Holography for $\mathcal{N} = 2^*$ on S^4

Nikolay Bobev

Instituut voor Theoretische Fysica, K.U. Leuven

CERN Nov 25 2014

1311.1508 + 14XX.XXXX + in progress

with Henriette Elvang, Daniel Freedman, Silviu Pufu Uri Kol, Tim Olson • Powerful exact results for supersymmetric field theories on curved manifolds using equivariant localization [Witten], [Nekrasov], [Pestun], ...

- Powerful exact results for supersymmetric field theories on curved manifolds using equivariant localization [Witten], [Nekrasov], [Pestun], ...
- The partition function of the theory may be viewed as some "topological invariant" of the manifold.

- Powerful exact results for supersymmetric field theories on curved manifolds using equivariant localization [Witten], [Nekrasov], [Pestun], ...
- The partition function of the theory may be viewed as some "topological invariant" of the manifold.
- Supersymmetric localization reduces the path integral of a gauge theory to a finite dimensional matrix integral. Still hard to evaluate explicitly in general!

- Powerful exact results for supersymmetric field theories on curved manifolds using equivariant localization [Witten], [Nekrasov], [Pestun], ...
- The partition function of the theory may be viewed as some "topological invariant" of the manifold.
- Supersymmetric localization reduces the path integral of a gauge theory to a finite dimensional matrix integral. Still hard to evaluate explicitly in general!
- Make progress by taking the planar limit for specific 4d $\mathcal{N} = 2$ theories. [Russo], [Russo-Zarembo], [Buchel-Russo-Zarembo]

- Powerful exact results for supersymmetric field theories on curved manifolds using equivariant localization [Witten], [Nekrasov], [Pestun], ...
- The partition function of the theory may be viewed as some "topological invariant" of the manifold.
- Supersymmetric localization reduces the path integral of a gauge theory to a finite dimensional matrix integral. Still hard to evaluate explicitly in general!
- Make progress by taking the planar limit for specific 4d $\mathcal{N}=2$ theories. [Russo], [Russo-Zarembo], [Buchel-Russo-Zarembo]
- Evaluation of the partition function of planar SU(N), $\mathcal{N} = 2^*$ SYM on S^4 . An infinite number of quantum phase transitions as a function of $\lambda = g_{YM}^2 N$. [Russo-Zarembo]

• $\mathcal{N} = 2^*$ SYM is a theory of a $\mathcal{N} = 2$ vector multiplet and a hyper multiplet in the adjoint. It is a massive deformation of $\mathcal{N} = 4$ SYM. There is a unique supersymmetric Lagrangian on S^4 . [Pestuc], [Festuccia-Seiberg]

- $\mathcal{N} = 2^*$ SYM is a theory of a $\mathcal{N} = 2$ vector multiplet and a hyper multiplet in the adjoint. It is a massive deformation of $\mathcal{N} = 4$ SYM. There is a unique supersymmetric Lagrangian on S^4 . [Pestuc], [Festuccia-Seiberg]
- The result for $N, \lambda \gg 1$ is [Russo-Zarembo]

$$F_{S^4}^{\mathcal{N}=2^*} = -\log \mathcal{Z}_{S^4}^{\mathcal{N}=2^*} = -\frac{N^2}{2} (1+(mR)^2) \log \frac{\lambda(1+(mR)^2)e^{2\gamma+\frac{1}{2}}}{16\pi^2},$$

- $\mathcal{N} = 2^*$ SYM is a theory of a $\mathcal{N} = 2$ vector multiplet and a hyper multiplet in the adjoint. It is a massive deformation of $\mathcal{N} = 4$ SYM. There is a unique supersymmetric Lagrangian on S^4 . [Pestuc], [Festuccia-Seiberg]
- The result for $N, \lambda \gg 1$ is [Russo-Zarembo]

$$F_{S^4}^{\mathcal{N}=2^*} = -\log \mathcal{Z}_{S^4}^{\mathcal{N}=2^*} = -\frac{N^2}{2} (1+(mR)^2) \log \frac{\lambda(1+(mR)^2)e^{2\gamma+\frac{1}{2}}}{16\pi^2},$$

 $\bullet~$ The goal is to calculate $F_{S^4}^{\mathcal{N}=2^*}$ holographically.

- $\mathcal{N} = 2^*$ SYM is a theory of a $\mathcal{N} = 2$ vector multiplet and a hyper multiplet in the adjoint. It is a massive deformation of $\mathcal{N} = 4$ SYM. There is a unique supersymmetric Lagrangian on S^4 . [Pestuc], [Festuccia-Seiberg]
- The result for $N, \lambda \gg 1$ is [Russo-Zarembo]

$$F_{S^4}^{\mathcal{N}=2^*} = -\log \mathcal{Z}_{S^4}^{\mathcal{N}=2^*} = -\frac{N^2}{2} (1+(mR)^2) \log \frac{\lambda(1+(mR)^2)e^{2\gamma+\frac{1}{2}}}{16\pi^2},$$

- $\bullet~$ The goal is to calculate $F_{S^4}^{\mathcal{N}=2^*}$ holographically.
- Precision test of holography! In AdS_5/CFT_4 one typically compares numbers. Here we have a whole function to match.

- $\mathcal{N} = 2^*$ SYM is a theory of a $\mathcal{N} = 2$ vector multiplet and a hyper multiplet in the adjoint. It is a massive deformation of $\mathcal{N} = 4$ SYM. There is a unique supersymmetric Lagrangian on S^4 . [Pestuc], [Festuccia-Seiberg]
- The result for $N, \lambda \gg 1$ is [Russo-Zarembo]

$$F_{S^4}^{\mathcal{N}=2^*} = -\log \mathcal{Z}_{S^4}^{\mathcal{N}=2^*} = -\frac{N^2}{2} (1+(mR)^2) \log \frac{\lambda(1+(mR)^2)e^{2\gamma+\frac{1}{2}}}{16\pi^2},$$

- $\bullet~$ The goal is to calculate $F_{S^4}^{\mathcal{N}=2^*}$ holographically.
- Precision test of holography! In AdS_5/CFT_4 one typically compares numbers. Here we have a whole function to match.
- Previous results on holography for $\mathcal{N} = 2^*$ on \mathbb{R}^4 . [Pilch-Warner], [Buchel-Peet-Polchinski], [Evans-Johnson-Petrini] On S^4 the holographic construction is more involved.

