# Holography for $\mathcal{N}=2^{*}$ on $S^{4}$ 

Nikolay Bobev<br>Instituut voor Theoretische Fysica, K.U. Leuven

CERN
Nov 252014

# $1311.1508+14 X X . X X X X+$ in progress <br> with Henriette Elvang, Daniel Freedman, Silviu Pufu Uri Kol, Tim Olson 

## Motivation

- Powerful exact results for supersymmetric field theories on curved manifolds using equivariant localization [Witten], [Nekrasov], [Pestun], ...


## Motivation

- Powerful exact results for supersymmetric field theories on curved manifolds using equivariant localization [Witten], [Nekrasov], [Pestun], ...
- The partition function of the theory may be viewed as some "topological invariant" of the manifold.


## Motivation

- Powerful exact results for supersymmetric field theories on curved manifolds using equivariant localization [Witten], [Nekrasov], [Pestun], ...
- The partition function of the theory may be viewed as some "topological invariant" of the manifold.
- Supersymmetric localization reduces the path integral of a gauge theory to a finite dimensional matrix integral. Still hard to evaluate explicitly in general!


## Motivation

- Powerful exact results for supersymmetric field theories on curved manifolds using equivariant localization [Witten], [Nekrasov], [Pestun], ...
- The partition function of the theory may be viewed as some "topological invariant" of the manifold.
- Supersymmetric localization reduces the path integral of a gauge theory to a finite dimensional matrix integral. Still hard to evaluate explicitly in general!
- Make progress by taking the planar limit for specific $4 \mathrm{~d} \mathcal{N}=2$ theories. [Russo], [Russo-Zarembo], [Buchel-Russo-Zarembo]


## Motivation

- Powerful exact results for supersymmetric field theories on curved manifolds using equivariant localization [Witten], [Nekrasov], [Pestun], ...
- The partition function of the theory may be viewed as some "topological invariant" of the manifold.
- Supersymmetric localization reduces the path integral of a gauge theory to a finite dimensional matrix integral. Still hard to evaluate explicitly in general!
- Make progress by taking the planar limit for specific $4 \mathrm{~d} \mathcal{N}=2$ theories. [Russo], [Russo-Zarembo], [Buchel-Russo-Zarembo]
- Evaluation of the partition function of planar $S U(N), \mathcal{N}=2^{*}$ SYM on $S^{4}$. An infinite number of quantum phase transitions as a function of $\lambda=g_{Y M}^{2} N$.
[Russo-Zarembo]


## Motivation

- $\mathcal{N}=2^{*}$ SYM is a theory of a $\mathcal{N}=2$ vector multiplet and a hyper multiplet in the adjoint. It is a massive deformation of $\mathcal{N}=4 \mathrm{SYM}$. There is a unique supersymmetric Lagrangian on $S^{4}$. [Pestun], [Festuccia-Seiberg]


## Motivation

- $\mathcal{N}=2^{*}$ SYM is a theory of a $\mathcal{N}=2$ vector multiplet and a hyper multiplet in the adjoint. It is a massive deformation of $\mathcal{N}=4 \mathrm{SYM}$. There is a unique supersymmetric Lagrangian on $S^{4}$. [Pestun], [Festuccia-Seiberg]
- The result for $N, \lambda \gg 1$ is [Russo-Zarembo]

$$
F_{S^{4}}^{\mathcal{N}=2^{*}}=-\log \mathcal{Z}_{S^{4}}^{\mathcal{N}=2^{*}}=-\frac{N^{2}}{2}\left(1+(m R)^{2}\right) \log \frac{\lambda\left(1+(m R)^{2}\right) e^{2 \gamma+\frac{1}{2}}}{16 \pi^{2}}
$$

## Motivation

- $\mathcal{N}=2^{*}$ SYM is a theory of a $\mathcal{N}=2$ vector multiplet and a hyper multiplet in the adjoint. It is a massive deformation of $\mathcal{N}=4 \mathrm{SYM}$. There is a unique supersymmetric Lagrangian on $S^{4}$. [Pestun], [Festuccia-Seiberg]
- The result for $N, \lambda \gg 1$ is [Russo-Zarembo]

$$
F_{S^{4}}^{\mathcal{N}=2^{*}}=-\log \mathcal{Z}_{S^{4}}^{\mathcal{N}=2^{*}}=-\frac{N^{2}}{2}\left(1+(m R)^{2}\right) \log \frac{\lambda\left(1+(m R)^{2}\right) e^{2 \gamma+\frac{1}{2}}}{16 \pi^{2}}
$$

- The goal is to calculate $F_{S^{4}}^{\mathcal{N}=2^{*}}$ holographically.


## Motivation

- $\mathcal{N}=2^{*}$ SYM is a theory of a $\mathcal{N}=2$ vector multiplet and a hyper multiplet in the adjoint. It is a massive deformation of $\mathcal{N}=4 \mathrm{SYM}$. There is a unique supersymmetric Lagrangian on $S^{4}$. [Pestun], [Festuccia-Seiberg]
- The result for $N, \lambda \gg 1$ is [Russo-Zarembo]

$$
F_{S^{4}}^{\mathcal{N}=2^{*}}=-\log \mathcal{Z}_{S^{4}}^{\mathcal{N}=2^{*}}=-\frac{N^{2}}{2}\left(1+(m R)^{2}\right) \log \frac{\lambda\left(1+(m R)^{2}\right) e^{2 \gamma+\frac{1}{2}}}{16 \pi^{2}}
$$

- The goal is to calculate $F_{S^{4}}^{\mathcal{N}}=2^{*}$ holographically.
- Precision test of holography! In $A d S_{5} / C F T_{4}$ one typically compares numbers. Here we have a whole function to match.


## Motivation

- $\mathcal{N}=2^{*}$ SYM is a theory of a $\mathcal{N}=2$ vector multiplet and a hyper multiplet in the adjoint. It is a massive deformation of $\mathcal{N}=4 \mathrm{SYM}$. There is a unique supersymmetric Lagrangian on $S^{4}$. [Pestun], [Festuccia-Seiberg]
- The result for $N, \lambda \gg 1$ is [Russo-Zarembo]

$$
F_{S^{4}}^{\mathcal{N}=2^{*}}=-\log \mathcal{Z}_{S^{4}}^{\mathcal{N}=2^{*}}=-\frac{N^{2}}{2}\left(1+(m R)^{2}\right) \log \frac{\lambda\left(1+(m R)^{2}\right) e^{2 \gamma+\frac{1}{2}}}{16 \pi^{2}}
$$

- The goal is to calculate $F_{S^{4}}^{\mathcal{N}}=2^{*}$ holographically.
- Precision test of holography! In $A d S_{5} / C F T_{4}$ one typically compares numbers. Here we have a whole function to match.
- Previous results on holography for $\mathcal{N}=2^{*}$ on $\mathbb{R}^{4}$. [Pilch-Warner], [Buchel-Peet-Polchinski], [Evans-Johnson-Petrini] On $S^{4}$ the holographic construction is more involved.


