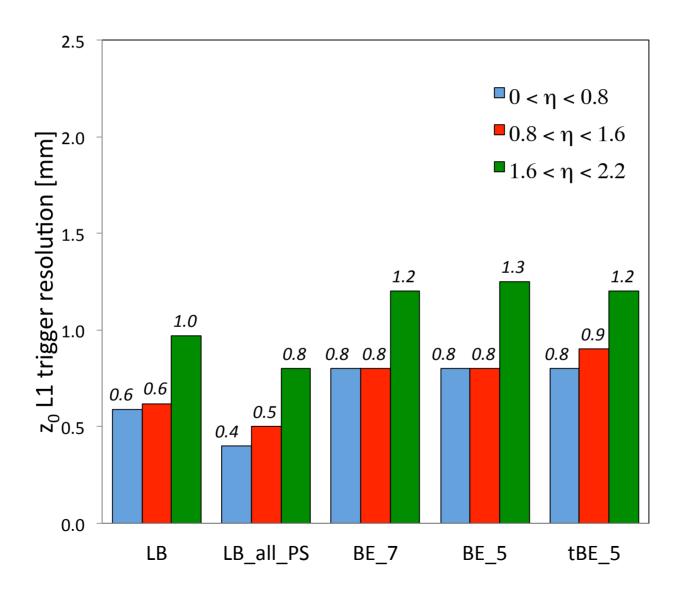
CMS tracker optimisation


Material Budget

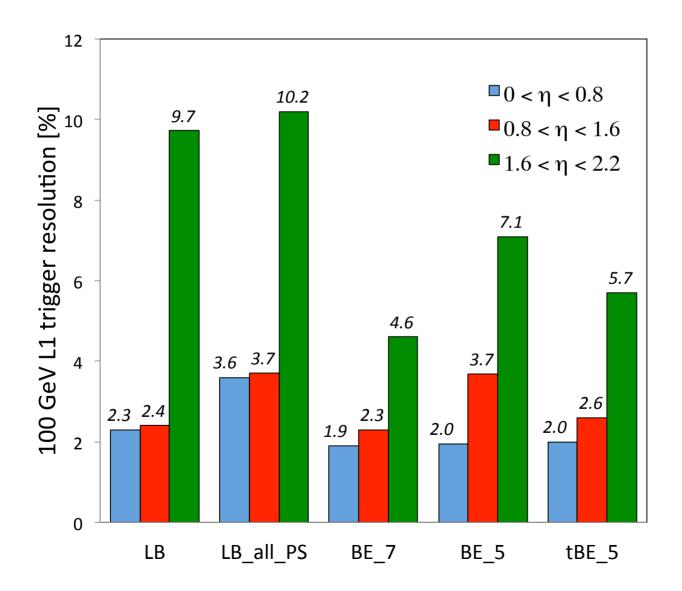


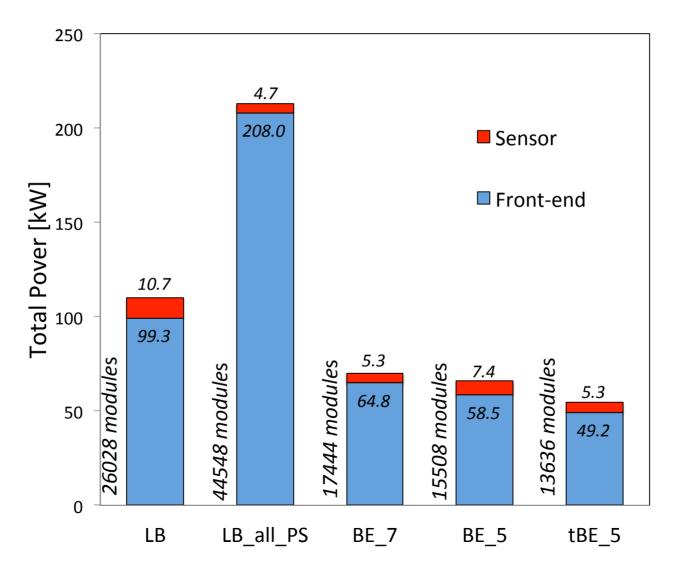
<u>Alternative tracker designs</u> <u>for CMS upgrade</u>

- LB
- LB_all_PS
- BE_7
- BE_5
- tBE


γ conversion probability & nuclear interaction probability

CMS tracker optimisation


resolution of the track z_0 impact parameter


11

CMS tracker optimisation

p_T L1trigger resolution

power consumption - one of the major challenges for tracker readout systems at the high-luminosity LHC

- tkLayout is a free generic tool
- Fast running
- Simple
- Has been thoroughly validated
- No dependence on track reconstruction algorithm tuning
- Gives fair comparison between different tracker designs
- Gives estimate of tracking and track-trigger performances
- Produces geometry in *xml* files that can be as geometry input for a full simulation of the new tracker with Geant4
- Full geometry studies can be pursued on a few geometries identified by tkLayout

•https://code.google.com/p/tkgeometry/source/checkout