
EUDAQ

AIDA Final Meeting

Ulf Behrens, Alan Campbell, Francesco Crescioli, David Cussans,

Hendrik Jansen, Moritz Kiehn, Hanno Perrey, Richard Peschke,

Igor Rubinskiy, Simon Spannagel

Richard Peschke | EUDAQ | 10.12.2014 | Page 2

Integration of user DAQs to EUDAQ

Why?

>Centralized RunControl

> Sanity checks

 Check for event number

mismatch

 Missing timestamps

>Online monitoring

 Correlation plots

How?

> Clear interface between user

code and EUDAQ through

“Producer” and “Data Converter

Plugins”

> The “Producer” is a C++ class

which handles the

communication with EUDAQ

> Interfaces to other languages

 Python

 ROOT

 LabView interface planed

Richard Peschke | EUDAQ | 10.12.2014 | Page 3

EUDAQ

RunControl

Data
Collector

Producer
1

Producer
2

TLU
Producer

> Distributed DAQ

system

 Consists of completely

independent parts /

programs such as:

Run Control

Data Collector

Producers

> Synchronous read out

 All devices get a

common trigger

 Every device raises a

busy signal

> DAQ for MIMOSA

telescope

Data flow
TCP/IP

Software Layout

Hardware Layout

Trigger

Read Out

Device 2Device 1

TLU

Richard Peschke | EUDAQ | 10.12.2014 | Page 4

Trigger Logic Unit (TLU)

> Receives analog signals from

fast particle detectors like

scintillators with PMTs

> Converts the analog signal to a

digital trigger

> Sends trigger to the devices

> Waits for the devices to finish

their data taking

> Three types of handshakes

 Trigger/Busy Handshake: Device sends a busy

signal back. No new triggers can be issued during

this time

 Trigger/Busy/Trigger-Data Handshake: The

TLU can send the TLU Trigger ID to the devices

 No handshake mode: TLU just sends trigger

without waiting for a response from the device

TLU

Analog
trigger
input

(PMT)

Device
A

Device
B

Device C

David Cussans

Richard Peschke | EUDAQ | 10.12.2014 | Page 5

The Producer

The Producer as a

State Machine

> 3 States

 Unconfigured

 Configured

 Running

> 4 Transitions

 Configure

 Start run

 Stop run

 Terminate

Producer Started

Connecting to

RunControl

Unconfigured

RunControl sends

configuration

Configured

Start run

Running

Stop run

Re-Configuring

TLU

Readout loop

Device
Trigger

Readout

DataCollector

Richard Peschke | EUDAQ | 10.12.2014 | Page 6

EUDAQ 1.x: A Trigger Based DAQ System

> One trigger per read

out frame

> Prevents the issuing

of triggers for the

whole time of the

read out

> All but the first

particle are ignored

> Online event building

> Slowest device limits

the Event rate

T
im

e

Particles TLU DAQ 1 DAQ 2

Readout

Frame

Contains:

Trigger No.

Hits

…

Trigger No.

Hits

Readout

Frame

Contains:

…

Marked for write to Disk

Not Marked

Richard Peschke | EUDAQ | 10.12.2014 | Page 7

EUDAQ 2.0

> More flexibility in the data format

 Possibility to store multiple readout frames in one “packet”

> Increasing of the track rate by more than 2 orders of magnitude

> Easier combination of different kind of devices

 FE-I4 / Mimosa / Timepix(3) / Slow Control

> Resolved scalability issues

 Decentralized data taking

 Data can be stored locally without network overhead

> Stay backward compatible to old EUDAQ 1.x Producer and analyze

readout chain (EUTelescope)

 Only recompiling is needed

 Changes are only need to benefit from some new features

> Cross platform

Richard Peschke | EUDAQ | 10.12.2014 | Page 8

Definition: Read Out Frame (ROF)

> Read Out Frame is the finest granularity one gets from a device

> It does not mean the granularity with which one reads out the Device.

 As an Example: With every read out from the TLU one gets the information from

multiple triggers. Since one can disentangle the information from the individual trigger

the Read Out Frame is the individual Trigger!

