Complementarity of different Dark Matter searches

Pat Scott

Imperial College London

Slides at: tinyurl.com/patscott

Outline

- Background: combining dark matter searches
- Indirect detection with neutrinos
- Global fits and GAMBIT

Outline

- Background: combining dark matter searches
- Indirect detection with neutrinos
- Global fits and GAMBIT

Combining searches I

Question

How do we know which models are in and which are out?

Combining searches I

Question

How do we know which models are in and which are out?

Answer

Combine the results from different searches

- Simplest method: take different exclusions, overplot them, conclude things are "allowed" or "excluded"
- Simplest BSM example: the scalar singlet model

$$\mathcal{L}_{\mathcal{S}} = -\frac{\mu_{\mathcal{S}}^2}{2} S^2 - \frac{\lambda_{hs}}{2} S^2 H^{\dagger} H + \dots$$

(Cline, Kainulainen, PS & Weniger, PRD, 1306.4710)

Combining searches II

That's all well and good if there are only 2 parameters and few searches...

Question

What if there are many different constraints?

Combining searches II

That's all well and good if there are only 2 parameters and few searches...

Question

What if there are many different constraints?

Answer

Combine constraints in a statistically valid way
→ composite likelihood

(Cline, Kainulainen, PS & Weniger, PRD, 1306.4710)

Combining searches III

That's all well and good if there are only 2 parameters and few searches...

Question

What if there are many parameters?

Combining searches III

That's all well and good if there are only 2 parameters and few searches...

Question

What if there are many parameters?

Answer

Need to

- scan the parameter space (smart numerics)
- interpret the combined results (Bayesian / frequentist)
- project down to parameter planes of interest (marginalise / profile)
- → global fits

Outline

- Background: combining dark matter searches
- Indirect detection with neutrinos
- Global fits and GAMBIT

A word on how (not) to interpret indirect detection in BSM models

- Indirect limits always presented in terms of hard process final states
- Actual experiments do not measure those final states they detect one type of SM particle produced later: γ s, ν s, etc
- Limits as presented cannot be combined and applied to models with mixed final states (= all non-toy models)
- Proper treatment of indirect detection for BSM searches requires full phenomenological recast abilities
 - \rightarrow full experimental \emph{and} theoretical treatment at the same time

Unbinned ν telescope likelihood \implies full event-level angular and energy info

$$\mathcal{L}_{\mathrm{unbin}} \equiv \mathcal{L}_{\mathrm{num}}(n_{\mathrm{tot}}|\theta_{\mathrm{tot}}) \prod_{i=1}^{n_{\mathrm{tot}}} (f_{\mathrm{S}}\mathcal{L}_{\mathrm{S},i} + f_{\mathrm{BG}}\mathcal{L}_{\mathrm{BG},i})$$

Strategy: precompute partial likelihoods for each event, then reweight with the ν spectrum at Earth for each model

- precompute step uses nusigma with CTEQ6-DIS PDFs to get charged current ν - n and ν - p cross-sections as function of x and y
- like step input: neutrino spectrum at Earth (from DarkSUSY or whatever else you want to use)
- like step output: num predicted events, likelihood
- → fully model-independent = future-proof for global fits

IceCube Collab. (contacts: PS + M. Danninger) arXiv:1601.00653, *JCAP* in press nulike: model-independent unbinned limit calculator for generic BSM models Publicly available at nulike.hepforge.org

IceCube Collab. (contacts: PS + M. Danninger) arXiv:1601.00653, *JCAP* in press nulike: model-independent unbinned limit calculator for generic BSM models Publicly available at nulike.hepforge.org

IceCube Collab. (contacts: PS + M. Danninger) arXiv:1601.00653, *JCAP* in press nulike: model-independent unbinned limit calculator for generic BSM models Publicly available at nulike.hepforge.org

Outline

- Background: combining dark matter searches
- Indirect detection with neutrinos
- Global fits and GAMBIT

