DM: Latest results in the mono-jet and di-jet channels

Andreas Korn

University College London (for the ATLAS & CMS Collaborations) Andreas.Korn@cern.ch

Introduction

χ

- Dark Matter (DM) well established:
 - Galaxy rotation
 - CMB measurements

- Three detection methods
 - Direct
 - Indirect
 - Production in collisions
 - \rightarrow LHC

direct detection

Andreas Korn

DM at LHC:Models

	Name	Initial state	Type	Operator	 Common: Effective Field Theory (EFT)
complex (Majorana)	C1	qq	scalar	$rac{m_q}{M_\star^2}\chi^\dagger\chiar q q$	• Limited validity: $m_{mediator} >> E(\chi)$
	C5	gg	scalar	$\frac{1}{4M_\star^2}\chi^\dagger\chi\alpha_{\rm s}(G^a_{\mu\nu})^2$	 Integrate mediator out,
	D1	qq	scalar	$rac{m_q}{M_\star^3}ar\chi\chiar q q$	Fermi constant G _F like coupling:
Dirac 〈	D5	qq	vector	$\frac{1}{M_\star^2} \bar{\chi} \gamma^\mu \chi \bar{q} \gamma_\mu q$	$G_{DM} = \left(\frac{\sqrt{g_q g_{DM}}}{M}\right) = \frac{1}{(1 - 1)^n}$
	D8	qq	axial-vector	$\frac{1}{M_\star^2} \bar{\chi} \gamma^\mu \gamma^5 \chi \bar{q} \gamma_\mu \gamma^5 q$	
	D9	qq	tensor	$\frac{1}{M_\star^2} \bar{\chi} \sigma^{\mu\nu} \chi \bar{q} \sigma_{\mu\nu} q$	$(M_{mediator}) (M_{*})^{n}$
	D11	gg	scalar	$\frac{1}{4M_\star^3}\bar{\chi}\chi\alpha_{\rm s}(G^a_{\mu\nu})^2$	 Now mostly superseeded
q	EFT	χ χ	q q q q mode medi	g_{DM}	
		CL	A	ndreas Korn	DM@LHC2016, 30 th March 3

DM at LHC:Models

$$\mathcal{L}_{\text{vector}} = g_{q} \sum_{q=u,d,s,c,b,t} Z'_{\mu} \bar{q} \gamma^{\mu} q + g_{\chi} Z'_{\mu} \bar{\chi} \gamma^{\mu} \chi$$

 $\mathcal{L}_{\text{axial-vector}} = g_{q} \sum_{q=u,d,s,c,b,t} Z'_{\mu} \bar{q} \gamma^{\mu} \gamma^{5} q + g_{\chi} Z'_{\mu} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi.$

$$\mathcal{L}_{\text{scalar}} = -g_{\text{DM}}\phi\bar{\chi}\chi - g_q \frac{\phi}{\sqrt{2}} \sum_{q=u,d,s,c,b,t} y_q \bar{q}q ,$$
$$\mathcal{L}_{\text{pseudo-scalar}} = -ig_{\text{DM}}\phi\bar{\chi}\gamma_5\chi - ig_q \frac{\phi}{\sqrt{2}} \sum_{q=u,d,s,c,b,t} y_q \bar{q}\gamma_5q$$

Move towards simplified models

- → recommendations from DM@LHC14 (arXiv:hep-ph/1506.03116)
- → recommendations from LHCDMWG (arXiv:hep-ex/1603.04156, arXiv:hep-ex/1507.00966)
- Parameters: m_{DM} , $m_{mediator}$, g_{DM} , g_{q}
- Benchmark models
- m_{DM} vs m_{mediator} plane, couplings
- Vector : $g_{DM} = 1$; $g_{q} = 0.25$
- Axial-Vector : $g_{DM} = 1$; $g_{q} = 0.25$
- Scalar : $g_{DM} = 1$; $g_{q} = 1$
- Pseudo-Scalar: $g_{DM} = 1$; $g_{q} = 1$

Andreas Korn

DM at LHC

- DM χ couples loosely to SM particles (quarks q) through a mediator
- \rightarrow mediator couples to DM $~\chi$ with g ___M and to SM quark with g _
- Can't reconstruct DM in detector
 → need accompanying signature
- Mediator can decay into quark (jet) pairs