## Plan

- The $\mathcal{N}=2^{*}$ SYM theory on $S^{4}$
- The gravity dual
- Holographic calculation of $F_{S^{4}}^{\mathcal{N}=2^{*}}$
- Comments on $\mathcal{N}=1^{*}$ SYM theory on $S^{4}$
- Outlook

The $\mathcal{N}=2^{*}$ SYM theory on $S^{4}$

## $\mathcal{N}=2^{*} \mathrm{SYM}$ on $S^{4}$

The field content of $\mathcal{N}=4 \mathrm{SYM}$ is

$$
A_{\mu}, \quad X_{1,2,3,4,5,6}, \quad \lambda_{1,2,3,4} .
$$

## $\mathcal{N}=2^{*} \mathrm{SYM}$ on $S^{4}$

The field content of $\mathcal{N}=4 \mathrm{SYM}$ is

$$
A_{\mu}, \quad X_{1,2,3,4,5,6}, \quad \lambda_{1,2,3,4} .
$$

Organize this into an $\mathcal{N}=2$ vector multiplet

$$
A_{\mu}, \quad \psi_{1} \equiv \lambda_{4}, \quad \psi_{2} \equiv \lambda_{3}, \quad Z_{3} \equiv \frac{1}{\sqrt{2}}\left(X_{3}+i X_{6}\right),
$$

and one hypermultiplet

$$
\chi_{j}=\lambda_{j}, \quad Z_{j}=\frac{1}{\sqrt{2}}\left(X_{j}+i X_{j+3}\right), \quad j=1,2 .
$$

## $\mathcal{N}=2^{*} \mathrm{SYM}$ on $S^{4}$

The field content of $\mathcal{N}=4 \mathrm{SYM}$ is

$$
A_{\mu}, \quad X_{1,2,3,4,5,6}, \quad \lambda_{1,2,3,4} .
$$

Organize this into an $\mathcal{N}=2$ vector multiplet

$$
A_{\mu}, \quad \psi_{1} \equiv \lambda_{4}, \quad \psi_{2} \equiv \lambda_{3}, \quad Z_{3} \equiv \frac{1}{\sqrt{2}}\left(X_{3}+i X_{6}\right)
$$

and one hypermultiplet

$$
\chi_{j}=\lambda_{j}, \quad Z_{j}=\frac{1}{\sqrt{2}}\left(X_{j}+i X_{j+3}\right), \quad j=1,2 .
$$

Only $S U(2)_{V} \times S U(2)_{H} \times U(1)_{R}$ of the $S O(6)$ R-symmetry is manifest.

## $\mathcal{N}=2^{*} \mathrm{SYM}$ on $S^{4}$

The field content of $\mathcal{N}=4 \mathrm{SYM}$ is

$$
A_{\mu}, \quad X_{1,2,3,4,5,6}, \quad \lambda_{1,2,3,4} .
$$

Organize this into an $\mathcal{N}=2$ vector multiplet

$$
A_{\mu}, \quad \psi_{1} \equiv \lambda_{4}, \quad \psi_{2} \equiv \lambda_{3}, \quad Z_{3} \equiv \frac{1}{\sqrt{2}}\left(X_{3}+i X_{6}\right)
$$

and one hypermultiplet

$$
\chi_{j}=\lambda_{j}, \quad Z_{j}=\frac{1}{\sqrt{2}}\left(X_{j}+i X_{j+3}\right), \quad j=1,2 .
$$

Only $S U(2)_{V} \times S U(2)_{H} \times U(1)_{R}$ of the $S O(6)$ R-symmetry is manifest.
The $\mathcal{N}=2^{*}$ theory is obtained by giving a mass term for the hyper multiplet. In flat space this breaks the global symmetry to $S U(2)_{V} \times U(1)_{H}$.

## $\mathcal{N}=2^{*} \mathrm{SYM}$ on $S^{4}$

The theory is no longer conformal so it is not obvious how to put it on $S^{4}$.

## $\mathcal{N}=2^{*} \mathrm{SYM}$ on $S^{4}$

The theory is no longer conformal so it is not obvious how to put it on $S^{4}$. When there is a will there is a way! [Pestun], [Festuccia-Seiberg], ...

## $\mathcal{N}=2^{*} \mathrm{SYM}$ on $S^{4}$

The theory is no longer conformal so it is not obvious how to put it on $S^{4}$.
When there is a will there is a way! [Pestun], [Festuccia-Seiberg], ...

$$
\begin{aligned}
\mathcal{L}_{\mathcal{N}=2^{*}}^{S^{4}=\mathcal{L}_{\mathcal{N}=4}^{S^{4}}} & +\frac{2}{R^{2}} \operatorname{tr}\left(Z_{1} \widetilde{Z}_{1}+Z_{2} \widetilde{Z}_{2}+Z_{3} \widetilde{Z}_{3}\right) \\
& +m^{2} \operatorname{tr}\left(Z_{1} \widetilde{Z}_{1}+Z_{2} \widetilde{Z}_{2}\right)-\frac{m}{2} \operatorname{tr}\left(\chi_{1} \chi_{1}+\chi_{2} \chi_{2}+\tilde{\chi}_{1} \tilde{\chi}_{1}+\tilde{\chi}_{2} \tilde{\chi}_{2}\right) \\
& -\sqrt{2} m \operatorname{tr}\left[\left(\widetilde{Z}_{1} Z_{2}-\widetilde{Z}_{2} Z_{1}\right) Z_{3}+\left(Z_{1} \widetilde{Z}_{2}-Z_{2} \widetilde{Z}_{1}\right) \widetilde{Z}_{3}\right] \\
& +\frac{i m}{2 R} \operatorname{tr}\left(Z_{1}^{2}+Z_{2}^{2}+\widetilde{Z}_{1}^{2}+\widetilde{Z}_{2}^{2}\right)
\end{aligned}
$$

## $\mathcal{N}=2^{*} \mathrm{SYM}$ on $S^{4}$

The theory is no longer conformal so it is not obvious how to put it on $S^{4}$.
When there is a will there is a way! [Pestun], [Festuccia-Seiberg], ...

$$
\begin{aligned}
\mathcal{L}_{\mathcal{N}=2^{*}}^{S^{4}}=\mathcal{L}_{\mathcal{N}=4}^{S^{4}} & +\frac{2}{R^{2}} \operatorname{tr}\left(Z_{1} \widetilde{Z}_{1}+Z_{2} \widetilde{Z}_{2}+Z_{3} \widetilde{Z}_{3}\right) \\
& +m^{2} \operatorname{tr}\left(Z_{1} \widetilde{Z}_{1}+Z_{2} \widetilde{Z}_{2}\right)-\frac{m}{2} \operatorname{tr}\left(\chi_{1} \chi_{1}+\chi_{2} \chi_{2}+\tilde{\chi}_{1} \tilde{\chi}_{1}+\tilde{\chi}_{2} \tilde{\chi}_{2}\right) \\
& -\sqrt{2} m \operatorname{tr}\left[\left(\widetilde{Z}_{1} Z_{2}-\widetilde{Z}_{2} Z_{1}\right) Z_{3}+\left(Z_{1} \widetilde{Z}_{2}-Z_{2} \widetilde{Z}_{1}\right) \widetilde{Z}_{3}\right] \\
& +\frac{i m}{2 R} \operatorname{tr}\left(Z_{1}^{2}+Z_{2}^{2}+\widetilde{Z}_{1}^{2}+\widetilde{Z}_{2}^{2}\right)
\end{aligned}
$$