- The $\mathcal{N} = 2^*$ SYM theory on S^4
- The gravity dual
- Holographic calculation of $F_{S^4}^{\mathcal{N}=2^*}$
- Comments on $\mathcal{N}=1^*$ SYM theory on S^4
- Outlook

The $\mathcal{N}=2^*$ SYM theory on S^4

$\mathcal{N}=2^*$ SYM on S^4

The field content of $\mathcal{N}=4$ SYM is

 A_{μ} , $X_{1,2,3,4,5,6}$, $\lambda_{1,2,3,4}$.

$\mathcal{N}=2^*~\mathrm{SYM}~\mathrm{on}~S^{4^*}$

The field content of $\mathcal{N}=4$ SYM is

$$A_{\mu}$$
, $X_{1,2,3,4,5,6}$, $\lambda_{1,2,3,4}$.

Organize this into an $\mathcal{N} = 2$ vector multiplet

$$A_{\mu}, \qquad \psi_1 \equiv \lambda_4, \qquad \psi_2 \equiv \lambda_3, \qquad Z_3 \equiv \frac{1}{\sqrt{2}} (X_3 + iX_6),$$

and one hypermultiplet

$$\chi_j = \lambda_j$$
, $Z_j = \frac{1}{\sqrt{2}} (X_j + iX_{j+3})$, $j = 1, 2$.

$\mathcal{N}=2^*~\mathrm{SYM}~\mathrm{on}~S^4$

The field content of $\mathcal{N} = 4$ SYM is

$$A_{\mu}, \qquad X_{1,2,3,4,5,6}, \qquad \lambda_{1,2,3,4}.$$

Organize this into an $\mathcal{N} = 2$ vector multiplet

$$A_{\mu}, \qquad \psi_1 \equiv \lambda_4, \qquad \psi_2 \equiv \lambda_3, \qquad Z_3 \equiv \frac{1}{\sqrt{2}} (X_3 + iX_6),$$

and one hypermultiplet

$$\chi_j = \lambda_j$$
, $Z_j = \frac{1}{\sqrt{2}} (X_j + iX_{j+3})$, $j = 1, 2$.

Only $SU(2)_V \times SU(2)_H \times U(1)_R$ of the SO(6) R-symmetry is manifest.

$\mathcal{N}=2^* \ \mathrm{SYM}$ on S^4

The field content of $\mathcal{N}=4$ SYM is

$$A_{\mu}, \qquad X_{1,2,3,4,5,6}, \qquad \lambda_{1,2,3,4}.$$

Organize this into an $\mathcal{N} = 2$ vector multiplet

$$A_{\mu}, \qquad \psi_1 \equiv \lambda_4, \qquad \psi_2 \equiv \lambda_3, \qquad Z_3 \equiv \frac{1}{\sqrt{2}} (X_3 + iX_6),$$

and one hypermultiplet

$$\chi_j = \lambda_j$$
, $Z_j = \frac{1}{\sqrt{2}} (X_j + iX_{j+3})$, $j = 1, 2$.

Only $SU(2)_V \times SU(2)_H \times U(1)_R$ of the SO(6) R-symmetry is manifest.

The $\mathcal{N} = 2^*$ theory is obtained by giving a mass term for the hyper multiplet. In flat space this breaks the global symmetry to $SU(2)_V \times U(1)_H$.

$\mathcal{N}=2^*$ SYM on S^4

The theory is no longer conformal so it is not obvious how to put it on S^4 .

$\mathcal{N}=2^*$ SYM on S^4

The theory is no longer conformal so it is not obvious how to put it on S^4 .

When there is a will there is a way! [Pestun], [Festuccia-Seiberg], ...

$\mathcal{N}=2^*~\mathrm{SYM}~\mathrm{on}~S^{4^*}$

The theory is no longer conformal so it is not obvious how to put it on S^4 . When there is a will there is a way! [Pestun], [Festuccia-Seiberg], ...

$$\begin{split} \mathcal{L}_{\mathcal{N}=2^{*}}^{S^{4}} &= \mathcal{L}_{\mathcal{N}=4}^{S^{4}} + \frac{2}{R^{2}} \operatorname{tr} \left(Z_{1} \widetilde{Z}_{1} + Z_{2} \widetilde{Z}_{2} + Z_{3} \widetilde{Z}_{3} \right) \\ &+ m^{2} \operatorname{tr} \left(Z_{1} \widetilde{Z}_{1} + Z_{2} \widetilde{Z}_{2} \right) - \frac{m}{2} \operatorname{tr} \left(\chi_{1} \chi_{1} + \chi_{2} \chi_{2} + \tilde{\chi}_{1} \tilde{\chi}_{1} + \tilde{\chi}_{2} \tilde{\chi}_{2} \right) \\ &- \sqrt{2} \, m \operatorname{tr} \left[(\widetilde{Z}_{1} Z_{2} - \widetilde{Z}_{2} Z_{1}) Z_{3} + (Z_{1} \widetilde{Z}_{2} - Z_{2} \widetilde{Z}_{1}) \widetilde{Z}_{3} \right] \\ &+ \frac{im}{2R} \operatorname{tr} \left(Z_{1}^{2} + Z_{2}^{2} + \widetilde{Z}_{1}^{2} + \widetilde{Z}_{2}^{2} \right) \, . \end{split}$$

$\mathcal{N}=2^*~\mathrm{SYM}~\mathrm{on}~S^{4^*}$

The theory is no longer conformal so it is not obvious how to put it on S^4 . When there is a will there is a way! [Pestun], [Festuccia-Seiberg], ...

$$\begin{split} \mathcal{L}_{\mathcal{N}=2^{*}}^{S^{4}} &= \mathcal{L}_{\mathcal{N}=4}^{S^{4}} + \frac{2}{R^{2}} \operatorname{tr} \left(Z_{1} \widetilde{Z}_{1} + Z_{2} \widetilde{Z}_{2} + Z_{3} \widetilde{Z}_{3} \right) \\ &+ m^{2} \operatorname{tr} \left(Z_{1} \widetilde{Z}_{1} + Z_{2} \widetilde{Z}_{2} \right) - \frac{m}{2} \operatorname{tr} \left(\chi_{1} \chi_{1} + \chi_{2} \chi_{2} + \tilde{\chi}_{1} \tilde{\chi}_{1} + \tilde{\chi}_{2} \tilde{\chi}_{2} \right) \\ &- \sqrt{2} \, m \operatorname{tr} \left[(\widetilde{Z}_{1} Z_{2} - \widetilde{Z}_{2} Z_{1}) Z_{3} + (Z_{1} \widetilde{Z}_{2} - Z_{2} \widetilde{Z}_{1}) \widetilde{Z}_{3} \right] \\ &+ \frac{im}{2R} \operatorname{tr} \left(Z_{1}^{2} + Z_{2}^{2} + \widetilde{Z}_{1}^{2} + \widetilde{Z}_{2}^{2} \right) \, . \end{split}$$