Global fits for dark matter and new physics

Current global fit codes are hardcoded to deal with only a few

- theories (MSSM and/or mSUGRA+friends)
- theory calculators (often interfaced in a very ad hoc way)
- datasets and observables (often missing detailed likelihoods)
- scanning algorithms and statistical methods (generally just one)
- ⇒ hitting the wall on theories, data & computational methods

Global fits for dark matter and new physics

Current global fit codes are hardcoded to deal with only a few

- theories (MSSM and/or mSUGRA+friends)
- theory calculators (often interfaced in a very ad hoc way)
- datasets and observables (often missing detailed likelihoods)
- scanning algorithms and statistical methods (generally just one)
- ⇒ hitting the wall on theories, data & computational methods

How to quickly recast data, likelihood functions, scanning code 'housekeeping' and even theory predictions to new theories?

⇒ a new, very general global fitting framework

Global fits for dark matter and new physics

Current global fit codes are hardcoded to deal with only a few

- theories (MSSM and/or mSUGRA+friends)
- theory calculators (often interfaced in a very ad hoc way)
- datasets and observables (often missing detailed likelihoods)
- scanning algorithms and statistical methods (generally just one)
- ⇒ hitting the wall on theories, data & computational methods

How to quickly recast data, likelihood functions, scanning code 'housekeeping' and even theory predictions to new theories?

⇒ a new, very general global fitting framework

⇒ GAMBIT

GAMBIT: a second-generation global fit code

GAMBIT: The Global And Modular BSM Inference Tool

Overriding principles of GAMBIT: flexibility and modularity

- General enough to allow fast definition of new datasets and theoretical models
- Plug and play scanning, physics and likelihood packages
- Extensive model database not just small modifications to constrained MSSM (NUHM, etc), and not just SUSY!
- Extensive observable/data libraries (likelihood modules)
- Many statistical options Bayesian/frequentist, likelihood definitions, scanning algorithms
- A smart and fast LHC likelihood calculator
- Massively parallel
- Full open-source code release

The GAMBIT Collaboration

30 Members, 17 institutions, 10 countries, 11 Experiments, 4 major theory codes

ATLAS A. Buckley, P. Jackson, C. Rogan,

M. White,

LHCb M. Chrząszcz, N. Serra

Fermi-LAT J. Conrad, J. Edsjö, G. Martinez

P. Scott

CTA C. Balázs, T. Bringmann,

J. Conrad, M. White

HESS J. Conrad

IceCube J. Edsjö, P. Scott

AMS-02 A. Putze CDMS, DM-ICE L. Hsu

XENON/DARWIN J. Conrad

Theory P. Athron, C. Balázs, T. Bringmann,

J. Cornell, J. Edsjö, B. Farmer, A. Krislock, A. Kvellestad, M. Pato,

F. Mahmoudi, A. Raklev, P. Scott,

C. Weniger, M. White

+recently joined: T. Gonzales, F. Kahlhoefer, J. McKay, R. Ruiz, R. Trotta -recently retired: L. Dal, A. Saavedra, C. Savage

Modules

Physics modules

- DarkBit dark matter observables (relic density, direct + indirect detection)
- ColliderBit collider observables inc. Higgs + SUSY searches from ATLAS, CMS + LEP
- FlavBit flavour physics inc. g-2, $b \rightarrow s\gamma$, B decays (new channels, angular obs., theory uncerts, LHCb likelihoods)
- SpecBit generic BSM spectrum object, providing RGE running, masses, mixings, etc via interchangeable interfaces to different RGE codes
- DecayBit decay widths for all relevant SM & BSM particles
- PrecisionBit SM likelihoods, precision BSM tests (W mass, Δρ etc)

Each consists of a number of **module functions** that can have **dependencies** on each other

+ScannerBit: manages stats, sampling and optimisation

Hierarchical Model Database

- Models are defined by their parameters and relations to each other
- Models can inherit from parent models
- Points in child models can be automatically translated to ancestor models
- Friend models also allowed (cross-family translation)
- Model dependence of every function/observable is tracked
 maximum safety, maximum reuse