 For the FE-I4 one ROF is one LHC bunch crossing which covers a time of 25 ns

 For the Mimosa one ROF is one frame which covers a time of 115 µs

Richard Peschke | EUDAQ | 10.12.2014 | Page 9

DUTTracks

1

2

3

Information Needed:

• Space and time information at the position of the DUT

• Space resolution < 3 µs

• Separation time* < 30 ns

• Time Resolution < 4 ns

*Tracks can only be separated if their time difference is

larger than the separation time

Richard Peschke | EUDAQ | 10.12.2014 | Page 10

DUT

MIMOSA
MIMOSA

Tracks

1

2

3

Information Needed:

• Space and time information at the position of the DUT

• Space resolution < 3 µs

• Separation time* < 30 ns

• Time Resolution < 4 ns

*Tracks can only be separated if their time difference is

larger than the separation time

Richard Peschke | EUDAQ | 10.12.2014 | Page 11

MIMOSA
MIMOSA

DUTTracks

1

2

3

+ Intrinsic resolution of ~3.5 µm precession

- Very poor time resolution (115.2 µs)

Richard Peschke | EUDAQ | 10.12.2014 | Page 12

MIMOSA
MIMOSA

DUTTracks

1

2

3

+ Intrinsic resolution of ~3.5 µm precession

- Very poor time resolution (115.2 µs)

Solution adding faster device for time stamping the tracks

+ time resolution 25 ns

- Intrinsic resolution 14 x 70 µm

FEI4

Asynchronous data streams

Richard Peschke | EUDAQ | 10.12.2014 | Page 13

Combining of two types of sensors

1

10

100

0.01 0.10 1.00 10.00 100.00

S
p

a
c
ia

l
re

s
o

lu
ti

o
n

 [
µ

m
]

Integration Time [µs]

Mimosa Telescope

FEI4

> By adding the FE-I4

Detector the time resolution

is increased by more than

3 orders of magnitude

>Gives the possibility to

timestamp the individual

Tracks
Combined

Resolution

Richard Peschke | EUDAQ | 10.12.2014 | Page 14

From Trigger to Timestamps

>Using all particles

 Possible rate

increase of two

orders of

magnitude

>No online event

building

>Offline merging

T
im

e

Particles TLU DAQ 1 DAQ 2

Readout

Frame

Contains:

Timestamp 1

Hits

…

Timestamp 1

Hits

Readout

Frame

Contains:

…

Marked for write to Disk

Not Marked

Richard Peschke | EUDAQ | 10.12.2014 | Page 15

From Trigger to Timestamps

>Using all particles

 Possible rate

increase of two

orders of

magnitude

>No online event

building

>Offline merging

T
im

e

Particles TLU DAQ 1 DAQ 2

Readout

Frame

Contains:

Timestamp 1

Timestamp 2

Hits

…

Timestamp 1

Hits

Timestamp 2

Hits

Readout

Frame

Contains:

…

Marked for write to Disk

Not Marked

Richard Peschke | EUDAQ | 10.12.2014 | Page 16

Merging

> Every Data Stream is stored separately

> The TLU is the central authority for merging

> Every event gets compared to the TLU events to find the

corresponding TLU event

> The Compare algorithm can easily be modified by the users.

It is part of the converter plugin

> Adding the TLU timestamp to the Event

> Processing events from different producers Individually until the

tracks are extracted

> Merging happens on the level of tracks and not events

Richard Peschke | EUDAQ | 10.12.2014 | Page 17

Merging

Current workflow > The merging of the

tracks with the DUT

hits goes at the

end.

>Reprocessing of

alignment step after

merging

Richard Peschke | EUDAQ | 10.12.2014 | Page 18

Merging

Current workflow

DUT hits

> The merging of the

tracks with the DUT

hits goes at the

end.

>Reprocessing of

alignment step after

merging

Richard Peschke | EUDAQ | 10.12.2014 | Page 19

Packets

EUDAQ 1.x

> Every Producer sends one Event

per readout frame

> For some devices this leads to a

lot of overhead

> With low rate (~4 kHz) the

overhead is not limiting the data

rate

EUDAQ 2.0

> Desired rates:

100 kHz -1 MHz

> The overhead from packing

every ROF into one Event can

Limit the data rate

> Allowing the use of Packet

> Packets can contain multiple

ROFs.

No overhead for the individual

ROFs

> ROFs are extracted Offline

Richard Peschke | EUDAQ | 10.12.2014 | Page 20

How to extract Events from Packets

>Uses the well known

mechanism of data

converter plugins

>Complete flexibility how the

users store their data

Header

Meta

Data

ROF

ROF

ROF

ROF

Header

Meta

Data

ROF

Data Converter

plugin

Packet Event

Richard Peschke | EUDAQ | 10.12.2014 | Page 21

Summary

Accomplished

>New Data Format for

Multiple Readout frames

> Possibility to Store Data

locally to reduce the

network overhead

>Merging for Online Monitor

Open Task

> Track merging in

EUTelescope

> Extensive beam tests

>Users need to update their

producer converter to take

full advantage from

EUDAQ 2

Richard Peschke | EUDAQ | 10.12.2014 | Page 22

Richard Peschke | EUDAQ | 10.12.2014 | Page 23

Mimosa Readout

>Rolling shutter readout

>Readout row by row

 The readout takes 115 µs

>Hits that that appear at the

exact same time can be in

two different readout

frames

It is needed two associate

two readout frames two

one trigger

0

115

230

345

0 200 400 600

T
im

e
 [

µ
s
]