Expect to have supergravity scalars dual to

$$
\begin{array}{ll}
\mathcal{O}_{\phi}=\operatorname{tr}\left(Z_{1} \widetilde{Z}_{1}+Z_{2} \widetilde{Z}_{2}\right), & \Delta_{\mathcal{O}_{\phi}}=2 \\
\mathcal{O}_{\psi}=\operatorname{tr}\left(\chi_{1} \chi_{1}+\chi_{2} \chi_{2}+\tilde{\chi}_{1} \tilde{\chi}_{1}+\tilde{\chi}_{2} \tilde{\chi}_{2}\right), & \Delta_{\mathcal{O}_{\psi}}=3 \\
\mathcal{O}_{\chi}=\operatorname{tr}\left(Z_{1}^{2}+Z_{2}^{2}+\widetilde{Z}_{1}^{2}+\widetilde{Z}_{2}^{2}\right), & \Delta_{\mathcal{O}_{\chi}}=2
\end{array}
$$

## $\mathcal{N}=2^{*} \mathrm{SYM}$ on $S^{4}$

|  | $S U(2)_{V}$ | $S U(2)_{H}$ | $U(1)_{R}$ |
| :---: | :---: | :---: | :---: |
| $A_{\mu}$ | 0 | 0 | 0 |
| $Z_{3}$ | 0 | 0 | +2 |
| $\psi_{1,2}$ | $1 / 2$ | 0 | +1 |
| $\tilde{\psi}_{1,2}$ | $1 / 2$ | 0 | -1 |
| $Z_{1,2}$ | $1 / 2$ | $1 / 2$ | 0 |
| $\chi_{1,2}$ | 0 | $1 / 2$ | -1 |
| $\tilde{\chi}_{1,2}$ | 0 | $1 / 2$ | +1 |

In flat space the $\mathcal{N}=2^{*}$ theory has $S U(2)_{V} \times U(1)_{H}$ global symmetry. The extra coupling $\mathcal{O}_{\chi}$ on $S^{4}$ breaks this to $U(1)_{V} \times U(1)_{H}$.

## $\mathcal{N}=2^{*} \mathrm{SYM}$ on $S^{4}$

|  | $S U(2)_{V}$ | $S U(2)_{H}$ | $U(1)_{R}$ |
| :---: | :---: | :---: | :---: |
| $A_{\mu}$ | 0 | 0 | 0 |
| $Z_{3}$ | 0 | 0 | +2 |
| $\psi_{1,2}$ | $1 / 2$ | 0 | +1 |
| $\tilde{\psi}_{1,2}$ | $1 / 2$ | 0 | -1 |
| $Z_{1,2}$ | $1 / 2$ | $1 / 2$ | 0 |
| $\chi_{1,2}$ | 0 | $1 / 2$ | -1 |
| $\tilde{\chi}_{1,2}$ | 0 | $1 / 2$ | +1 |

In flat space the $\mathcal{N}=2^{*}$ theory has $S U(2)_{V} \times U(1)_{H}$ global symmetry. The extra coupling $\mathcal{O}_{\chi}$ on $S^{4}$ breaks this to $U(1)_{V} \times U(1)_{H}$.

There is a subtlety. The global symmetry is enhanced to to $U(1)_{V} \times U(1)_{H} \times U(1)_{Y}$ in the large N limit. The $U(1)_{Y}$ is the diagonal subgroup in $U(1)_{R} \times U(1)_{S L(2, \mathbb{R})}$.

This is proven in flat space. [Intriligator], [Intriligator-Skiba], [Pilch-Warner], [Buchel-Peet-Polchinski]
Expect the same symmetry to emerge on $S^{4}$.

## Results from localization

The $S U(N)$ gauge symmetry is generally broken to $U(1)^{N-1}$ by a vev for $Z_{3}$.

$$
Z_{3}=\operatorname{diag}\left(a_{1}, \ldots, a_{N}\right)
$$

After supersymmetric localization the path integral for the theory on $S^{4}$ reduces to a finite dimensional integral over the Coulomb moduli $a_{i}$. [Pestun]

$$
\mathcal{Z}=\int \prod_{i=1}^{N} d a_{i} \delta\left(\sum_{i=1}^{N} a_{i}\right) \prod_{i<j}\left(a_{i}-a_{j}\right)^{2} \mathcal{Z}_{1 \text {-loop }}\left|\mathcal{Z}_{\text {inst }}\right|^{2} e^{-S_{\mathrm{cl}}}
$$

where

$$
\begin{gathered}
S_{\mathrm{cl}}=\frac{8 \pi^{2} N}{\lambda} \sum_{i=1}^{N} a_{i}^{2}, \quad \mathcal{Z}_{1 \text {-loop }}=\prod_{i=1}^{N} \frac{H^{2}\left(a_{i}-a_{j}\right)}{H\left(a_{i}-a_{j}+m R\right) H\left(a_{i}-a_{j}-m R\right)}, \\
H(x)=\prod_{n=1}^{\infty}\left(1+\frac{x^{2}}{n^{2}}\right)^{n} e^{-x^{2} / n} .
\end{gathered}
$$

The function $\mathcal{Z}_{\text {inst }}$ is Nekrasov's partition function with parameters $\varepsilon_{1}=\varepsilon_{2}=1 / R$.

## Results from localization

Russo and Zarembo solved (numerically) this matrix model at large $N$. They found an infinite number of (quantum) phase transitions as a function of $\lambda$.

## Results from localization

Russo and Zarembo solved (numerically) this matrix model at large $N$. They found an infinite number of (quantum) phase transitions as a function of $\lambda$.

One caveat. They assume that $\mathcal{Z}_{\text {inst }}=1$ for large $N$. This is important and will be checked holographically.

## Results from localization

Russo and Zarembo solved (numerically) this matrix model at large $N$. They found an infinite number of (quantum) phase transitions as a function of $\lambda$.

One caveat. They assume that $\mathcal{Z}_{\text {inst }}=1$ for large $N$. This is important and will be checked holographically.

The result for $N, \lambda \gg 1$ is

$$
F_{S^{4}}=-\log \mathcal{Z}=-\frac{N^{2}}{2}\left(1+(m R)^{2}\right) \log \frac{\lambda\left(1+(m R)^{2}\right) e^{2 \gamma+\frac{1}{2}}}{16 \pi^{2}}
$$

## Results from localization

Russo and Zarembo solved (numerically) this matrix model at large $N$. They found an infinite number of (quantum) phase transitions as a function of $\lambda$.

One caveat. They assume that $\mathcal{Z}_{\text {inst }}=1$ for large $N$. This is important and will be checked holographically.

The result for $N, \lambda \gg 1$ is

$$
F_{S^{4}}=-\log \mathcal{Z}=-\frac{N^{2}}{2}\left(1+(m R)^{2}\right) \log \frac{\lambda\left(1+(m R)^{2}\right) e^{2 \gamma+\frac{1}{2}}}{16 \pi^{2}}
$$

This answer depends on the regularization scheme. The scheme independent quantity is

$$
\frac{d^{3} F_{S^{4}}}{d(m R)^{3}}=-2 N^{2} \frac{m R\left((m R)^{2}+3\right)}{\left((m R)^{2}+1\right)^{2}}
$$

This is what one can aim to compute holographically.

