EUDAQ

AIDA Final Meeting

UIf Behrens, Alan Campbell, Francesco Crescioli, David Cussans,
Hendrik Jansen, Moritz Kiehn, Hanno Perrey, Richard Peschke,
Ilgor Rubinskiy, Simon Spannagel

ﬁ HELMHOLTZ

l ASSOCIATION




Integration of user DAQs to EUDAQ

Why? How?
> Centralized RunControl > Clear interface between user
_ code and EUDAQ through
> Sanity checks “Producer” and “Data Converter
Plugins”

= Check for event number
mismatch > The “Producer” is a C++ class
which handles the

= Missing timestamps communication with EUDAQ

> Online monitoring > Interfaces to other languages
= Correlation plots = Python
- ROOT

= LabView interface planed

Richard Peschke | EUDAQ | 10.12.2014 | Page 2



EUDAQ

F______________1

Software Layout > Distributed DAQ
system

| RunControl [~ .-

TLU | = Consists of completely
Data flow Producer | independent parts /

l TCP/ IP — programs such as:
Q Data Producer Run Control
K Collector 71 Data Collector

I S S - - . - —————I PrOduceI’S

Read Out

== > Synchronous read out

Device 1 = All devices get a

common trigger

busy signal

> DAQ for MIMOSA

l

l

| = Every device raises a
l

I telescope

Trigger
I_Hardware Layout

Richard Peschke | EUDAQ | 10.12.2014 | Page 3



Trigger Logic Unit (TLU)

Analog
trigger
input
(PMT)

> Receives analog signals from
fast particle detectors like
scintillators with PMTs

> Converts the analog signal to a
digital trigger

> Sends trigger to the devices

> Waits for the devices to finish
their data taking

David Cussans

Trigger

Busy
Device /A
Trigger—Clock

TI’igger
B AR T 1 {7 2R
Busy
T \_
Trigger—Clock
.......... /—\_/—\_
Trigger
gger
Busy

Trigger—Clock

> Three types of handshakes

= Trigger/Busy Handshake: Device sends a busy
signal back. No new triggers can be issued during
this time

= Trigger/Busy/Trigger-Data Handshake: The
TLU can send the TLU Trigger ID to the devices

= No handshake mode: TLU just sends trigger
without waiting for a response from the device

Richard Peschke | EUDAQ | 10.12.2014 | Page 4



The Producer

[ Producer Started| The Producer as a

Connecting to State Machine
RunControl
> 3 States

= Unconfigured
RunControl sends

configuration = Configured

- ; ’ Re-Configuring * Running

> 4 Transitions

Stop run Start run
= Configure
- = Start run
Readout loop O—» DataCollector = Stop run
T Readout = Terminate
Trigger
TLU >

Device
Richard Peschke | EUDAQ | 10.12.2014 | Page 5



EUDAQ 1.x: A Trigger Based DAQ System

Particles TLU DAQ 1 DAQ 2 > One trigger per read
qg’ out frame
= .
o Lragerio. > Prevents the issuing
' | of triggers for the
Contains: -
Trigger No. whole time of the
Hits read out

> All but the first

Readout particle are ignored

Frame > Online event building

Contains:

> Slowest device limits
the Event rate

Marked for write to Disk

Not Marked
Richard Peschke | EUDAQ | 10.12.2014 | Page 6



EUDAQ 2.0

> More flexibility in the data format
= Possibility to store multiple readout frames in one “packet”

> Increasing of the track rate by more than 2 orders of magnitude

> Easier combination of different kind of devices
= FE-14 / Mimosa / Timepix(3) / Slow Control
> Resolved scalability issues

= Decentralized data taking
= Data can be stored locally without network overhead
> Stay backward compatible to old EUDAQ 1.x Producer and analyze
readout chain (EUTelescope)
= Only recompiling is needed

= Changes are only need to benefit from some new features

Richard Peschke | EUDAQ | 10.12.2014 | Page 7

> Cross platform



Definition: Read Out Frame (ROF)

> Read Out Frame is the finest granularity one gets from a device

> It does not mean the granularity with which one reads out the Device.

