Implications of flavour constraints on dark matter

Monika Blanke

Dark Matter at the Large Hadron Collider 2016 Amsterdam – March 31, 2016

Flavoured dark matter?

unknown DM properties

- coupling to SM particles?
- single particle or entire sector?
- analogy to ordinary SM matter

flavoured?

Assumption:

Dark matter carries flavour and comes in multiple copies

> New coupling to quarks:

e.g.
$$\lambda^{ij} \bar{d}_{Ri} \chi_j \phi$$

 $\begin{array}{ll} d_{Ri} & \mbox{right-handed down quarks} \\ \chi_j & \mbox{DM particle, flavoured} \\ \phi & \mbox{new scalar, coloured} \end{array}$

The idea is not new...

Flavoured DM received a lot of attention in recent years, see e.g.

- Flavoured Dark Matter in Direct Detection Experiments and at LHC J. KILE, A. SONI (APRIL 2011)
- Dark Matter from Minimal Flavor Violation B. BATELL, J. PRADLER, M. SPANNOWSKY (MAY 2011)
- Discovering Dark Matter Through Flavor Violation at the LHC J. F. KAMENIK, J. ZUPAN (JULY 2011)
- Flavored Dark Matter, and Its Implications for Direct Detection and Colliders P. AGRAWAL, S. BLANCHET, Z. CHACKO, C. KILIC (SEP. 2011)
- Top-flavored dark matter and the forward-backward asymmetry A. KUMAR, S. TULIN (MAR. 2013)
- Flavored Dark Matter and R-Parity Violation B. BATELL, T. LIN, L.-T. WANG (SEP. 2013)

common to most studies:

Minimal Flavour Violation

Going beyond MFV

MFV

➤ HARMLESS

But not very exciting.

Going beyond MFV

MFV

➤ HARMLESS

But not very exciting.

non-MFV

> DANGEROUS

But interesting if you know how to handle it!

How to detect flavoured dark matter

SM

SM

SM

SM

A simplified model of flavoured dark matter

Flavoured Dirac-fermionic DM χ_j and couples to down quarks via a coloured scalar mediator

$$\mathcal{L}_{\rm NP} = i\bar{\chi}\partial\!\!\!/ \chi - m_{\chi}\bar{\chi}\chi + (D_{\mu}\phi)^{\dagger}(D^{\mu}\phi) - m_{\phi}^{2}\phi^{\dagger}\phi - \lambda^{ij}\bar{d}_{Ri}\chi_{j}\phi + \lambda_{H\phi}\phi^{\dagger}\phi H^{\dagger}H + \lambda_{\phi\phi}\phi^{\dagger}\phi\phi^{\dagger}\phi$$

Assumption: Flavour symmetry

$$\underbrace{U(3)_q \times U(3)_u \times U(3)_d}_{\mathcal{U}} \times \underbrace{U(3)_d}_{\mathcal{U}} \times \underbrace{U(3)_\chi}_{\mathcal{U}}$$

SM flavour symmetry

only broken by the SM Yukawa couplings and the DM-quark coupling λ

"Dark Minimal Flavour Violation" (DMFV)

Consequences of DMFV

Dark matter mass

• χ_i mass splittings generated by coupling matrix λ

$$m_{\chi_i} = m_{\chi} (\mathbb{1} + \eta \,\lambda^{\dagger} \lambda + \dots)_{ii}$$

Dark matter stability

• DM stability is guaranteed if DMFV is exact (unbroken \mathbb{Z}_3 symmetry)

Parametrisation of DM-quark coupling

• $U(3)_{\chi}$ symmetry helps to remove 9 parameters

$$\lambda = U_{\lambda} D_{\lambda}$$

 U_{λ} unitary matrix, 3 mixing angles s_{12}^{λ} , s_{13}^{λ} , s_{23}^{λ} and 3 phases D_{λ} real diagonal matrix, e.g. $D_{\lambda} = \lambda_0 \cdot \mathbb{1} + \text{diag}(\lambda_1, \lambda_2, -(\lambda_1 + \lambda_2))$

New contributions to meson mixing

Agrawal, MB, Gemmler (2014)

• new box diagram for $B_{d,s} - \bar{B}_{d,s}$ mixing

• dominant NP mixing amplitude for the $B_{d,s}$ meson system

$$M_{12}^{q,\mathsf{new}} \sim (\xi_q^*)^2 F(x) \quad \text{where} \quad \xi_q = (\lambda \lambda^{\dagger})_{bq} = \sum_{i=1}^3 \lambda_{bi} \lambda_{qi}^* \quad (q = d, s)$$