## Comments

For a CFT on $S^{4}$ of radius $R$ with cutoff $\epsilon \rightarrow 0$

$$
F_{S^{4}}=\alpha_{4}\left(\frac{R}{\epsilon}\right)^{4}+\alpha_{2}\left(\frac{R}{\epsilon}\right)^{2}+\alpha_{0}-a_{\mathrm{anom}} \log \left(\frac{R}{\epsilon}\right)+\mathcal{O}(\epsilon / R)
$$

## Comments

For a CFT on $S^{4}$ of radius $R$ with cutoff $\epsilon \rightarrow 0$

$$
F_{S^{4}}=\alpha_{4}\left(\frac{R}{\epsilon}\right)^{4}+\alpha_{2}\left(\frac{R}{\epsilon}\right)^{2}+\alpha_{0}-a_{\mathrm{anom}} \log \left(\frac{R}{\epsilon}\right)+\mathcal{O}(\epsilon / R)
$$

For supersymmetric theories with a supersymmetric regularization scheme $\alpha_{4}=0$.

## Comments

For a CFT on $S^{4}$ of radius $R$ with cutoff $\epsilon \rightarrow 0$

$$
F_{S^{4}}=\alpha_{4}\left(\frac{R}{\epsilon}\right)^{4}+\alpha_{2}\left(\frac{R}{\epsilon}\right)^{2}+\alpha_{0}-a_{\mathrm{anom}} \log \left(\frac{R}{\epsilon}\right)+\mathcal{O}(\epsilon / R)
$$

For supersymmetric theories with a supersymmetric regularization scheme $\alpha_{4}=0$.
For massive theories there is an extra scale, $m$, so $\alpha_{2}=\alpha_{2}(m \epsilon)$ and $\alpha_{0}=\alpha_{0}(m \epsilon)$. Expand this for small $m \epsilon$

$$
\begin{aligned}
& \alpha_{2}=\tilde{\alpha}_{2}+m^{2} \epsilon^{2} \beta_{2}+\mathcal{O}\left(m^{4} \epsilon^{4}\right) \\
& \alpha_{0}=\tilde{\alpha}_{0}+\mathcal{O}\left(m^{2} \epsilon^{2}\right)
\end{aligned}
$$

## Comments

For a CFT on $S^{4}$ of radius $R$ with cutoff $\epsilon \rightarrow 0$

$$
F_{S^{4}}=\alpha_{4}\left(\frac{R}{\epsilon}\right)^{4}+\alpha_{2}\left(\frac{R}{\epsilon}\right)^{2}+\alpha_{0}-a_{\mathrm{anom}} \log \left(\frac{R}{\epsilon}\right)+\mathcal{O}(\epsilon / R)
$$

For supersymmetric theories with a supersymmetric regularization scheme $\alpha_{4}=0$.
For massive theories there is an extra scale, $m$, so $\alpha_{2}=\alpha_{2}(m \epsilon)$ and $\alpha_{0}=\alpha_{0}(m \epsilon)$. Expand this for small $m \epsilon$

$$
\begin{aligned}
& \alpha_{2}=\tilde{\alpha}_{2}+m^{2} \epsilon^{2} \beta_{2}+\mathcal{O}\left(m^{4} \epsilon^{4}\right) \\
& \alpha_{0}=\tilde{\alpha}_{0}+\mathcal{O}\left(m^{2} \epsilon^{2}\right)
\end{aligned}
$$

The nonuniversal contribution to the free energy is

$$
\tilde{\alpha}_{2}\left(\frac{R}{\epsilon}\right)^{2}+\tilde{\alpha}_{0}+\beta_{2}(m R)^{2}
$$

Thus 3 derivatives w.r.t. $m R$ eliminate the ambiguity.

## Comments

For a CFT on $S^{4}$ of radius $R$ with cutoff $\epsilon \rightarrow 0$

$$
F_{S^{4}}=\alpha_{4}\left(\frac{R}{\epsilon}\right)^{4}+\alpha_{2}\left(\frac{R}{\epsilon}\right)^{2}+\alpha_{0}-a_{\mathrm{anom}} \log \left(\frac{R}{\epsilon}\right)+\mathcal{O}(\epsilon / R)
$$

For supersymmetric theories with a supersymmetric regularization scheme $\alpha_{4}=0$.
For massive theories there is an extra scale, $m$, so $\alpha_{2}=\alpha_{2}(m \epsilon)$ and $\alpha_{0}=\alpha_{0}(m \epsilon)$. Expand this for small $m \epsilon$

$$
\begin{aligned}
& \alpha_{2}=\tilde{\alpha}_{2}+m^{2} \epsilon^{2} \beta_{2}+\mathcal{O}\left(m^{4} \epsilon^{4}\right) \\
& \alpha_{0}=\tilde{\alpha}_{0}+\mathcal{O}\left(m^{2} \epsilon^{2}\right)
\end{aligned}
$$

The nonuniversal contribution to the free energy is

$$
\tilde{\alpha}_{2}\left(\frac{R}{\epsilon}\right)^{2}+\tilde{\alpha}_{0}+\beta_{2}(m R)^{2}
$$

Thus 3 derivatives w.r.t. $m R$ eliminate the ambiguity.
For nonsupersymmetric theories the 5 th derivative of $F_{S^{4}}$ w.r.t. $m R$ is universal.

The gravity dual

## Supergravity setup

Use $5 \mathrm{~d} \mathcal{N}=8$ gauged supergravity to construct the holographic dual. Why is this justified?

## Supergravity setup

Use $5 \mathrm{~d} \mathcal{N}=8$ gauged supergravity to construct the holographic dual. Why is this justified?

- It is a consistent truncation of IIB supergravity on $A d S_{5} \times S^{5}$ which contains fields dual to the lowest dimension operators in $\mathcal{N}=4$ SYM.
- The gravity dual of $\mathcal{N}=2^{*}$ on $\mathbb{R}^{1,3}$ was constructed first in 5d. [Pilch-Warner]


## Supergravity setup

Use $5 \mathrm{~d} \mathcal{N}=8$ gauged supergravity to construct the holographic dual. Why is this justified?

- It is a consistent truncation of IIB supergravity on $\operatorname{AdS} S_{5} \times S^{5}$ which contains fields dual to the lowest dimension operators in $\mathcal{N}=4$ SYM.
- The gravity dual of $\mathcal{N}=2^{*}$ on $\mathbb{R}^{1,3}$ was constructed first in 5d. [Pilch-Warner]

From field theory we expect that the solutions we are after posses $U(1)_{V} \times U(1)_{H} \times U(1)_{Y}$ global symmetry. Impose this on the $5 \mathrm{~d} \mathcal{N}=8$ supergravity.

## Supergravity setup

Use $5 \mathrm{~d} \mathcal{N}=8$ gauged supergravity to construct the holographic dual. Why is this justified?

- It is a consistent truncation of IIB supergravity on $\operatorname{AdS} S_{5} \times S^{5}$ which contains fields dual to the lowest dimension operators in $\mathcal{N}=4$ SYM.
- The gravity dual of $\mathcal{N}=2^{*}$ on $\mathbb{R}^{1,3}$ was constructed first in 5d. [Pilch-Warner]

From field theory we expect that the solutions we are after posses $U(1)_{V} \times U(1)_{H} \times U(1)_{Y}$ global symmetry. Impose this on the $5 \mathrm{~d} \mathcal{N}=8$ supergravity.