= As an Example: With every read out from the TLU one gets the information from

multiple triggers. Since one can disentangle the information from the individual trigger
the Read Out Frame is the individual Trigger!

= For the FE-I4 one ROF is one LHC bunch crossing which covers a time of 25 ns

= For the Mimosa one ROF is one frame which covers a time of 115 us

Richard Peschke | EUDAQ | 10.12.2014 | Page 8



Tracks DUT

Information Needed:
« Space and time information at the position of the DUT

» Space resolution < 3us

» Separation time* < 30 ns

« Time Resolution < 4ns
*Tracks can only be separated if their time difference is Richard Peschke | EUDAQ | 10.12.2014 | Page 9 @
larger than the separation time



MIMOSA

MIMOSA
Tracks DUT

Information Needed:

« Space and time information at the position of the DUT
» Space resolution < 3us
» Separation time* < 30 ns

« Time Resolution < 4ns
*Tracks can only be separated if their time difference is Richard Peschke | EUDAQ | 10.12.2014 | Page 10
larger than the separation time



MIMOSA

MIMOSA
Tracks DUT

+ Intrinsic resolution of ~3.5 um precession
- Very poor time resolution (115.2 ps)

Richard Peschke | EUDAQ | 10.12.2014 | Page 11




MIMOSA
MIMOSA

Tracks DUT
FEI4

+ Intrinsic resolution of ~3.5 um precession
- Very poor time resolution (115.2 ps)

Solution adding faster device for time stamping the tracks
+ time resolution 25 ns
- Intrinsic resolution 14 x 70 pm

‘ Asynchronous data streams




Combining of two types of sensors

HlOO B Mimosa Telescope > By add|ng the FE-I4
£ emmwE|4 . .
< ‘ Detector the time resolution
S 10 IS increased by more than
5 3 orders of magnitude
& x | i ey
LA . . . > Gives the possibility to
0.01 0.10 1.00 10.00 100.00 . . . .
Integration Time [us) timestamp the individual
Tracks
Combined
Resolution

Richard Peschke | EUDAQ | 10.12.2014 | Page 13



From Trigger to Timestamps

Particles TLU DAQ 1 DAQ 2 > USlng a” partlcles

)

S .

= Readout ——— - !3035|ble rate

- - -l - Hits increase of two
’_ Clontains: order§ of

Timestamp 1 magnitude
Hits > No online event
building
Readout
Frame > Offline merging
Contains:

Marked for write to Disk

Not Marked
Richard Peschke | EUDAQ | 10.12.2014 | Page 14



From Trigger to Timestamps

Time

Particles TLU

DAQ 1

DAQ 2 > Using all particles

Marked for write to Disk
Not Marked

Readout

Contains:
Timestamp 1
Timestamp 2

Readout
Frame

Contains:

Hits

Timestamp 1

= Possible rate
increase of two

orders of
magnitude

Ti.mestampz
_‘_H_'tS_._l. > No online event

building
> Offline merging

Richard Peschke | EUDAQ | 10.12.2014 | Page 15



> Every Data Stream is stored separately
> The TLU is the central authority for merging

> Every event gets compared to the TLU events to find the
corresponding TLU event

> The Compare algorithm can easily be modified by the users.
It is part of the converter plugin

> Adding the TLU timestamp to the Event

> Processing events from different producers Individually until the
tracks are extracted

> Merging happens on the level of tracks and not events

Richard Peschke | EUDAQ | 10.12.2014 | Page 16



> The merging of the
tracks with the DUT
hits goes at the

# end.

> Reprocessing of

Current workflow

3

g alignment step after
_‘ merging
- &

|:| Data Processor . Data Collection - Condition Database

Richard Peschke | EUDAQ | 10.12.2014 | Page 17



> The merging of the
tracks with the DUT
hits goes at the
end.

Current workflow

> Reprocessing of
alignment step after
merging

Track Fitter

|:| Data Processor . Data Collection - Condition Database

Richard Peschke | EUDAQ | 10.12.2014 | Page 18



EUDAQ 1.x

> Every Producer sends one Event
per readout frame

> For some devices this leads to a
lot of overhead

> With low rate (~4 kHz) the
overhead is not limiting the data
rate

EUDAQ 2.0

> Desired rates:
100 kHz -1 MHz

> The overhead from packing
every ROF into one Event can
Limit the data rate

> Allowing the use of Packet

> Packets can contain multiple
ROFs.