Expect to have supergravity scalars dual to

$$\begin{split} \mathcal{O}_{\phi} &= \mathsf{tr} \big(Z_1 \widetilde{Z}_1 + Z_2 \widetilde{Z}_2 \big) \,, & \Delta_{\mathcal{O}_{\phi}} = 2 \,, \\ \mathcal{O}_{\psi} &= \mathsf{tr} \big(\chi_1 \chi_1 + \chi_2 \chi_2 + \tilde{\chi}_1 \tilde{\chi}_1 + \tilde{\chi}_2 \tilde{\chi}_2 \big) \,, & \Delta_{\mathcal{O}_{\psi}} = 3 \,, \\ \mathcal{O}_{\chi} &= \mathsf{tr} \big(Z_1^2 + Z_2^2 + \widetilde{Z}_1^2 + \widetilde{Z}_2^2 \big) \,, & \Delta_{\mathcal{O}_{\chi}} = 2 \,. \end{split}$$

$\mathcal{N}=2^*$ SYM on S^4

		$SU(2)_V$	$SU(2)_H$	$U(1)_R$
	A_{μ}	0	0	0
	Z_3	0	0	+2
	$\psi_{1,2}$	1/2	0	+1
	$\tilde{\psi}_{1,2}$	1/2	0	-1
	$Z_{1,2}$	1/2	1/2	0
	$\chi_{1,2}$	0	1/2	-1
	$ ilde{\chi}_{1,2}$	0	1/2	+1

In flat space the $\mathcal{N} = 2^*$ theory has $SU(2)_V \times U(1)_H$ global symmetry. The extra coupling \mathcal{O}_{χ} on S^4 breaks this to $U(1)_V \times U(1)_H$.

	$SU(2)_V$	$SU(2)_H$	$U(1)_R$
A_{μ}	0	0	0
Z_3	0	0	+2
$\psi_{1,2}$	1/2	0	+1
$ ilde{\psi}_{1,2}$	1/2	0	-1
$Z_{1,2}$	1/2	1/2	0
$\chi_{1,2}$	0	1/2	-1
$ ilde{\chi}_{1,2}$	0	1/2	+1

In flat space the $\mathcal{N} = 2^*$ theory has $SU(2)_V \times U(1)_H$ global symmetry. The extra coupling \mathcal{O}_{χ} on S^4 breaks this to $U(1)_V \times U(1)_H$.

There is a subtlety. The global symmetry is enhanced to to $U(1)_V \times U(1)_H \times U(1)_Y$ in the large N limit. The $U(1)_Y$ is the diagonal subgroup in $U(1)_R \times U(1)_{SL(2,\mathbb{R})}$.

This is proven in flat space. [Intriligator], [Intriligator-Skiba], [Pilch-Warner], [Buchel-Peet-Polchinski]

Expect the same symmetry to emerge on S^4 .

The SU(N) gauge symmetry is generally broken to $U(1)^{N-1}$ by a vev for Z_3 .

$$Z_3 = \mathsf{diag}(a_1, \ldots, a_N) \; .$$

After supersymmetric localization the path integral for the theory on S^4 reduces to a finite dimensional integral over the Coulomb moduli a_i . [Pestun]

$$\mathcal{Z} = \int \prod_{i=1}^{N} da_i \, \delta\left(\sum_{i=1}^{N} a_i\right) \prod_{i < j} (a_i - a_j)^2 \mathcal{Z}_{1-\text{loop}} |\mathcal{Z}_{\text{inst}}|^2 e^{-S_{\text{cl}}} \;,$$

where

$$S_{cl} = \frac{8\pi^2 N}{\lambda} \sum_{i=1}^{N} a_i^2 , \qquad \mathcal{Z}_{1\text{-loop}} = \prod_{i=1}^{N} \frac{H^2(a_i - a_j)}{H(a_i - a_j + mR)H(a_i - a_j - mR)} ,$$
$$H(x) = \prod_{n=1}^{\infty} \left(1 + \frac{x^2}{n^2}\right)^n e^{-x^2/n} .$$

The function \mathcal{Z}_{inst} is Nekrasov's partition function with parameters $\varepsilon_1 = \varepsilon_2 = 1/R$.

One caveat. They assume that $Z_{inst} = 1$ for large N. This is important and will be checked holographically.

One caveat. They assume that $Z_{inst} = 1$ for large N. This is important and will be checked holographically.

The result for $N, \lambda \gg 1$ is

$$F_{S^4} = -\log \mathcal{Z} = -\frac{N^2}{2} (1 + (mR)^2) \log \frac{\lambda (1 + (mR)^2) e^{2\gamma + \frac{1}{2}}}{16\pi^2}$$

One caveat. They assume that $Z_{inst} = 1$ for large N. This is important and will be checked holographically.

The result for $N, \lambda \gg 1$ is

$$F_{S^4} = -\log \mathcal{Z} = -\frac{N^2}{2} (1 + (mR)^2) \log \frac{\lambda (1 + (mR)^2) e^{2\gamma + \frac{1}{2}}}{16\pi^2}$$

This answer depends on the regularization scheme. The scheme independent quantity is

$$\frac{d^3F_{S^4}}{d(mR)^3} = -2N^2\frac{mR((mR)^2+3)}{((mR)^2+1)^2}$$

This is what one can aim to compute holographically.

For a CFT on S^4 of radius R with cutoff $\epsilon \to 0$

$$F_{S^4} = \frac{\alpha_4}{\epsilon} \left(\frac{R}{\epsilon}\right)^4 + \frac{\alpha_2}{\epsilon} \left(\frac{R}{\epsilon}\right)^2 + \frac{\alpha_0}{\epsilon} - a_{\rm anom} \log\left(\frac{R}{\epsilon}\right) + \mathcal{O}(\epsilon/R) \; .$$

For a CFT on S^4 of radius R with cutoff $\epsilon \to 0$

$$F_{S^4} = \alpha_4 \left(\frac{R}{\epsilon}\right)^4 + \alpha_2 \left(\frac{R}{\epsilon}\right)^2 + \alpha_0 - a_{\rm anom} \log\left(\frac{R}{\epsilon}\right) + \mathcal{O}(\epsilon/R) \; .$$

For supersymmetric theories with a supersymmetric regularization scheme $\alpha_4 = 0$.