 \bullet analogous contributions to $K^0-\bar{K}^0$ mixing

Lessons from meson mixing

Large contributions to $K^0 - \bar{K}^0$ and $B_{d,s} - \bar{B}_{d,s}$ mixing

$\succ \lambda$ has to be non-generic

- 3-flavour universality (black): $\lambda_1 = \lambda_2 = 0$
- 2-flavour universalities (blue): $\lambda_1 = \lambda_2$ (red): $\lambda_2 = -2\lambda_1$ (green): $\lambda_2 = -1/2\lambda_1$
- small mixing (yellow): arbitrary D_λ

$$\begin{split} D_\lambda &= \lambda_0 \cdot \mathbbm{1} + \operatorname{diag}(\lambda_1,\lambda_2,-(\lambda_1+\lambda_2)) \\ \text{fixed:} \ m_\phi &= 850 \, \text{GeV}, m_\chi = 200 \, \text{GeV}, \lambda_0 = 1 \end{split}$$

Agrawal, MB, Gemmler (2014)

Dark sector mass spectrum

- Meson mixing observables place strong constraints on the structure of λ but do not fix the mass spectrum in the dark matter sector!
- Mass m_{ϕ} of coloured scalar mediator strongly constrained by LHC
- Good reasons for *b*-flavoured dark matter:
 - less constrained by direct detection experiments and LHC
 - interesting b-jet signatures at colliders
 - \succ possible explanation of γ ray signal from galactic center

Hooper et al. (2009)..., Agrawal et al. (2014)

For now we assume DM to be

- \succ *b*-flavoured, i.e. coupling dominantly to *b* quarks
- ➤ a thermal relic
- > significantly split from $\chi_{d,s}$

Constraints from LUX & co.

Dark matter scattering off nuclei...

 \ldots constrains the DM coupling matrix λ

constraints imposed: LUX only, flavour only , LUX & flavour

Constraints from LUX & co.

Dark matter scattering off nuclei...

 \ldots constrains the DM coupling matrix λ

constraints imposed: LUX only, flavour only , LUX & flavour

What about rare B and K decays?

▶ negligible effects in $b \rightarrow s\gamma$

Figure from Altmannshofer, Straub (2013)

No new one-loop contribution to Z penguin and boxes:

▶ negligible effects also in $B_{s,d} \to \mu^+ \mu^-$, $B \to K^{(*)} \mu^+ \mu^-$, $K \to \pi \nu \bar{\nu} \dots$

Agrawal, MB, Gemmler (2014)

Bird et al. (2004), Kamenik, Smith (2011)

Light flavoured DM can be constrained/discovered in decays like $B \to K^{(*)} \nu \bar{\nu}, K \to \pi \nu \bar{\nu}$ if

- final state kinematically accessible $(m_\chi \lesssim m_P/2)$
- χ long-lived to escape detection

already present data give interesting constraints

- > complementary to $\Delta F = 2$ constraints
- > careful study of differential distributions needed

Coupling DM to the up-sector

MB, KAST (IN PREPARATION)

What if we couple the dark matter χ_i to the up quark sector instead?

$$\succ \lambda^{ij} \bar{u_{Ri}} \chi_j \phi$$

Many consequences of DMFV carry over

- dark matter stability
- structure and parametrization of coupling matrix λ
- correlation between mass splittings and coupling matrix

+ phenomenologically appealing option of top-flavoured DM

see e.g. Kumar, Tulin (2013); Kilic, Klimek, Yu (2015)

Flavour constraints

MB, KAST (IN PREPARATION)

DMFV with coupling to right-handed up-sector

- no impact on K and B meson decays
- potential effect in D meson physics

 much less constrained than down-sector case

large 12-mixing only for quasi-degenerate 1st and 2nd DM generation

Constraints from direct detection

MB, KAST (IN PREPARATION)

- with top-flavoured DM, Z-penguin contribution becomes relevant
- dominant contributions:

Conclusions

• mechanism generating the flavour structure of the SM is unknown, assuming a similar mechanism in the dark sector suggests

"Dark Minimal Flavour Violation" additional $U(3)_{\chi}$ flavour symmetry only broken by the new coupling matrix λ

- DMFV (if exact) ensures stability of lightest dark flavour
- various simplified models possible, depending on coupling to SM quarks
- constraints from relic abundance, direct detection, LHC searches and flavour physics exhibit a non-trivial interplay

Backup slides

Dark matter stability

Similar proof in MFV: BATELL, PRADLER, SPANNOWSKY (2011)

Consider $\mathcal{O} \sim \chi \dots \bar{\chi} \dots \phi \dots \phi^{\dagger} \dots q_L \dots \bar{q}_L \dots u_R \dots \bar{u}_R \dots d_R \dots \bar{d}_R \dots$

invariant under ...