The result is that only 3 real, 2 Abelian gauge fields and the metric survive in the bosonic sector. The 3 scalars, $\{\phi, \psi, \chi\}$, are dual precisely to the 3 operators

$$
\mathcal{O}_{\phi}, \quad \mathcal{O}_{\psi}, \quad \mathcal{O}_{\chi}
$$

It is convenient to use

$$
\eta=e^{\phi / \sqrt{6}}, \quad z=\frac{1}{\sqrt{2}}(\chi+i \psi), \quad \tilde{z}=\frac{1}{\sqrt{2}}(\chi-i \psi)
$$

In Euclidean signature the fields $z$ and $\tilde{z}$ are independent.
For $\chi=0$ there is $S U(2)_{V} \times U(1)_{H} \times U(1)_{Y}$ symmetry and we reproduce the Pilch-Warner truncation.

## Supergravity setup

The Euclidean Lagrangian is

$$
\begin{aligned}
& \mathcal{L}=\frac{1}{2 \kappa^{2}}\left[-\mathcal{R}+\frac{12 \partial_{\mu} \eta \partial^{\mu} \eta}{\eta^{2}}+\frac{4 \partial_{\mu} z \partial^{\mu} \tilde{z}}{(1-z \tilde{z})^{2}}+\mathcal{V}\right], \\
& \mathcal{V} \equiv-\frac{4}{L^{2}}\left(\frac{1}{\eta^{4}}+2 \eta^{2} \frac{1+z \tilde{z}}{1-z \tilde{z}}+\frac{\eta^{8}}{4} \frac{(z-\tilde{z})^{2}}{(1-z \tilde{z})^{2}}\right) .
\end{aligned}
$$

This is a non-linear sigma model with target $\mathbb{R} \times \mathbb{H}^{2}$.

## Supergravity setup

The Euclidean Lagrangian is

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2 \kappa^{2}}\left[-\mathcal{R}+\frac{12 \partial_{\mu} \eta \partial^{\mu} \eta}{\eta^{2}}+\frac{4 \partial_{\mu} z \partial^{\mu} \tilde{z}}{(1-z \tilde{z})^{2}}+\mathcal{V}\right], \\
\mathcal{V} & \equiv-\frac{4}{L^{2}}\left(\frac{1}{\eta^{4}}+2 \eta^{2} \frac{1+z \tilde{z}}{1-z \tilde{z}}+\frac{\eta^{8}}{4} \frac{(z-\tilde{z})^{2}}{(1-z \tilde{z})^{2}}\right) .
\end{aligned}
$$

This is a non-linear sigma model with target $\mathbb{R} \times \mathbb{H}^{2}$.
To preserve the isometries of $S^{4}$ take the "domain-wall" Ansatz

$$
\begin{aligned}
d s^{2} & =L^{2} e^{2 A(r)} d s_{S^{4}}^{2}+d r^{2}, \\
\eta & =\eta(r), \quad z=z(r), \quad \tilde{z}=\tilde{z}(r) .
\end{aligned}
$$

The masses of the scalars are

$$
m_{\phi}^{2} L^{2}=m_{\chi}^{2} L^{2}=-4, \quad m_{\psi}^{2} L^{2}=-3 .
$$

## The BPS equations

Plug the Ansatz in the supersymmetry variations of the $5 \mathrm{~d} \mathcal{N}=8$ theory and use the "conformal Killing spinors" on $S^{4}$

$$
\hat{\nabla}_{\mu} \zeta=\frac{1}{2} \gamma_{5} \gamma_{\mu} \zeta
$$

to derive the BPS equations

$$
\begin{aligned}
z^{\prime} & =\frac{3 \eta^{\prime}(z \tilde{z}-1)\left[2(z+\tilde{z})+\eta^{6}(z-\tilde{z})\right]}{2 \eta\left[\eta^{6}\left(\tilde{z}^{2}-1\right)+\tilde{z}^{2}+1\right]}, \\
\tilde{z}^{\prime} & =\frac{3 \eta^{\prime}(z \tilde{z}-1)\left[2(z+\tilde{z})-\eta^{6}(z-\tilde{z})\right]}{2 \eta\left[\eta^{6}\left(z^{2}-1\right)+z^{2}+1\right]}, \\
\left(\eta^{\prime}\right)^{2} & =\frac{\left[\eta^{6}\left(z^{2}-1\right)+z^{2}+1\right]\left[\eta^{6}\left(\tilde{z}^{2}-1\right)+\tilde{z}^{2}+1\right]}{9 L^{2} \eta^{2}(z \tilde{z}-1)^{2}}, \\
e^{2 A} & =\frac{(z \tilde{z}-1)^{2}\left[\eta^{6}\left(z^{2}-1\right)+z^{2}+1\right]\left[\eta^{6}\left(\tilde{z}^{2}-1\right)+\tilde{z}^{2}+1\right]}{\eta^{8}\left(z^{2}-\tilde{z}^{2}\right)^{2}} .
\end{aligned}
$$

## UV expansion

The (constant curvature) metric on $\mathbb{H}^{5}$ is

$$
d s_{5}^{2}=d r^{2}+L^{2} \sinh ^{2}\left(\frac{r}{L}\right) d s_{S^{4}}^{2}
$$

## UV expansion

The (constant curvature) metric on $\mathbb{H}^{5}$ is

$$
d s_{5}^{2}=d r^{2}+L^{2} \sinh ^{2}\left(\frac{r}{L}\right) d s_{S^{4}}^{2}
$$

Solving the BPS equations iteratively, order by order in the asymptotic expansion as $r \rightarrow \infty$, we find

$$
\begin{aligned}
e^{2 A} & =\frac{e^{2 r}}{4}+\frac{1}{6}\left(\mu^{2}-3\right)+\ldots \\
\eta & =1+e^{-2 r}\left[\frac{2 \mu^{2}}{3} r+\frac{\mu(\mu+v)}{3}\right]+\ldots, \\
\frac{1}{2}(z+\tilde{z}) & =e^{-2 r}[2 \mu r+v]+\ldots \\
\frac{1}{2}(z-\tilde{z}) & =\mu e^{-r}+e^{-3 r}\left[\frac{4}{3} \mu\left(\mu^{2}-3\right) r+\frac{1}{3}\left(2 v\left(\mu^{2}-3\right)+\mu\left(4 \mu^{2}-3\right)\right)\right]+\ldots
\end{aligned}
$$

## UV expansion

The (constant curvature) metric on $\mathbb{H}^{5}$ is

$$
d s_{5}^{2}=d r^{2}+L^{2} \sinh ^{2}\left(\frac{r}{L}\right) d s_{S^{4}}^{2}
$$

Solving the BPS equations iteratively, order by order in the asymptotic expansion as $r \rightarrow \infty$, we find

$$
\begin{aligned}
e^{2 A} & =\frac{e^{2 r}}{4}+\frac{1}{6}\left(\mu^{2}-3\right)+\ldots \\
\eta & =1+e^{-2 r}\left[\frac{2 \mu^{2}}{3} r+\frac{\mu(\mu+v)}{3}\right]+\ldots \\
\frac{1}{2}(z+\tilde{z}) & =e^{-2 r}[2 \mu r+v]+\ldots \\
\frac{1}{2}(z-\tilde{z}) & =\mu e^{-r}+e^{-3 r}\left[\frac{4}{3} \mu\left(\mu^{2}-3\right) r+\frac{1}{3}\left(2 v\left(\mu^{2}-3\right)+\mu\left(4 \mu^{2}-3\right)\right)\right]+\ldots
\end{aligned}
$$

Here $\mu$ and $v$ are integration constants. Think of them as the "source" and "vev" for the operator $\mathcal{O}_{\chi}$. Compare to field theory to identify $\mu=i m R$.