-»No overhead for the individual
ROFs

> ROFs are extracted Offline

Richard Peschke | EUDAQ | 10.12.2014 | Page 19



How to extract Events from Packets

Packet

Event > Uses the well known
mechanism of data
converter plugins

> Complete flexibility how the
users store their data

Data Converter
plugin

Richard Peschke | EUDAQ | 10.12.2014 | Page 20



Accomplished
> New Data Format for
Multiple Readout frames

> Possiblility to Store Data
locally to reduce the
network overhead

> Merging for Online Monitor

Open Task

> Track merging in
EUTelescope

> Extensive beam tests

> Users need to update their
producer converter to take
full advantage from
EUDAQ 2

Richard Peschke | EUDAQ | 10.12.2014 | Page 21



End of slide show, dlick to exit.



Mimosa Readout

Rows > Rolling shutter readout

0 200 400 600

> Readout row by row

= The readout takes 115 pus

115 > Hits that that appear at the

= Readout 1

R ——Readout 2 exact same time can be In

= Readout 3

o Particle two different readout
frames

Time [us]

Readout

230

>t IS needed two associate
two readout frames two
s one trigger

Richard Peschke | EUDAQ | 10.12.2014 | Page 23




Telescope Type devices

Q
E
—

Trigger

Telescope

T

Read out
Row

> The information for one Trigger
IS split up on two ROF

> Limitation in the analyze
framework prevents the use of
references to previous events

Richard Peschke | EUDAQ | 10.12.2014 | Page 24



Telescope Type devices

Q
E
—

Trigger

Telescope

I 1l

Read out
Row

> The information for one Trigger
IS split up on two ROF

> Limitation in the analyze
framework prevents the use of
references to previous events

> Instead of associating only the
trigger that happened during the
ROF we also Associate the one
from the previous ROF to this
Event

> Trigger get associated to
multiple ROF

Richard Peschke | EUDAQ | 10.12.2014 | Page 25



Writing a Custom Producer

Producer Name:
// Declare a new class that inherits from eudaq::Producer - -
class ExampleProducer : public eudaq::Producer { o IS dISpIayed In RuncontrOI
public: .
* Must be the same name as in the
// The constructor must call the eudaq::Producer constr with the name . . .
// and the runcontrol connection string, and imftialize any member variables. Conflguratlon flle

ExampleProducer(const std::string & & ncontrol)
: eudaq: :Produl-er("ExampleProducer", ‘uncontrol) {}

// This gets called whenever the DAQ is configured —
virtual void OnConfigure(const eudaq::Configuration & config);

// This gets called whenever & new run is started ¢ Users have to overload these funCtionS
// It receives the new run number as a parameter to fit their needS.

virtual void OnStartRun(unsigned RunNumber);

// This gets called whenever a run is stopped ® FunCt|OnS get Ca”ed asynChronOUSIy
virtual void OnStopRun();
from RunControl

// This gets called when the Run Control is terminating,

// we should alsec exit.
virtual void OnTerminate();

void Reedoutloo; Readout loop for communication with hardware

private:
unsigned m_runNumber; //Variable to store the RunNumber
//Received from Runcontrol

unsigned m_eventNumber; //Counter to enumerate the Events
//starting from zero

Richard Peschke | EUDAQ | 10.12.2014 | Page 26
eudaqg\main\exe\src\ExampleProducer.cxx



Configuring a Producer

Configuration File

[Producer.TLU] €—_
orMask — 0 Producer Name

VetoMask = 0

Andmask = 15 .
DutMask = 1 Tag, Value Pairs
TriggerInterval = 0

TrigRollover = 0

jvoid ExampleProducer::0nConfigure(const eudaq::Configuration & config)

i
fro---

auto ExampleParameter = config.Get(ExampleTag, defaultValue);
if (ConfigureHardware(ExampleParameter)==successful configured)
i

| SetStatus(eudag: :Status::LVL_0K, "Configured (" + config.Name() + ")");