Rows

Readout 1

Readout 2

Readout 3

Particle
Readout

Richard Peschke | EUDAQ | 10.12.2014 | Page 24

Telescope Type devices

> The information for one Trigger

is split up on two ROF

> Limitation in the analyze

framework prevents the use of

references to previous events

T
im

e Trigger Telescope

Row

T
im

e

Read out

Richard Peschke | EUDAQ | 10.12.2014 | Page 25

Telescope Type devices

> The information for one Trigger

is split up on two ROF

> Limitation in the analyze

framework prevents the use of

references to previous events

> Instead of associating only the

trigger that happened during the

ROF we also Associate the one

from the previous ROF to this

Event

> Trigger get associated to

multiple ROF

T
im

e Trigger Telescope

Row

T
im

e

Read out

Richard Peschke | EUDAQ | 10.12.2014 | Page 26

Writing a Custom Producer

Producer Name:

• Is displayed in RunControl

• Must be the same name as in the

configuration file

• Users have to overload these functions

to fit their needs.

• Functions get called asynchronously

from RunControl

Readout loop for communication with hardware

eudaq\main\exe\src\ExampleProducer.cxx

Richard Peschke | EUDAQ | 10.12.2014 | Page 27

Configuring a Producer

The Configuration file

> Is sent by the RunControl

> Has sections for every Producer

> Contains tag-value pairs

Producer Name

Configuration File

Tag, Value Pairs

The OnConfigure function

> Receives the producer specific

section of the configuration file

> Extracts the configuration

> Has a possibility to report errors

to the user

Richard Peschke | EUDAQ | 10.12.2014 | Page 28

Starting and Stopping A Producer

> “onStartRun”

 Receives the current run number

 Has to send a Begin Of Run Event

(BORE)

 Starts the hardware readout

 Sets the Producer status

> “onStopRun”

 Stops the readout

 Waits for the hardware readout to finish

 Sends an End Of Run Event (EORE)

> After every call to one of the virtual

functions the Producer status gets

sent back to RunControl
• The string only contains

information additional information

for the user

• The status level is important for

the mechanism.

Richard Peschke | EUDAQ | 10.12.2014 | Page 29

Hardware interaction

> The user has to check if the

producer is in the correct state

> The user has to pack every readout

frame in one event

> Events contain event Type,

timestamps, tags and binary data

 The event type is used to determine the

correct data converter plugin

 The event type must be the same as in the

BORE and EORE

> The Producer has a public member

function “SendEvent” to send events

to the data collector

Event Type

A number to

identify the data

later in the data

converter plugin

User Data in a

serialized form

Richard Peschke | EUDAQ | 10.12.2014 | Page 30

Python Producer

> In opposite to the C++

producer the Python

Producer doesn't have any

virtual function to overload

> The transition is done by

adding intermediate states

> The user has to check

actively for the status of the

producer

Running

configured

Producer Started

Connecting to

RunControl

Unconfigured

RunControl sends

configuration

Start run

Stop run

R
e

-C
o
n
fi
g
u
ri
n
g

Configuring

User has to set the

status to configured

Starting

User has to set the

status to running

Stopping

States changes from EUDAQ

States changes from the user

Richard Peschke | EUDAQ | 10.12.2014 | Page 31

Python Producer

Work around

Limited Access to the

Event Class

No Access to:

 Timestamps

 Tags

 Flags

> Using an external serializer

 Protobuf

 Introducing more external

dependencies

 not easy to maintain in a cross platform

cross language environment

Eventually we have to provide full

access to the events

The only access to the event

(one vector of c_unit8)

Richard Peschke | EUDAQ | 10.12.2014 | Page 32

Data Converter Plugin

User code for Reconstruction

Event Type must be

the same as on the

Producer side

Singleton class. Gets

created once at the

program start

This function is called at the

beginning with the BORE event

Converts the raw event into an

plane which contains pixel

information

Richard Peschke | EUDAQ | 10.12.2014 | Page 33

Example converter

> In the data converter plugin

user have the full access to

the raw data

>Merge the pixel information

into one common event

which consist of individual

plans for each detector

> Every plane represents one

detector

Richard Peschke | EUDAQ | 10.12.2014 | Page 34

Upcoming for EUDAQ 2.0

Asynchronous data

Streams

> Every producer can send the

data with its own speed

> Useful to combine devices with

different integration time

 MIMOSA / FE-I4 / Slow Control

> Recombination algorithm is part

of the user code

 User has to provide a function to

compare there own events with

the TLU events

Packets

> Contain the information of

multiple Readout Frames

(ROFs)

> Reduces network traffic

> Extraction of the ROFs is part of

the user code (data converter

plugin)