## IR expansion

At $r=r_{*}$ the $S^{4}$ shrinks to zero size. Solve the BPS equations close to $r=r_{*}$, and require that the solution is smooth to find

## IR expansion

At $r=r_{*}$ the $S^{4}$ shrinks to zero size. Solve the BPS equations close to $r=r_{*}$, and require that the solution is smooth to find

$$
\begin{aligned}
e^{2 A} & =\left(r-r_{*}\right)^{2}+\frac{7 \eta_{0}{ }^{12}+20}{81 \eta_{0}{ }^{4}}\left(r-r_{*}\right)^{4}+\ldots, \\
\eta & =\eta_{0}-\left(\frac{\eta_{0}{ }^{12}-1}{27 \eta_{0}{ }^{3}}\right)\left(r-r_{*}\right)^{2}\left[1-\left(\frac{85+131 \eta_{0}{ }^{12}}{810 \eta_{0}{ }^{4}}\right)\left(r-r_{*}\right)^{2}+\ldots\right], \\
\frac{1}{2}(z+\tilde{z}) & =\sqrt{\frac{\eta_{0}{ }^{6}-1}{\eta_{0}{ }^{6}+1}}\left[\frac{\eta_{0}{ }^{6}}{\eta_{0}{ }^{6}+2}-\frac{2 \eta_{0}{ }^{8}\left(4 \eta_{0}{ }^{6}+5\right)}{15\left(\eta_{0}{ }^{6}+2\right)^{2}}\left(r-r_{*}\right)^{2}+\ldots\right] \\
\frac{1}{2}(z-\tilde{z}) & =\sqrt{\frac{\eta_{0}{ }^{6}-1}{\eta_{0}{ }^{6}+1}}\left[\frac{2}{\eta_{0}{ }^{6}+2}+\frac{\eta_{0}{ }^{2}\left(3 \eta_{0}{ }^{12}-10 \eta_{0}{ }^{6}-20\right)}{15\left(\eta_{0}{ }^{6}+2\right)^{2}}\left(r-r_{*}\right)^{2}+\ldots\right]
\end{aligned}
$$

Here, $\eta_{0}$ is the only free parameter since one can set $r_{*}=0$ by the shift symmetry of the equations.

## Numerical solutions

One can find numerical solutions by "shooting" from the IR to the UV. There is a one-parameter family parametrized by $\eta_{0}$, so

$$
v=v\left(\eta_{0}\right), \quad \text { and } \quad \mu=\mu\left(\eta_{0}\right)
$$






## Numerical solutions

Qualitatively different behavior for $\eta_{0}>1$ and $\eta_{0}<1$.



From the numerical results one can extract the following dependence

$$
v(\mu)=-2 \mu-\mu \log \left(1-\mu^{2}\right)
$$

## Holographic calculation of $F_{S^{4}}^{\mathcal{N}}=2^{*}$

## Calculating F from supergravity

- By the standard holographic dictionary the partition function of the field theory is mapped to the on-shell action of the supergravity at hand. [Maldacena], [GKP], [Witten]


## Calculating F from supergravity

- By the standard holographic dictionary the partition function of the field theory is mapped to the on-shell action of the supergravity at hand. [Maldacena], [GKP], [Witten]
- The on-shell action diverges and one has to regulate it using holographic renormalization. [Skenderis],


## Calculating F from supergravity

- By the standard holographic dictionary the partition function of the field theory is mapped to the on-shell action of the supergravity at hand. [Maldacena], [GKP], [Witten]
- The on-shell action diverges and one has to regulate it using holographic renormalization. [Skenderis],
- There is a subtlety here. If we insist on using a supersymmetric regularization scheme there is a particular finite counterterm that has to be added. Only with it one can successfully compare $\frac{d^{3} F}{d \mu^{3}}$ with the field theory result.


## Calculating F from supergravity

- By the standard holographic dictionary the partition function of the field theory is mapped to the on-shell action of the supergravity at hand. [Maldacena], [GKP], [Witten]
- The on-shell action diverges and one has to regulate it using holographic renormalization. [Skenderis],
- There is a subtlety here. If we insist on using a supersymmetric regularization scheme there is a particular finite counterterm that has to be added. Only with it one can successfully compare $\frac{d^{3} F}{d \mu^{3}}$ with the field theory result.
- Without knowing this finite counterterm we can only hope to match $\frac{d^{5} F}{d \mu^{5}}$ with field theory.


## Calculating F from supergravity

The 5d action + the boundary Gibbons-Hawking term is

$$
\begin{aligned}
& S_{5 \mathrm{D}}=\int_{M} d^{5} x \sqrt{G}\left\{-\frac{1}{4} \mathcal{R}+\frac{1}{2}(\partial \phi)^{2}+\frac{K}{2}\left((\partial \chi)^{2}+(\partial \psi)^{2}\right)+\mathcal{V}\right\} \\
&-\frac{1}{2} \int_{\partial M} \sqrt{\gamma} \mathcal{K}
\end{aligned}
$$

with $K=\left(1-\frac{1}{2}\left(\chi^{2}+\psi^{2}\right)\right)^{-2}$.

## Calculating F from supergravity

The 5d action + the boundary Gibbons-Hawking term is

$$
\begin{aligned}
& S_{5 \mathrm{D}}=\int_{M} d^{5} x \sqrt{G}\left\{-\frac{1}{4} \mathcal{R}+\frac{1}{2}(\partial \phi)^{2}+\frac{K}{2}\left((\partial \chi)^{2}+(\partial \psi)^{2}\right)+\mathcal{V}\right\} \\
&-\frac{1}{2} \int_{\partial M} \sqrt{\gamma} \mathcal{K}
\end{aligned}
$$

with $K=\left(1-\frac{1}{2}\left(\chi^{2}+\psi^{2}\right)\right)^{-2}$.
The (infinite) counterterm action obtained by holographic renormalization is

$$
\begin{aligned}
S_{\mathrm{ct}} & =\int_{\partial M_{\epsilon}} d^{4} x \sqrt{\gamma}\left[\frac{3}{2}+\frac{1}{8} \mathcal{R}[\gamma]+\frac{1}{2} \psi^{2}+\left(1+\frac{1}{\log \epsilon}\right)\left(\phi^{2}+\chi^{2}\right)\right. \\
& \left.-\log \epsilon\left\{\frac{1}{32}\left[\mathcal{R}[\gamma]^{i j} \mathcal{R}[\gamma]_{i j}-\frac{1}{3} \mathcal{R}[\gamma]^{2}\right]+\frac{1}{4} \psi \square_{\gamma} \psi-\frac{1}{24} \mathcal{R}[\gamma] \psi^{2}-\frac{1}{6} \psi^{4}\right\}\right]
\end{aligned}
$$

Interestingly $S_{\mathrm{ct}}$ is almost the same for many 5d models studied in the literature. [FGPW], [GPPZ], [Pilch-Warner],...