For a CFT on S^4 of radius R with cutoff $\epsilon \to 0$

$$F_{S^4} = \frac{\alpha_4}{\epsilon} \left(\frac{R}{\epsilon}\right)^4 + \frac{\alpha_2}{\epsilon} \left(\frac{R}{\epsilon}\right)^2 + \frac{\alpha_0}{\epsilon} - a_{\rm anom} \log\left(\frac{R}{\epsilon}\right) + \mathcal{O}(\epsilon/R) \; .$$

For supersymmetric theories with a supersymmetric regularization scheme $\alpha_4 = 0$.

For massive theories there is an extra scale, m, so $\alpha_2 = \alpha_2(m\epsilon)$ and $\alpha_0 = \alpha_0(m\epsilon)$. Expand this for small $m\epsilon$

$$\begin{aligned} & \boldsymbol{\alpha}_2 = \tilde{\boldsymbol{\alpha}}_2 + m^2 \epsilon^2 \beta_2 + \mathcal{O}(m^4 \epsilon^4) , \\ & \boldsymbol{\alpha}_0 = \tilde{\boldsymbol{\alpha}}_0 + \mathcal{O}(m^2 \epsilon^2) . \end{aligned}$$

For a CFT on S^4 of radius R with cutoff $\epsilon \to 0$

$$F_{S^4} = \frac{\alpha_4}{\epsilon} \left(\frac{R}{\epsilon}\right)^4 + \frac{\alpha_2}{\epsilon} \left(\frac{R}{\epsilon}\right)^2 + \frac{\alpha_0}{\epsilon} - a_{\rm anom} \log\left(\frac{R}{\epsilon}\right) + \mathcal{O}(\epsilon/R) \; .$$

For supersymmetric theories with a supersymmetric regularization scheme $\alpha_4 = 0$.

For massive theories there is an extra scale, m, so $\alpha_2 = \alpha_2(m\epsilon)$ and $\alpha_0 = \alpha_0(m\epsilon)$. Expand this for small $m\epsilon$

$$\begin{aligned} \boldsymbol{\alpha_2} &= \tilde{\alpha}_2 + m^2 \epsilon^2 \beta_2 + \mathcal{O}(m^4 \epsilon^4) ,\\ \boldsymbol{\alpha_0} &= \tilde{\alpha}_0 + \mathcal{O}(m^2 \epsilon^2) . \end{aligned}$$

The nonuniversal contribution to the free energy is

$$\tilde{\alpha}_2 \left(\frac{R}{\epsilon}\right)^2 + \tilde{\alpha}_0 + \beta_2 (mR)^2 .$$

Thus 3 derivatives w.r.t. mR eliminate the ambiguity.

For a CFT on S^4 of radius R with cutoff $\epsilon \to 0$

$$F_{S^4} = \frac{\alpha_4}{\epsilon} \left(\frac{R}{\epsilon}\right)^4 + \frac{\alpha_2}{\epsilon} \left(\frac{R}{\epsilon}\right)^2 + \frac{\alpha_0}{\epsilon} - a_{\rm anom} \log\left(\frac{R}{\epsilon}\right) + \mathcal{O}(\epsilon/R) \; .$$

For supersymmetric theories with a supersymmetric regularization scheme $\alpha_4 = 0$.

For massive theories there is an extra scale, m, so $\alpha_2 = \alpha_2(m\epsilon)$ and $\alpha_0 = \alpha_0(m\epsilon)$. Expand this for small $m\epsilon$

$$\begin{aligned} \boldsymbol{\alpha_2} &= \tilde{\alpha}_2 + m^2 \epsilon^2 \beta_2 + \mathcal{O}(m^4 \epsilon^4) ,\\ \boldsymbol{\alpha_0} &= \tilde{\alpha}_0 + \mathcal{O}(m^2 \epsilon^2) . \end{aligned}$$

The nonuniversal contribution to the free energy is

$$\tilde{\alpha}_2 \left(\frac{R}{\epsilon}\right)^2 + \tilde{\alpha}_0 + \beta_2 (mR)^2$$
.

Thus 3 derivatives w.r.t. mR eliminate the ambiguity.

For nonsupersymmetric theories the 5th derivative of F_{S^4} w.r.t. mR is universal.

Nikolay Bobev (Leuven)

The gravity dual

Supergravity setup

Use 5d $\mathcal{N}=8$ gauged supergravity to construct the holographic dual. Why is this justified?

Supergravity setup

Use 5d $\mathcal{N}=8$ gauged supergravity to construct the holographic dual. Why is this justified?

- It is a consistent truncation of IIB supergravity on $AdS_5 \times S^5$ which contains fields dual to the lowest dimension operators in $\mathcal{N} = 4$ SYM.
- The gravity dual of $\mathcal{N}=2^*$ on $\mathbb{R}^{1,3}$ was constructed first in 5d. [Pilch-Warner]

Supergravity setup

Use 5d $\mathcal{N} = 8$ gauged supergravity to construct the holographic dual. Why is this justified?

- It is a consistent truncation of IIB supergravity on $AdS_5 \times S^5$ which contains fields dual to the lowest dimension operators in $\mathcal{N} = 4$ SYM.
- The gravity dual of $\mathcal{N}=2^*$ on $\mathbb{R}^{1,3}$ was constructed first in 5d. [Pilch-Warner]

From field theory we expect that the solutions we are after posses $U(1)_V \times U(1)_H \times U(1)_Y$ global symmetry. Impose this on the 5d $\mathcal{N} = 8$ supergravity.

Supergravity setup

Use 5d $\mathcal{N} = 8$ gauged supergravity to construct the holographic dual. Why is this justified?

- It is a consistent truncation of IIB supergravity on $AdS_5 \times S^5$ which contains fields dual to the lowest dimension operators in $\mathcal{N} = 4$ SYM.
- The gravity dual of $\mathcal{N}=2^*$ on $\mathbb{R}^{1,3}$ was constructed first in 5d. [Pilch-Warner]

From field theory we expect that the solutions we are after posses $U(1)_V \times U(1)_H \times U(1)_Y$ global symmetry. Impose this on the 5d $\mathcal{N} = 8$ supergravity.