Backends: mix and match

- Module functions can require specific functions from backends
- Backends are external code libraries (DarkSUSY, FeynHiggs, etc) that include different functions
- GAMBIT automates and abstracts the interfaces to backends → backend functions are tagged according to what they calculate
- with appropriate module design, different backends and their functions can be used interchangeably
- GAMBIT dynamically adapts to use whichever backends are actually present on a user's system (+ provides details of what it decided to do of course)

Backends: mix and match

		pat@xpspedition: ~/gambit 163x45
A11	relative paths are given with reference to /home/pat/gambit.	

BACKENDS	VERSION	PATH TO LIB	STATUS	#FUNC	#TYPES	#CTORS
DDCalc0	0.0	Backends/installed/DDCalc/0.0/libDDCalc0.so	ОК			
DarkSUSY		Backends/installed/DarkSUSY/5.1.1/lib/libdarksusy.so	OK			
	1.0	Backends/installed/fastsim/1.0/libfastsim.so				
FeynHiggs		Backends/installed/FeynHiggs/2.11.2/lib/libFH.so	OK			
HiggsBounds		${\tt Backends/installed/HiggsBounds/4.2.1/lib/libhiggsbounds.so}$	OK			
HiggsSignals		${\tt Backends/installed/HiggsSignals/1.4.0/lib/libhiggssignals.so}$	ОК			
LibFarrayTest	1.0	Backends/examples/libFarrayTest.so	OK			
LibFirst	1.0	Backends/examples/libfirst.so	ОК			
		Backends/examples/libfirst.so	ОК			
LibFortran	1.0	Backends/examples/libfortran.so	OK			
MicrOmegas	3.5.5	Backends/installed/micromegas/3.5.5/MSSM/MSSM/libmicromegas.so	OK			
MicrOmegasSingletDM		Backends/installed/micromegas/3.5.5/SingletDM/SingletDM/libmicromegas.so	ОК			
Pythia	8.186	Backends/installed/Pythia/8.186/lib/libpythia8.so				
	8.209	Backends/installed/Pythia/8.209/lib/libpythia8.so	OK			
SUSYPOPE	0.2	no path in config/backend_locations.yaml				
SUSY_HIT		Backends/installed/SUSY-HIT/1.5/libsusyhit.so	OK			
SuperIso		Backends/installed/SuperIso/3.4/libsuperiso.so	OK			
gamLike	1.0.0	Backends/installed/gamLike/1.0.0/lib/gamLike.so	ОК			
	1.0.0	Backends/installed/nulike/1.0.0/lib/libnulike.so	OK			

Gambit diagnostic backend line 1 (press h for help or q to quit)

Backends: mix and match

pat@xpspedition: -/gambit 163x45 All relative paths are given with reference to /home/pat/gambit.								
BACKENDS	VERSION	PATH TO LIB	STATUS	#FUNC	#TYPES	#CTORS		
DDCalc0	0.0	Backends/installed/DDCalc/0.0/libDDCalc0.so	OK					
DarkSUSY		Backends/installed/DarkSUSY/5.1.1/lib/libdarksusy.so	ОК					
	1.0	Backends/installed/fastsim/1.0/libfastsim.so						
FeynHiggs		Backends/installed/FeynHiggs/2.11.2/lib/libFH.so	OK					
HiggsBounds		Backends/installed/HiggsBounds/4.2.1/lib/libhiggsbounds.so	OK					
HiggsSignals		${\tt Backends/installed/HiggsSignals/1.4.0/lib/libhiggs signals.so}$	OK					
LibFarrayTest	1.0	Backends/examples/libFarrayTest.so	ОК					
LibFirst	1.0	Backends/examples/libfirst.so	ОК					
		Backends/examples/libfirst.so	ОК					
LibFortran	1.0	Backends/examples/libfortran.so	ОК					
MicrOmegas	3.5.5	Backends/installed/micromegas/3.5.5/MSSM/MSSM/libmicromegas.so	ОК					
MicrOmegasSingletDM		Backends/installed/micromegas/3.5.5/SingletDM/SingletDM/libmicromegas.so	ОК					
Pythia	8.186	Backends/installed/Pythia/8.186/lib/libpythia8.so						
	8.209	Backends/installed/Pythia/8.209/lib/libpythia8.so	OK					
SUSYP0PE	0.2	no path in config/backend_locations.yaml						
SUSY_HIT		Backends/installed/SUSY-HIT/1.5/libsusyhit.so	OK					
SuperIso		Backends/installed/SuperIso/3.4/libsuperiso.so	ОК					
gamLike	1.0.0	Backends/installed/gamLike/1.0.0/lib/gamLike.so	ОК					
nulike	1.0.0	Backends/installed/nulike/1.0.0/lib/libnulike.so	ОК					
Gambit diagnostic back	kend line 1 (press h for	help or a to quit)						