¥

else

1

| SetStatus(eudaqg: :Status::LVL_ERROR, "Unable to configure hardware");
¥

¥

The Configuration file
> |s sent by the RunControl

> Has sections for every Producer

> Contains tag-value pairs

The OnConfigure function

> Receives the producer specific
section of the configuration file

> Extracts the configuration

> Has a possibility to report errors
to the user

Richard Peschke | EUDAQ | 10.12.2014 | Page 27



Starting and Stopping A Producer

> “onStartRun’

= Receives the current run number

=lwvoid ExampleProducer::0nStartRun(unsigned RunMNumber) = HaS tO Send a. Begln Of Run Event
| m_runNumber = RunNumber; (BORE)

// It must send a BORE to the Data Collector
eudaq: :RawDataEvent bore(eudaq::RawDataEvent::BORE(EVENT_TYPE, RunMNumber));

B .. = Starts the hardware readout
// Send the event to the Data Collector
I SendEvent(bore);

= Sets the Producer status
startHardwareReadout();
// At the end, set the status that will be displayed in the Run Control.

SetStatus(eudaq: :Status::LVL_OK, "Running"); > “OnStOpRu n”

3

=lvoid ExampleProducer::0OnStopRun()

¢ = Stops the readout

// Set a flag to signal to the polling loop that the run is over
stopHardwareReadout();

= Waits for the hardware readout to finish

// wait until all events have been read out from the hardware
waitForPendingEvents();

=l // Send an EORE after all the real events have been sent " Sends an End Of Run Event (EORE)

|| // You can also set tags on it (as with the BORE) if necessary
SendEvent(eudaq: :RawDataEvent: : EORE(EVENT_TYPE, m_runNumber, ++m_eventNumber));

SetStatus (aedeq: sStatuss: VL O, "Stopped; > After every call to one of the virtual
The string only contains functions the Producer status gets

information additional information Seént back to RunControl
for the user

The status level is important for

the mechanism.

Richard Peschke | EUDAQ | 10.12.2014 | Page 28



Hardware interaction

Event Type

/

eudaq: :RawDataEvent ev("ExampleProducer",
RunNumber,
EventNumber);
ev.SetTag("exampleTag", 123);
ev.setTimeStamp(Now) ;
ev.AddBlock(Identifier, VectorOfBinaryData);

SEndEvenifiil;/27

A number to

identify the data
later in the data
converter plugin

User Data in a
serialized form

The user has to check if the
producer is in the correct state

The user has to pack every readout
frame in one event

Events contain event Type,
timestamps, tags and binary data

= The event type is used to determine the
correct data converter plugin

= The event type must be the same as in the
BORE and EORE

The Producer has a public member
function “SendEvent” to send events
to the data collector

Richard Peschke | EUDAQ | 10.12.2014 | Page 29



Python Producer

| Producer started] > In opposite to the C++

Connecting to producer the Python
RunControl .
Producer doesn't have any
Configuring

virtual function to overload

RunControl sends o ]
configuration > The transition is done by

adding intermediate states

' User has to setthe > The user has to check
status to configured 4 ctively for the status of the

producer
‘ Start run

Starting ]

User has to set the » States changes from the user
status to running
[ stopping | €= (Running ]

Richard Peschke | EUDAQ | 10.12.2014 | Page 30
Stop run

» States changes from EUDAQ

\ Re-Configuring




Python Producer

from PyEUDAQWrapper import * # load the ctypes wrapper
://localhost:44080"
# wait for configure cmd from RunControl

Hwhile i<maxwait and not pp.Configuring:
sleep(waittime)

"testproducer”,"tc

print "Waiting for configure for
i+=1

",i*waittime," seconds"”

# check if configuration received

Hif pp.Configuring:

print "Ready to configure, received config string 'Parameter'="
,pp.GetConfigParameter("Parameter")

# .... do your config stuff here ...

sleep(5)

pp-Configuring

True

\

# check for start of run cmd from RunControl
Hwhile i<maxwait and not pp.StartingRun:
sleep(waittime)

print "Waiting for run start for ",i*waittime,”
i+=1

seconds"

# check if we are starting:

Hif pp.StartingRun:

print "Ready to run!”