The result is that only 3 real, 2 Abelian gauge fields and the metric survive in the bosonic sector. The 3 scalars, $\{\phi, \psi, \chi\}$, are dual precisely to the 3 operators

$$\mathcal{O}_{\phi}\,, \qquad \mathcal{O}_{\psi}\,, \qquad \mathcal{O}_{\chi}\,.$$

It is convenient to use

$$\eta = e^{\phi/\sqrt{6}}$$
, $z = \frac{1}{\sqrt{2}}(\chi + i\psi)$, $\tilde{z} = \frac{1}{\sqrt{2}}(\chi - i\psi)$.

In Euclidean signature the fields z and \tilde{z} are independent.

For $\chi=0$ there is $SU(2)_V\times U(1)_H\times U(1)_Y$ symmetry and we reproduce the Pilch-Warner truncation.

Nikolay Bobev (Leuven)

Supergravity setup

The Euclidean Lagrangian is

$$\begin{split} \mathcal{L} &= \frac{1}{2\kappa^2} \left[-\mathcal{R} + \frac{12\partial_\mu \eta \partial^\mu \eta}{\eta^2} + \frac{4\partial_\mu z \partial^\mu \tilde{z}}{(1-z\tilde{z})^2} + \mathcal{V} \right] \,, \\ \mathcal{V} &\equiv -\frac{4}{L^2} \left(\frac{1}{\eta^4} + 2\eta^2 \frac{1+z\tilde{z}}{1-z\tilde{z}} + \frac{\eta^8}{4} \frac{(z-\tilde{z})^2}{(1-z\tilde{z})^2} \right) \,. \end{split}$$

This is a non-linear sigma model with target $\mathbb{R}\times\mathbb{H}^2.$

The Euclidean Lagrangian is

$$\begin{split} \mathcal{L} &= \frac{1}{2\kappa^2} \left[-\mathcal{R} + \frac{12\partial_\mu \eta \partial^\mu \eta}{\eta^2} + \frac{4\partial_\mu z \partial^\mu \tilde{z}}{(1-z\tilde{z})^2} + \mathcal{V} \right] \,, \\ \mathcal{V} &\equiv -\frac{4}{L^2} \left(\frac{1}{\eta^4} + 2\eta^2 \frac{1+z\tilde{z}}{1-z\tilde{z}} + \frac{\eta^8}{4} \frac{(z-\tilde{z})^2}{(1-z\tilde{z})^2} \right) \,. \end{split}$$

This is a non-linear sigma model with target $\mathbb{R}\times\mathbb{H}^2.$

To preserve the isometries of S^4 take the "domain-wall" $\mbox{\sc Ansatz}$

$$\begin{split} ds^2 &= L^2 e^{2A(r)} ds_{S^4}^2 + dr^2 \,, \\ \eta &= \eta(r) \,, \qquad z &= z(r) \,, \qquad \tilde{z} &= \tilde{z}(r) \,. \end{split}$$

The masses of the scalars are

$$m_{\phi}^2 L^2 = m_{\chi}^2 L^2 = -4$$
, $m_{\psi}^2 L^2 = -3$.

The BPS equations

Plug the Ansatz in the supersymmetry variations of the 5d ${\cal N}=8$ theory and use the "conformal Killing spinors" on S^4

$$\hat{\nabla}_{\mu}\zeta = \frac{1}{2}\gamma_5\gamma_{\mu}\zeta \;,$$

to derive the BPS equations

$$\begin{split} z' &= \frac{3\eta'(z\tilde{z}-1)\left[2(z+\tilde{z})+\eta^6(z-\tilde{z})\right]}{2\eta\left[\eta^6\left(\tilde{z}^2-1\right)+\tilde{z}^2+1\right]}\,,\\ \tilde{z}' &= \frac{3\eta'(z\tilde{z}-1)\left[2(z+\tilde{z})-\eta^6(z-\tilde{z})\right]}{2\eta\left[\eta^6\left(z^2-1\right)+z^2+1\right]}\,,\\ (\eta')^2 &= \frac{\left[\eta^6\left(z^2-1\right)+z^2+1\right]\left[\eta^6\left(\tilde{z}^2-1\right)+\tilde{z}^2+1\right]}{9L^2\eta^2(z\tilde{z}-1)^2}\,,\\ e^{2A} &= \frac{(z\tilde{z}-1)^2\left[\eta^6\left(z^2-1\right)+z^2+1\right]\left[\eta^6\left(\tilde{z}^2-1\right)+\tilde{z}^2+1\right]}{\eta^8\left(z^2-\tilde{z}^2\right)^2}\,. \end{split}$$

UV expansion

The (constant curvature) metric on \mathbb{H}^5 is

$$ds_5^2 = dr^2 + L^2 \sinh^2\left(\frac{r}{L}\right) ds_{S^4}^2$$
.

UV expansion

The (constant curvature) metric on \mathbb{H}^5 is

$$ds_5^2 = dr^2 + L^2 \sinh^2\left(\frac{r}{L}\right) ds_{S^4}^2$$
.

Solving the BPS equations iteratively, order by order in the asymptotic expansion as $r \to \infty,$ we find

$$e^{2A} = \frac{e^{2r}}{4} + \frac{1}{6}(\mu^2 - 3) + \dots ,$$

$$\eta = 1 + e^{-2r} \left[\frac{2\mu^2}{3}r + \frac{\mu(\mu + v)}{3}\right] + \dots ,$$

$$\frac{1}{2}(z + \tilde{z}) = e^{-2r} \left[2\mu r + v\right] + \dots ,$$

$$\frac{1}{2}(z - \tilde{z}) = \mu e^{-r} + e^{-3r} \left[\frac{4}{3}\mu(\mu^2 - 3)r + \frac{1}{3}\left(2v(\mu^2 - 3) + \mu(4\mu^2 - 3)\right)\right] + \dots .$$

UV expansion

The (constant curvature) metric on \mathbb{H}^5 is

$$ds_5^2 = dr^2 + L^2 \sinh^2\left(\frac{r}{L}\right) ds_{S^4}^2$$
.