- Module functions and backend functions get arranged into a dependency tree
- Starting with requested observables and likelihoods,
 GAMBIT fills each dependency and backend requirement
- Obeys rules at each step: allowed models, allowed backends, constraints from input file, etc
- → tree constitutes a directed acyclic graph
- → GAMBIT uses graph-theoretic methods to 'solve' the graph to determine function evaluation order

CMSSM:

CMSSM:

CMSSM:

Red: Model parameter translations

Blue: Precision calculations

CMSSM:

Red: Model parameter translations

Blue: Precision calculations Green: LEP rates+likelihoods

CMSSM:

Red: Model parameter translations

Blue: Precision calculations Green: LEP rates+likelihoods

Purple: Decays

CMSSM:

Red: Model parameter translations

Blue: Precision calculations Green: LEP rates+likelihoods

Purple: Decays

Orange: LHC observables and likelihoods

CMSSM:

Red: Model parameter translations

Blue: Precision calculations Green: LEP rates+likelihoods

Purple: Decays

Orange: LHC observables and likelihoods Grey: DM direct, indirect and relic density

CMSSM:

Red: Model parameter translations

Blue: Precision calculations Green: LEP rates+likelihoods

Purple: Decays

Orange: LHC observables and likelihoods Grey: DM direct, indirect and relic density

Pink: Flavour physics

Preliminary results: scalar singlet model

Preliminary results: SUSY (CMSSM – example only)

11 parameters:

 $\mathbf{4} \times \mathsf{CMSSM} + \mathbf{6} \times \mathsf{SM}$ nuisances $+ \mathbf{1} \times \mathsf{astro}$ nuis. $(\rho_{\gamma, \mathsf{local}})$

Outlook

- Neutrino telescope searches for DM give the strongest spin-dependent limits
 - highly complementary to other direct, indirect and collider searches
 - New IceCube analysis and nulike code allow full limit recast for any annihilating DM model
- GAMBIT is almost here:
 - → Global fits to many models for the first time
 - → Better global fits to familiar ones
 - → Highly modular, usable and extendible public code
 - → Faster, more complete and more consistent theory explorations + experimental analysis prototyping
 - → Initial series of 9 papers due out this summer
- After that:

more models, more observables, more data!

→→→ I HC Run 2!

Backup Slides

Beyond-the-Standard-Model Scanning

Goals:

- Given multiple theories, determine which fit the data better, and quantify how much better
- ② Given a particular theory, determine which parameter combinations fit all experiments, and how well

Beyond-the-Standard-Model Scanning

Goals:

- Given multiple theories, determine which fit the data better, and quantify how much better ⇒ model comparison
- ② Given a particular theory, determine which parameter combinations fit all experiments, and how well
 - ⇒ parameter estimation

Beyond-the-Standard-Model Scanning

Goals:

- Given multiple theories, determine which fit the data better, and quantify how much better ⇒ model comparison
- Given a particular theory, determine which parameter combinations fit all experiments, and how well
 parameter estimation

Why simple IN/OUT analyses are not enough...