# ... prepare your system for the immanent run start
sleep(5)
pp-5StartingRun

True # set status and send BORE
starting to run

Hwhile not pp.Error and not pp.5toppingRun and not pp.Terminating:
# prepare an array of dim (1,3) for data storage

data = numpy.ndarray(shape=[1,3], dtype=numpy.uint8)

data[@] = ([123,456,999]) # add some (dummy) data
pp.-SendEvent(data) # send event off

# wait for a little while
# check if the run 1s stopping re

Hif pp.StoppingRun:
pp-StoppingRun=True # set status and send

Limited Access to the
Event Class
No Access to:
= Timestamps
= Tags
= Flags
Work around
> Using an external serializer

= Protobuf

=» Introducing more external
dependencies

= not easy to maintain in a cross platform
cross language environment

=» Eventually we have to provide full
access to the events

The only access to the event
(one vector of c_unit8)

31



Data Converter Plugin

User code for Reconstruction

// Declare a new class that inherits from DataConverterPlugin
class ExampleConverterPlugin : public DataConverterPlugin {

public:

J// This is called once at the beginning of each run.

// You may extract information from the BORE and/or configuration

// and store it in member variables to use during the decoding later. ThlS functlon |S Ca”ed at the

virtual void Initialize(const Event & bore, &

const Configuration & cnf); beginning with the BORE event

// Here, the data from the RawDataEvent is extracted into a StandardEvent.
// The return value indicates whether the conversion was successful.

J/ Again, this is just an example, adapted it for the actual data layout. Converts the raW event Into an
virtual bool GetStandardSubEvent(StandardEvent & sev, <

const Event & ev) const; < plane which contains pixel
private: informatlon

// The constructor can be private, only one static instance is created

// The DataConverterPlugin constructor must be passed the event type

// in order to register this converter for the corresponding conversions
// Member variables should also be initialized to default values here.
ExampleConverterPlugin() : DataConverterPlugin(EVENT_TYPE){}

// The single instance of this converter plugin

static ExampleConverterPlugin m_instance;
}; // class ExampleflonverterPlugin

// Instantiate th
ExampleConverterflugin ExampleConverterPlugin::m_instance}

converter plugin instance

Singleton class. Gets Event Type must be
created once at the the same as on the Richard Peschke | EUDAQ | 10.12.2014 | Page 32
program start Producer side



Example converter

> In the data converter plugin
bool ExampleConverterPlugin: :GetStandar‘dSubEvent(S‘ccz::im;i:::t&&la:u)av;onst u Sel' h ave th e fu I I access tO

i
// If the event type is used for different sensors

// they can be differentiated here the raW data

std::string sensortype = "example";

// Create a StandardPlane representing one sensor plane

int id = @; . . -
StandardPlane plane(id, EVENT_TYPE, sensortype); > M e rg e th e p IXe I I nfo rm atl O n
// Set the number of pixels

int width = 188, height = 58;

o et e s mesont); INtO one common event

// Set the trigger ID

plane.SetTLUEvent (GetTriggerID(ev)); WhICh COﬂSlSt Of IndIVIduaI

for (size t i = @; i < extract_size(ev);++i)

{ ot rusescn plans for each detector

extract_x_pos(ev, i),
extract_y_pos(ev, i),
extract_pixel(ev, i)

, > Every plane represents one

// Add the plane to the StandardEvent

e e detector

// Indicate that data was successfully converted

return true;

Richard Peschke | EUDAQ | 10.12.2014 | Page 33



Upcoming for EUDAQ 2.0

Asynchronous data

Streams Packets
> Every producer can send the > Contain the information of
data with its own speed multiple Readout Frames
(ROFs)

> Useful to combine devices with
different integration time > Reduces network traffic

= MIMOSA / FE-I4 / Slow Control > Extraction of the ROFs is part of

> Recombination algorithm is part the user code (data converter
of the user code plugin)

= User has to provide a function to
compare there own events with
the TLU events

Richard Peschke | EUDAQ | 10.12.2014 | Page 34