Solving the BPS equations iteratively, order by order in the asymptotic expansion as $r \to \infty,$ we find

$$e^{2A} = \frac{e^{2r}}{4} + \frac{1}{6}(\mu^2 - 3) + \dots ,$$

$$\eta = 1 + e^{-2r} \left[\frac{2\mu^2}{3}r + \frac{\mu(\mu + v)}{3}\right] + \dots ,$$

$$\frac{1}{2}(z + \tilde{z}) = e^{-2r} \left[2\mu r + v\right] + \dots ,$$

$$\frac{1}{2}(z - \tilde{z}) = \mu e^{-r} + e^{-3r} \left[\frac{4}{3}\mu(\mu^2 - 3)r + \frac{1}{3}\left(2v(\mu^2 - 3) + \mu(4\mu^2 - 3)\right)\right] + \dots .$$

Here μ and v are integration constants. Think of them as the "source" and "vev" for the operator \mathcal{O}_{χ} . Compare to field theory to identify $\mu = imR$.

Nikolay Bobev (Leuven)

Holography for $\mathcal{N} = 2^*$ on S^4

IR expansion

At $r=r_{\ast}$ the S^4 shrinks to zero size. Solve the BPS equations close to $r=r_{\ast},$ and require that the solution is smooth to find

IR expansion

At $r=r_{*}$ the S^{4} shrinks to zero size. Solve the BPS equations close to $r=r_{*}$, and require that the solution is smooth to find

$$e^{2A} = (r - r_*)^2 + \frac{7\eta_0^{-12} + 20}{81\eta_0^4} (r - r_*)^4 + \dots ,$$

$$\eta = \eta_0 - \left(\frac{\eta_0^{-12} - 1}{27\eta_0^3}\right) (r - r_*)^2 \left[1 - \left(\frac{85 + 131\eta_0^{-12}}{810\eta_0^4}\right) (r - r_*)^2 + \dots\right] ,$$

$$\frac{1}{2}(z + \tilde{z}) = \sqrt{\frac{\eta_0^6 - 1}{\eta_0^6 + 1}} \left[\frac{\eta_0^6}{\eta_0^6 + 2} - \frac{2\eta_0^8(4\eta_0^6 + 5)}{15(\eta_0^6 + 2)^2} (r - r_*)^2 + \dots\right] ,$$

$$\frac{1}{2}(z - \tilde{z}) = \sqrt{\frac{\eta_0^6 - 1}{\eta_0^6 + 1}} \left[\frac{2}{\eta_0^6 + 2} + \frac{\eta_0^2(3\eta_0^{-12} - 10\eta_0^6 - 20)}{15(\eta_0^6 + 2)^2} (r - r_*)^2 + \dots\right] .$$

Here, η_0 is the only free parameter since one can set $r_* = 0$ by the shift symmetry of the equations.

 $\frac{1}{2}$

Numerical solutions

One can find numerical solutions by "shooting" from the IR to the UV. There is a one-parameter family parametrized by η_0 , so

 $v = v(\eta_0)$, and $\mu = \mu(\eta_0)$. $(z+\tilde{z})/2$ $(z-\tilde{z})/2$ 0.4 0.15 0.10 - A e^{2A}/e^{2r} η 1.20 F 0.25 0.20 0.15 0.10 0.05

Holography for $\mathcal{N}=2^*$ on S^4

Qualitatively different behavior for $\eta_0 > 1$ and $\eta_0 < 1$.

From the numerical results one can extract the following dependence

$$v(\boldsymbol{\mu}) = -2\boldsymbol{\mu} - \boldsymbol{\mu} \log(1 - \boldsymbol{\mu}^2)$$

Holographic calculation of $F_{S^4}^{\mathcal{N}=2^*}$

• By the standard holographic dictionary the partition function of the field theory is mapped to the on-shell action of the supergravity at hand. [Maldacena], [GKP], [Witten]

- By the standard holographic dictionary the partition function of the field theory is mapped to the on-shell action of the supergravity at hand. [Maldacena], [GKP], [Witten]
- The on-shell action diverges and one has to regulate it using holographic renormalization. [Skenderis], ...

- By the standard holographic dictionary the partition function of the field theory is mapped to the on-shell action of the supergravity at hand. [Maldacena], [GKP], [Witten]
- The on-shell action diverges and one has to regulate it using holographic renormalization. [Skenderis], ...
- There is a subtlety here. If we insist on using a supersymmetric regularization scheme there is a particular finite counterterm that has to be added. Only with it one can successfully compare $\frac{d^3F}{du^3}$ with the field theory result.

- By the standard holographic dictionary the partition function of the field theory is mapped to the on-shell action of the supergravity at hand. [Maldacena], [GKP], [Witten]
- The on-shell action diverges and one has to regulate it using holographic renormalization. [Skenderis], ...
- There is a subtlety here. If we insist on using a supersymmetric regularization scheme there is a particular finite counterterm that has to be added. Only with it one can successfully compare $\frac{d^3F}{du^3}$ with the field theory result.
- Without knowing this finite counterterm we can only hope to match ^{d⁵F}/_{dµ⁵} with field theory.

The 5d action + the boundary Gibbons-Hawking term is

$$S_{5D} = \int_{M} d^{5}x \sqrt{G} \left\{ -\frac{1}{4}\mathcal{R} + \frac{1}{2}(\partial\phi)^{2} + \frac{K}{2}\left((\partial\chi)^{2} + (\partial\psi)^{2}\right) + \mathcal{V} \right\} - \frac{1}{2}\int_{\partial M}\sqrt{\gamma}\mathcal{K},$$

with $K = \left(1 - \frac{1}{2}(\chi^2 + \psi^2)\right)^{-2}$.

The 5d action + the boundary Gibbons-Hawking term is

$$\begin{split} S_{\rm 5D} &= \int_M d^5 x \, \sqrt{G} \Big\{ -\frac{1}{4} \mathcal{R} + \frac{1}{2} (\partial \phi)^2 + \frac{K}{2} \Big((\partial \chi)^2 + (\partial \psi)^2 \Big) + \mathcal{V} \Big\} \\ &\quad - \frac{1}{2} \int_{\partial M} \sqrt{\gamma} \, \mathcal{K} \,, \end{split}$$

with $K = \left(1 - \frac{1}{2}(\chi^2 + \psi^2)\right)^{-2}$.

The (infinite) counterterm action obtained by holographic renormalization is

$$S_{\text{ct}} = \int_{\partial M_{\epsilon}} d^4 x \sqrt{\gamma} \left[\frac{3}{2} + \frac{1}{8} \mathcal{R}[\gamma] + \frac{1}{2} \psi^2 + \left(1 + \frac{1}{\log \epsilon} \right) \left(\phi^2 + \chi^2 \right) \right. \\ \left. - \log \epsilon \left\{ \frac{1}{32} \left[\mathcal{R}[\gamma]^{ij} \mathcal{R}[\gamma]_{ij} - \frac{1}{3} \mathcal{R}[\gamma]^2 \right] + \frac{1}{4} \psi \Box_{\gamma} \psi - \frac{1}{24} \mathcal{R}[\gamma] \psi^2 - \frac{1}{6} \psi^4 \right\} \right],$$

Interestingly $S_{\rm ct}$ is almost the same for many 5d models studied in the literature. [FGPW], [GPPZ], [Pilch-Warner],...