## Calculating F from supergravity

Use the Bogomolnyi trick to find the finite counterterm. No superpotential for the model with all 3 scalars. In the limits $\chi=0$ or $\psi=0$ there is a superpotential.

## Calculating F from supergravity

Use the Bogomolnyi trick to find the finite counterterm. No superpotential for the model with all 3 scalars. In the limits $\chi=0$ or $\psi=0$ there is a superpotential.
Take $\chi=0$, then 5 d supergravity action action (on $\mathbb{R}^{4}$ ) can be written as

$$
\begin{aligned}
S=\int d r d^{4} x\left\{e^{4 A}[ \right. & -3\left(A^{\prime}-\frac{2}{3} \mathcal{W}\right)^{2}+\frac{\sqrt{3} e^{-\frac{\phi}{\sqrt{6}}}}{\sqrt{2}}\left(\phi^{\prime}+\partial_{\phi} \mathcal{W}\right)^{2} \\
& \left.\left.+\frac{2}{\left(2-\psi^{2}\right)^{2}}\left(\psi^{\prime}+\left(1-\frac{1}{2} \psi^{2}\right)^{2} \partial_{\psi} \mathcal{W}\right)^{2}\right]-\frac{d}{d r}\left(e^{4 A} \mathcal{W}\right)\right\}
\end{aligned}
$$

with

$$
\mathcal{W}=e^{-2 \phi / \sqrt{6}}+\frac{e^{4 \phi / \sqrt{6}}}{2} \frac{2+\psi^{2}}{2-\psi^{2}}, \quad \mathcal{V}=\frac{1}{2}\left(\partial_{\phi} \mathcal{W}\right)^{2}+\frac{\left(2-\psi^{2}\right)^{2}}{8}\left(\partial_{\psi} \mathcal{W}\right)^{2}-\frac{4}{3} \mathcal{W}^{2}
$$

## Calculating F from supergravity

Use the Bogomolnyi trick to find the finite counterterm. No superpotential for the model with all 3 scalars. In the limits $\chi=0$ or $\psi=0$ there is a superpotential.
Take $\chi=0$, then 5 d supergravity action action (on $\mathbb{R}^{4}$ ) can be written as

$$
\begin{aligned}
S=\int d r d^{4} x\left\{e^{4 A}[ \right. & -3\left(A^{\prime}-\frac{2}{3} \mathcal{W}\right)^{2}+\frac{\sqrt{3} e^{-\frac{\phi}{\sqrt{6}}}}{\sqrt{2}}\left(\phi^{\prime}+\partial_{\phi} \mathcal{W}\right)^{2} \\
& \left.\left.+\frac{2}{\left(2-\psi^{2}\right)^{2}}\left(\psi^{\prime}+\left(1-\frac{1}{2} \psi^{2}\right)^{2} \partial_{\psi} \mathcal{W}\right)^{2}\right]-\frac{d}{d r}\left(e^{4 A} \mathcal{W}\right)\right\}
\end{aligned}
$$

with

$$
\mathcal{W}=e^{-2 \phi / \sqrt{6}}+\frac{e^{4 \phi / \sqrt{6}}}{2} \frac{2+\psi^{2}}{2-\psi^{2}}, \quad \mathcal{V}=\frac{1}{2}\left(\partial_{\phi} \mathcal{W}\right)^{2}+\frac{\left(2-\psi^{2}\right)^{2}}{8}\left(\partial_{\psi} \mathcal{W}\right)^{2}-\frac{4}{3} \mathcal{W}^{2}
$$

The full counterterm action from the Bogomolnyi procedure is

$$
S_{\mathcal{W}}=\int d^{4} x e^{4 A} \mathcal{W}=\int d^{4} x \sqrt{\gamma}\left(\frac{3}{2}+\phi^{2}+\frac{1}{2} \psi^{2}+\sqrt{\frac{2}{3}} \phi \psi^{2}+\frac{1}{4} \psi^{4}+\ldots\right)
$$

The finite counterterm obtained by the Bogomolnyi trick is

$$
S_{\text {finite }}=\int d^{4} x \sqrt{\gamma} \frac{1}{4} \psi^{4}
$$

## Calculating F from supergravity

The full renormalized 5d action is

$$
S_{\mathrm{ren}}=S_{5 \mathrm{D}}+S_{\mathrm{ct}}+S_{\text {finite }}
$$

## Calculating F from supergravity

The full renormalized 5d action is

$$
S_{\mathrm{ren}}=S_{5 \mathrm{D}}+S_{\mathrm{ct}}+S_{\text {finite }}
$$

Differentiate the renormalized action w.r.t. $\mu$ to find

$$
\frac{d F^{\mathrm{SUGRA}}}{d \mu}=\frac{N^{2}}{2 \pi^{2}} \operatorname{vol}\left(S^{4}\right)(4 \mu-12 v(\mu))=N^{2}\left(\frac{1}{3} \mu-v(\mu)\right)
$$

## Calculating F from supergravity

The full renormalized 5 d action is

$$
S_{\mathrm{ren}}=S_{5 \mathrm{D}}+S_{\mathrm{ct}}+S_{\text {finite }}
$$

Differentiate the renormalized action w.r.t. $\mu$ to find

$$
\frac{d F^{\mathrm{SUGRA}}}{d \mu}=\frac{N^{2}}{2 \pi^{2}} \operatorname{vol}\left(S^{4}\right)(4 \mu-12 v(\mu))=N^{2}\left(\frac{1}{3} \mu-v(\mu)\right)
$$

Finally we arrive at the supergravity result

$$
\frac{d^{3} F^{\text {SUGRA }}}{d \mu^{3}}=-N^{2} v^{\prime \prime}(\mu)=-2 N^{2} \frac{\mu\left(3-\mu^{2}\right)}{\left(1-\mu^{2}\right)^{2}}
$$

Set $\mu=i m R$ and compare this to field theory

$$
\frac{d^{3} F_{S^{4}}}{d(m R)^{3}}=-2 N^{2} \frac{m R\left((m R)^{2}+3\right)}{\left((m R)^{2}+1\right)^{2}}
$$

## Calculating F from supergravity

The full renormalized $5 d$ action is

$$
S_{\mathrm{ren}}=S_{5 \mathrm{D}}+S_{\mathrm{ct}}+S_{\text {finite }}
$$

Differentiate the renormalized action w.r.t. $\mu$ to find

$$
\frac{d F^{\text {SUGRA }}}{d \mu}=\frac{N^{2}}{2 \pi^{2}} \operatorname{vol}\left(S^{4}\right)(4 \mu-12 v(\mu))=N^{2}\left(\frac{1}{3} \mu-v(\mu)\right)
$$