- QCD if the number of $SU(3)_c$ triplet minus the number of $SU(3)_c$ antitriplets is a multiple of three
- flavour symmetry: include $Y_u \dots Y_u^{\dagger} \dots Y_d \dots Y_d^{\dagger} \dots \lambda \dots \lambda^{\dagger} \dots$

$$\begin{array}{lll} \mathrm{I} & SU(3)c & (N_{\phi} - N_{\phi^{\dagger}} + N_{q} + N_{u} + N_{d} - N_{\bar{q}} - N_{\bar{u}} - N_{\bar{d}}) \mod 3 = 0 \\ \mathrm{II} & U(3)_{q} & (N_{q} - N_{\bar{q}} + N_{Y_{u}} - N_{Y_{u}^{\dagger}} + N_{Y_{d}} - N_{Y_{d}^{\dagger}}) \mod 3 = 0 \\ \mathrm{III} & U(3)_{u} & (N_{u} - N_{\bar{u}} - N_{Y_{u}} + N_{Y_{u}^{\dagger}}) \mod 3 = 0 \\ \mathrm{IV} & U(3)_{d} & (N_{d} - N_{\bar{d}} - N_{Y_{d}} + N_{Y_{d}^{\dagger}} + N_{\lambda} - N_{\lambda^{\dagger}}) \mod 3 = 0 \\ \mathrm{V} & U(3)_{\chi} & (N_{\chi} - N_{\bar{\chi}} - N_{\lambda} + N_{\lambda^{\dagger}}) \mod 3 = 0 \\ \overline{\sum} \mathrm{II} + \mathrm{III} + \mathrm{IV} + \mathrm{V} - \mathrm{I} & (N_{\chi} - N_{\bar{\chi}} - N_{\phi} + N_{\phi^{\dagger}}) \mod 3 = 0 \end{array}$$

 $\succ \mathbb{Z}_3$ symmetry forbids χ and ϕ decays into SM fields

Dark matter as thermal relic

- WIMP production and annihilation in equilibrium in the early universe
- dark matter "freezes out" when annihilation rate $\langle \sigma v \rangle$ drops below Hobble expansion rate
- relic abundance determined by solving Boltzmann equation for DM number density *n* at late times

- n dark matter number density
- H Hubble constant
- n_{eq} equilibrium number density of χ

✓ relic density

Flavored dark matter freeze-out

AGRAWAL, MB, GEMMLER (2014)

• freeze-out condition depends on life time of heavier dark flavours

 \bullet for small mass splittings $\lesssim 1\%$ multiple flavours present at freeze-out temperature

> sum over all flavours i, j present at freeze-out

$$\langle \sigma v \rangle = \sum_{i,j} \langle \sigma v \rangle_{ij}$$

Flavoured dark matter at the LHC

AGRAWAL, MB, GEMMLER (2014) DMFV >> unbroken \mathbb{Z}_3 >> new particles have to be pair-produced

dark matter fermion χ_b and the heavier flavours $\chi_{d,s}$

- nearly degenerate due to DMFV
- χ_{d,s} decay to χ_b produces soft particles (jets, photons) + missing E_T
 ≻ LHC monojet+₽_T searches sensitive to χ pair production

coloured scalar mediator ϕ

- pair-produced through QCD and through t-channel χ_d exchange
- decay $\phi \to q_i \chi_i$ with branching ratios given by $D^2_{\lambda,ii}$ $\gg bb + \not\!\!\!E_T, bj + \not\!\!\!E_T, jj + \not\!\!\!E_T$ signatures

Agrawal, MB, Gemmler (2014)

- bound on cross-section can be applied to DMFV
 - production cross section enhanced by *t*-channel χ_d exchange
 - $bb + \not\!\!\!E_T$ signal suppressed by $\phi \to b\chi_b$ branching ratio

M. Blanke Implications of flavour constraints on dark matter

Constraints from monojet searches I

- monojet searches sensitive to χ pair-production with ISR hard jet
- recansting exp. bounds ATLAS-CONF-2012-147 CMS-PAS-EXO-12-048
 - > limit on m_{ϕ} depending on couplings $D_{\lambda,ii}$
- rather independent of m_{χ}

Constraints from monojet searches II

AGRAWAL, MB, GEMMLER (2014)

- monojet searches also sensitive to ϕ pair-production if decay products are soft
- constraint on the compressed region $m_\chi \lesssim m_\phi$