Use the Bogomolnyi trick to find the finite counterterm. No superpotential for the model with all 3 scalars. In the limits $\chi = 0$ or $\psi = 0$ there is a superpotential.

Use the Bogomolnyi trick to find the finite counterterm. No superpotential for the model with all 3 scalars. In the limits $\chi = 0$ or $\psi = 0$ there is a superpotential.

Take $\chi = 0$, then 5d supergravity action action (on \mathbb{R}^4) can be written as

$$S = \int dr d^{4}x \left\{ e^{4A} \left[-3\left(A' - \frac{2}{3}W\right)^{2} + \frac{\sqrt{3}e^{-\frac{\phi}{\sqrt{6}}}}{\sqrt{2}}(\phi' + \partial_{\phi}W)^{2} + \frac{2}{(2-\psi^{2})^{2}}\left(\psi' + (1 - \frac{1}{2}\psi^{2})^{2}\partial_{\psi}W\right)^{2} \right] - \frac{d}{dr}\left(e^{4A}W\right) \right\}$$

with

$$\mathcal{W} = e^{-2\phi/\sqrt{6}} + \frac{e^{4\phi/\sqrt{6}}}{2} \frac{2+\psi^2}{2-\psi^2}, \qquad \mathcal{V} = \frac{1}{2} (\partial_{\phi} \mathcal{W})^2 + \frac{(2-\psi^2)^2}{8} (\partial_{\psi} \mathcal{W})^2 - \frac{4}{3} \mathcal{W}^2$$

Use the Bogomolnyi trick to find the finite counterterm. No superpotential for the model with all 3 scalars. In the limits $\chi = 0$ or $\psi = 0$ there is a superpotential.

Take $\chi = 0$, then 5d supergravity action action (on \mathbb{R}^4) can be written as

$$S = \int dr d^{4}x \left\{ e^{4A} \left[-3\left(A' - \frac{2}{3}W\right)^{2} + \frac{\sqrt{3}e^{-\frac{\phi}{\sqrt{6}}}}{\sqrt{2}}(\phi' + \partial_{\phi}W)^{2} + \frac{2}{(2-\psi^{2})^{2}}\left(\psi' + (1 - \frac{1}{2}\psi^{2})^{2}\partial_{\psi}W\right)^{2} \right] - \frac{d}{dr}\left(e^{4A}W\right) \right\}$$

with

$$\mathcal{W} = e^{-2\phi/\sqrt{6}} + \frac{e^{4\phi/\sqrt{6}}}{2} \frac{2+\psi^2}{2-\psi^2} , \qquad \mathcal{V} = \frac{1}{2} (\partial_{\phi}\mathcal{W})^2 + \frac{(2-\psi^2)^2}{8} (\partial_{\psi}\mathcal{W})^2 - \frac{4}{3}\mathcal{W}^2$$

The full counterterm action from the Bogomolnyi procedure is

$$S_{\mathcal{W}} = \int d^4 x e^{4A} \mathcal{W} = \int d^4 x \sqrt{\gamma} \left(\frac{3}{2} + \phi^2 + \frac{1}{2} \psi^2 + \sqrt{\frac{2}{3}} \phi \psi^2 + \frac{1}{4} \psi^4 + \dots \right) \; .$$

The finite counterterm obtained by the Bogomolnyi trick is

$$S_{\rm finite} = \int d^4x \, \sqrt{\gamma} \, \frac{1}{4} \psi^4$$

The full renormalized 5d action is

$$S_{\rm ren} = S_{\rm 5D} + S_{\rm ct} + S_{\rm finite}$$
 .

The full renormalized 5d action is

$$S_{\rm ren} = S_{\rm 5D} + S_{\rm ct} + S_{\rm finite}$$
 .

Differentiate the renormalized action w.r.t. μ to find

$$\frac{dF^{\rm SUGRA}}{d\mu} = \frac{N^2}{2\pi^2} \operatorname{vol}(S^4) \Big(4\mu - 12v(\mu) \Big) = N^2 \Big(\frac{1}{3}\mu - v(\mu) \Big) \,.$$

The full renormalized 5d action is

$$S_{\rm ren} = S_{\rm 5D} + S_{\rm ct} + S_{\rm finite}$$
 .

Differentiate the renormalized action w.r.t. μ to find

$$\frac{dF^{\rm SUGRA}}{d\mu} = \frac{N^2}{2\pi^2} \operatorname{vol}(S^4) \Big(4\mu - 12v(\mu) \Big) = N^2 \Big(\frac{1}{3}\mu - v(\mu) \Big) \,.$$

Finally we arrive at the supergravity result

$$\frac{d^3 F^{\rm SUGRA}}{d\mu^3} = -N^2 \, v^{\prime\prime}(\mu) = -2N^2 \, \frac{\mu \, (3-\mu^2)}{(1-\mu^2)^2} \, . \label{eq:generalized_statistical}$$

Set $\mu = imR$ and compare this to field theory

$$\frac{d^3 F_{S^4}}{d(mR)^3} = -2N^2 \frac{mR((mR)^2 + 3)}{((mR)^2 + 1)^2}$$

The full renormalized 5d action is

$$S_{\rm ren} = S_{\rm 5D} + S_{\rm ct} + S_{\rm finite}$$
 .

Differentiate the renormalized action w.r.t. μ to find

$$\frac{dF^{\rm SUGRA}}{d\mu} = \frac{N^2}{2\pi^2} \operatorname{vol}(S^4) \Big(4\mu - 12v(\mu) \Big) = N^2 \Big(\frac{1}{3}\mu - v(\mu) \Big) \,.$$

Finally we arrive at the supergravity result

$$\frac{d^3 F^{\rm SUGRA}}{d\mu^3} = -N^2 \, v^{\prime\prime}(\mu) = -2N^2 \, \frac{\mu \, (3-\mu^2)}{(1-\mu^2)^2} \, . \label{eq:generalized_static}$$

Set $\mu = imR$ and compare this to field theory

$$\frac{d^3 F_{S^4}}{d(mR)^3} = -2N^2 \frac{mR((mR)^2 + 3)}{((mR)^2 + 1)^2}$$

Lo and behold

$$\frac{d^3F_{S^4}}{d(mR)^3} = \frac{d^3F^{\rm SUGRA}}{d\mu^3}$$

The full renormalized 5d action is

$$S_{\rm ren} = S_{\rm 5D} + S_{\rm ct} + S_{\rm finite}$$
 .