Finally we arrive at the supergravity result

$$
\frac{d^{3} F^{\text {SUGRA }}}{d \mu^{3}}=-N^{2} v^{\prime \prime}(\mu)=-2 N^{2} \frac{\mu\left(3-\mu^{2}\right)}{\left(1-\mu^{2}\right)^{2}}
$$

Set $\mu=i m R$ and compare this to field theory

$$
\frac{d^{3} F_{S^{4}}}{d(m R)^{3}}=-2 N^{2} \frac{m R\left((m R)^{2}+3\right)}{\left((m R)^{2}+1\right)^{2}}
$$

Lo and behold

$$
\frac{d^{3} F_{S^{4}}}{d(m R)^{3}}=\frac{d^{3} F^{\mathrm{SUGRA}}}{d \mu^{3}}
$$

## Calculating F from supergravity

The full renormalized 5d action is

$$
S_{\mathrm{ren}}=S_{5 \mathrm{D}}+S_{\mathrm{ct}}+S_{\text {finite }}
$$

Differentiate the renormalized action w.r.t. $\mu$ to find

$$
\frac{d F^{\text {SUGRA }}}{d \mu}=\frac{N^{2}}{2 \pi^{2}} \operatorname{vol}\left(S^{4}\right)(4 \mu-12 v(\mu))=N^{2}\left(\frac{1}{3} \mu-v(\mu)\right)
$$

Finally we arrive at the supergravity result

$$
\frac{d^{3} F^{\text {SUGRA }}}{d \mu^{3}}=-N^{2} v^{\prime \prime}(\mu)=-2 N^{2} \frac{\mu\left(3-\mu^{2}\right)}{\left(1-\mu^{2}\right)^{2}}
$$

Set $\mu=i m R$ and compare this to field theory

$$
\frac{d^{3} F_{S^{4}}}{d(m R)^{3}}=-2 N^{2} \frac{m R\left((m R)^{2}+3\right)}{\left((m R)^{2}+1\right)^{2}}
$$

Lo and behold

$$
\frac{d^{3} F_{S^{4}}}{d(m R)^{3}}=\frac{d^{3} F^{\mathrm{SUGRA}}}{d \mu^{3}}
$$

Without the finite counterterm we can only match $\frac{d^{5} F^{\text {SUGRA }}}{d \mu^{5}}$ with field theory.

## Comments on $\mathcal{N}=1^{*}$

- Perform a similar analysis for mass deformations of $\mathcal{N}=4$ SYM with only $\mathcal{N}=1$ supersymmetry.
- Supersymmetric localization does not seem to work for $\mathcal{N}=1$ theories on $S^{4}$. [Festuccia, Komargodski, ...]
- Supergravity may offer some insight about the dual field theory!
- Perform a similar analysis for mass deformations of $\mathcal{N}=4$ SYM with only $\mathcal{N}=1$ supersymmetry.
- Supersymmetric localization does not seem to work for $\mathcal{N}=1$ theories on $S^{4}$. [Festuccia, Komargodski, ...]
- Supergravity may offer some insight about the dual field theory!

The Lagrangian for $\mathcal{N}=1^{*}$ on $S^{4}$ of radius $R$ is

$$
\begin{aligned}
\mathcal{L}_{\mathcal{N}=1^{*}}^{S^{4}}=\mathcal{L}_{\mathcal{N}=4}^{S^{4}} & +\frac{\left(2+m_{i}^{2} R^{2}\right)}{R^{2}} \operatorname{tr}\left(Z_{i} \widetilde{Z}_{i}\right)-\frac{m_{i}}{2} \operatorname{tr}\left(\chi_{i} \chi_{i}+\tilde{\chi}_{i} \tilde{\chi}_{i}\right) \\
& -\frac{\sqrt{2} m_{i}}{2} \varepsilon^{i j k} \operatorname{tr}\left(\widetilde{Z}_{i} Z_{j} Z_{k}+Z_{i} \widetilde{Z}_{j} \widetilde{Z}_{k}\right) \\
& +\frac{i m_{i}}{2 R} \operatorname{tr}\left(Z_{i}^{2}+\widetilde{Z}_{i}^{2}\right)
\end{aligned}
$$

In supergravity this will mean at least 8 real scalars. Possible in principle but too cumbersome...

There are special cases which allow for an explicit analysis.

- Take $m_{1}=m_{2}=m_{3}$. In flat space this is the GPPZ flow. It has $S O(3)$ global symmetry. On $S^{4}$ we need 4 supergravity scalars.
- Take $m_{2}=m_{3}=0$. In flat space this is the Leigh-Strassler flow. On $S^{4}$ we need 3 supergravity scalars.

There are special cases which allow for an explicit analysis.

- Take $m_{1}=m_{2}=m_{3}$. In flat space this is the GPPZ flow. It has $S O(3)$ global symmetry. On $S^{4}$ we need 4 supergravity scalars.
- Take $m_{2}=m_{3}=0$. In flat space this is the Leigh-Strassler flow. On $S^{4}$ we need 3 supergravity scalars.

For both examples we have explicit supergravity truncations and BPS solutions on $S^{4}$. The hard part is to extract the third derivative of the free energy from the numerical solutions.

No results from localization to guide us.
A glimpse of the field theory answer from conformal perturbation theory in the planar limit and in the small $m$ expansion.

## Summary

- We found a 5d supegravity dual of $\mathcal{N}=2^{*}$ SYM on $S^{4}$.
- After careful holographic renormalization we computed the universal part of the free energy of this theory.
- The result is in exact agreement with the supersymmetric localization calculation in field theory.
- This is a precision test of holography in a non-conformal Euclidean setting.
- The results extend immediately to $\mathcal{N}=2^{*}$ mass deformations of quiver gauge theories obtained by $\mathbb{Z}_{k}$ orbifolds of $\mathcal{N}=4 \mathrm{SYM}$. [Azeyanagi-Hanada-Honda-Matsuo-Shiba]
- Extension of these results to $\mathcal{N}=1^{*}$ SYM.


## Outlook

- Uplift of the $\mathcal{N}=2^{*}$ solution to IIB supergravity. Will allow for a holographic calculation of the Wilson line vev. In addition one can study probe D3-branes.
- Holography for $\mathcal{N}=2^{*}$ on other 4-manifolds.
- Extensions to other $\mathcal{N}=2$ theories in $4 d$ with holographic duals, e.g. pure $\mathcal{N}=2$ SYM?
- Extensions to other dimensions.


## Outlook

- Uplift of the $\mathcal{N}=2^{*}$ solution to IIB supergravity. Will allow for a holographic calculation of the Wilson line vev. In addition one can study probe D3-branes.
- Holography for $\mathcal{N}=2^{*}$ on other 4-manifolds.
- Extensions to other $\mathcal{N}=2$ theories in 4d with holographic duals, e.g. pure $\mathcal{N}=2$ SYM?
- Extensions to other dimensions.
- Can we see some of the large N phase transitions argued to exist by Russo-Zarembo in IIB string theory?
- Revisit supersymmetric localization for $\mathcal{N}=1$ theories on $S^{4}$. Can one find the exact partition function (modulo ambiguities)? [Gerchkovitz-Gomis-Komargodski]
- Massive deformations of class $\mathcal{S}$ SCFTs from holography?
- Broader lessons for holography from localization?


## THANK YOU!