- Only partial goodness of fit, no measure of convergence, no idea how to generalise to regions or whole space.
- Frequency/density of models in IN/OUT scans is not proportional to probability

 no statistical meaning.
- → statements about a theory's general ability to do one thing or another, based on such scans, are statistically invalid

Functional overview of GAMBIT

Dependency Resolution: a closer look

GAMBIT: other nice technical features

- Scanners: Nested sampling, differential evolution, MCMC, genetic algorithm, t-walk...
- Mixed-mode MPI + openMP parallelisation, mostly automated → scales to 10k+ cores
- diskless generalisation of various Les Houches Accords
- BOSS: dynamic loading of C++ classes from backends (!)
- all-in or module standalone modes easily implemented from single cmake script
- automatic getters for obtaining, configuring + compiling backends¹
- flexible output streams (ASCII, databases, HDF5, ...)
- more more more...

if a backend won't compile/crashes/steals your bank details, blame the authors (not us... except where we **are** the authors...)

LEP likelihoods

 complete model-independent recast of direct sparticle searches

Higgs likelihoods:

- for now: HiggSignals + HiggsBounds + constraints from invisible fits (Bernon, Dumont, Kraml et al)
- future: full simulation and ATLAS+CMS combination, more correlations, no SM-like coupling assumptions

Fast LHC likelihoods

• no simplified models, just faster direct simulation

LHC likelihoods:

 MC generation: Pythia8 parallelised with OpenMP + other speed tweaks

LHC likelihoods:

- MC generation: Pythia8 parallelised with OpenMP + other speed tweaks
- Detector simulation: fast simulation based on 4-vector smearing
 matches DELPHES results very closely (but much faster)

Jet energy distribution (a CMSSM example): black: parton-level analysis with smearing green: particle-level analysis with smearing red: detector-level simulation with DELPHES

- MC generation: Pythia8 parallelised with OpenMP + other speed tweaks
- Detector simulation: fast simulation based on 4-vector smearing
 → matches DELPHES results very closely (but much faster)
- Cross-sections: LO + LL from MC generator by default (fast NLO in works for SUSY)

- MC generation: Pythia8 parallelised with OpenMP + other speed tweaks
- Detector simulation: fast simulation based on 4-vector smearing
 → matches DELPHES results very closely (but much faster)
- Cross-sections: LO + LL from MC generator by default (fast NLO in works for SUSY)
- Analysis framework: custom event-level, independent of experiment or simulation

- MC generation: Pythia8 parallelised with OpenMP + other speed tweaks
- Detector simulation: fast simulation based on 4-vector smearing
 → matches DELPHES results very closely (but much faster)
- Cross-sections: LO + LL from MC generator by default (fast NLO in works for SUSY)
- Analysis framework: custom event-level, independent of experiment or simulation
- Likelihood: inline systematic error marginalisation (via nulike)

- MC generation: Pythia8 parallelised with OpenMP + other speed tweaks
- Detector simulation: fast simulation based on 4-vector smearing
 → matches DELPHES results very closely (but much faster)
- Cross-sections: LO + LL from MC generator by default (fast NLO in works for SUSY)
- Analysis framework: custom event-level, independent of experiment or simulation
- Likelihood: inline systematic error marginalisation (via nulike)
- Initially shipping with:
 - ATLAS SUSY searches (0ℓ, 0/1/2ℓ t̃, b jets + MET, 2/3ℓ EW)
 - CMS multi-ℓ SUSY
 - CMS DM (t pair + MET, mono-b, monojet)

DarkBit – an incomplete overview

Backends - gamLike

C++ library with simple interface to most relevant likelihood functions from Fermi LAT and IACTs

Particle physics input:

$$\frac{1}{m_\chi^2} \frac{d\sigma v}{dE}(v, E)$$

Output: InL

Uncertainties in the DM distribution (or astrophysical foregrounds) are internally marginalized over.

Correct treatment of energy dispersion and spectral singularities (lines, virtual internal Bremsstrahlung, boxes).