Differentiate the renormalized action w.r.t. μ to find

$$\frac{dF^{\rm SUGRA}}{d\mu} = \frac{N^2}{2\pi^2} \operatorname{vol}(S^4) \Big(4\mu - 12v(\mu) \Big) = N^2 \Big(\frac{1}{3}\mu - v(\mu) \Big) \,.$$

Finally we arrive at the supergravity result

$$\frac{d^3 F^{\rm SUGRA}}{d\mu^3} = -N^2 \, v^{\prime\prime}(\mu) = -2N^2 \, \frac{\mu \left(3-\mu^2\right)}{(1-\mu^2)^2} \, . \label{eq:generalized_statistical}$$

Set $\mu = imR$ and compare this to field theory

$$\frac{d^3 F_{S^4}}{d(mR)^3} = -2N^2 \frac{mR((mR)^2 + 3)}{((mR)^2 + 1)^2}$$

Lo and behold

$$\frac{d^3F_{S^4}}{d(mR)^3}=\frac{d^3F^{\rm SUGRA}}{d\mu^3}$$

Without the finite counterterm we can only match $\frac{d^5 F^{\text{SUGRA}}}{d\mu^5}$ with field theory.

Nikolay Bobev (Leuven)

Comments on $\mathcal{N}=1^*$

$\mathcal{N} = 1^*$

- Perform a similar analysis for mass deformations of $\mathcal{N}=4$ SYM with only $\mathcal{N}=1$ supersymmetry.
- Supersymmetric localization does not seem to work for ${\cal N}=1$ theories on $S^4.$ [Festuccia, Komargodski, ...]
- Supergravity may offer some insight about the dual field theory!

$\mathcal{N}=1^{\ast}$

- Perform a similar analysis for mass deformations of $\mathcal{N}=4$ SYM with only $\mathcal{N}=1$ supersymmetry.
- Supersymmetric localization does not seem to work for ${\cal N}=1$ theories on $S^4.$ [Festuccia, Komargodski, ...]
- Supergravity may offer some insight about the dual field theory!

The Lagrangian for $\mathcal{N} = 1^*$ on S^4 of radius R is

$$egin{aligned} \mathcal{L}_{\mathcal{N}=1^*}^{S^4} &= \mathcal{L}_{\mathcal{N}=4}^{S^4} + rac{(2+{m_i}^2R^2)}{R^2} \operatorname{tr}ig(Z_i\widetilde{Z}_iig) - rac{m_i}{2} \operatorname{tr}ig(\chi_i\chi_i + \widetilde{\chi}_i\widetilde{\chi}_iig) \ &- rac{\sqrt{2}m_i}{2} arepsilon^{ijk} \operatorname{tr}ig(\widetilde{Z}_iZ_jZ_k + Z_i\widetilde{Z}_j\widetilde{Z}_kig) \ &+ rac{im_i}{2R} \operatorname{tr}ig(Z_i^2 + \widetilde{Z}_i^2ig) \ . \end{aligned}$$

In supergravity this will mean at least 8 real scalars. Possible in principle but too cumbersome...

Nikolay Bobev (Leuven)

There are special cases which allow for an explicit analysis.

- Take $m_1 = m_2 = m_3$. In flat space this is the GPPZ flow. It has SO(3) global symmetry. On S^4 we need 4 supergravity scalars.
- Take $m_2 = m_3 = 0$. In flat space this is the Leigh-Strassler flow. On S^4 we need 3 supergravity scalars.

There are special cases which allow for an explicit analysis.

- Take $m_1 = m_2 = m_3$. In flat space this is the GPPZ flow. It has SO(3) global symmetry. On S^4 we need 4 supergravity scalars.
- Take $m_2 = m_3 = 0$. In flat space this is the Leigh-Strassler flow. On S^4 we need 3 supergravity scalars.

For both examples we have explicit supergravity truncations and BPS solutions on S^4 .

The hard part is to extract the third derivative of the free energy from the numerical solutions.

No results from localization to guide us.

A glimpse of the field theory answer from conformal perturbation theory in the planar limit and in the small m expansion.

- We found a 5d supegravity dual of $\mathcal{N} = 2^*$ SYM on S^4 .
- After careful holographic renormalization we computed the universal part of the free energy of this theory.
- The result is in exact agreement with the supersymmetric localization calculation in field theory.
- This is a precision test of holography in a non-conformal Euclidean setting.
- The results extend immediately to $\mathcal{N}=2^*$ mass deformations of quiver gauge theories obtained by \mathbb{Z}_k orbifolds of $\mathcal{N}=4$ SYM. [Azeyanagi-Hanada-Honda-Matsuo-Shiba]
- Extension of these results to $\mathcal{N} = 1^*$ SYM.

- Uplift of the $\mathcal{N} = 2^*$ solution to IIB supergravity. Will allow for a holographic calculation of the Wilson line vev. In addition one can study probe D3-branes.
- Holography for $\mathcal{N} = 2^*$ on other 4-manifolds.
- Extensions to other $\mathcal{N}=2$ theories in 4d with holographic duals, e.g. pure $\mathcal{N}=2$ SYM?
- Extensions to other dimensions.

- Uplift of the $\mathcal{N} = 2^*$ solution to IIB supergravity. Will allow for a holographic calculation of the Wilson line vev. In addition one can study probe D3-branes.
- Holography for $\mathcal{N} = 2^*$ on other 4-manifolds.
- Extensions to other $\mathcal{N}=2$ theories in 4d with holographic duals, e.g. pure $\mathcal{N}=2$ SYM?
- Extensions to other dimensions.
- Can we see some of the large N phase transitions argued to exist by Russo-Zarembo in IIB string theory?
- Revisit supersymmetric localization for $\mathcal{N} = 1$ theories on S^4 . Can one find the exact partition function (modulo ambiguities)? [Gerchkovitz-Gomis-Komargodski]
- Massive deformations of class S SCFTs from holography?
- Broader lessons for holography from localization?

THANK YOU!