Andreas Korn

IIIII

DM at LHC

Andreas Korn

Other DM signals at the LHC

- Can't reconstruct DM in detector
 → missing momentum → need accompanying signature
- Differentiate channels by accompanying signature

Missing transverse Energy MET

Andreas Korn

8

Mono-Jet

Andreas Korn

L

Mono-Jet: Backgrounds

Andreas Korn

Mono-Jet

IIIII

Mono-Jet

Andreas Korn

Comparison with Direct Detection

- Translate into DM-nucleon cross sections
- Spin dependent (SD) or independent (SI) according to mediator model used
- Note: Comparisons model dependent!

Andreas Korn

• LHC experiments provide complementary coverage!

DiJet Events

Andreas Korn

+ BANK BANK

Introduction: Dijet resonances

- Look for resonant qq, gq and gg states
- Benchmark search for new physics
- Construct dijet mass
- Fit smooth spectrum $f(x) = p_1(1-x)^{p_2}x^{p_3+p_4\ln x}$ • Look for deviations
- Look for deviations
 → Bumphunter
 Toilburgtor
 - \rightarrow Tailhunter
- Limits on acceptance times x-section and specific models

Andreas Korn

Dijet resonances

- Selection
 - p₁ > 440 GeV

•
$$|y^*| = \frac{1}{2} |y_1 - y_2| < 0.6$$

- Background from fit
- BumpHunter indicates most discrepant interval (not so exciting at all)

Physics Letters B 754 (2016) 302–322 http://dx.doi.org/10.1016/j.physletb.2016.01.032

Andreas Korn

18

•Excluded masses: String resonance (7.0 TeV) , scalar di-quark (6.0 TeV), axigluon (5.1 TeV), excited quark q* (5.0 TeV), Heavy W' (2.6 TeV)

Andreas Korn

Dijet Events at low mass

Andreas Korn

IIII

Di-beauty-Jets

• Third Generation (top & bottom) heavy, might be special \rightarrow investigate couplings to b

- Needs identification of jets containing bottom hadrons \rightarrow b-tagging
- Depending on decay (bb, bq, bg) \rightarrow at least 1 or 2 b-tags

Î

• Possible qg background reduction also for $X \rightarrow qq$ modes

Andreas Korn

Di-beauty-Jets

• Same selection as dijets ($p_T > 440$ GeV, $|y^*| = \frac{1}{2} |y_1 - y_2| < 0.6$) • Limit $|\eta| < 2.5$, to tracking coverage for b-tagging ar

arXiv:1603.08791v1 [hep-ex]

DM@LHC2016, 30th March

Andreas Korn

Di-beauty-Jets

- Limits on benchmark models
- Excited quarks $b^* \rightarrow bg$
 - >= 1 b-tag
 - Excluded masses 1.1-2.1 TeV

•Extra Gauge Bosons Z'

- 2 b-tag
- Leptophobic Z'
- Excluded masses 1.1-1.5 TeV
- Sequential Standard Model (SSM) → SM couplings
- Not enough data to exclude Sequential SM Z'

arXiv:1603.08791v1 [hep-ex]

Andreas Korn

Summary

25

Conclusion

- The hunt for Dark Matter continues
- ATLAS and CMS have new interesting results
- Just the beginning of 13 TeV running ...
- LHC searches complementary to direct searches
- Jet channels are particularly sensitive
- Search for both DM and mediator candidates
- Model dependence in Interpretation
 - LHCDMWG Recommendations should unify approaches and help comparisons

Andreas Korn

Bonus Slides

Andreas Korn

ATLAS: a particle detector at the LHC

ALLES FIXER

11111

Technicalities: narrow width

The narrow-width approximation

width, even for resonances normally considered narrow. The extreme end of this tail due to the PDFs is sometimes suppressed in the searches by requiring the partons to be have mass close to the pole mass, within a few standard deviations on the dijet mass resolution. This is generally a reasonable solution for the shapes, as the QCD background overwhelms the signal at low dijet mass. However, the way that this tail from PDFs is handled can significantly affect the total resonance cross section quoted for specific models, as we discuss in Appendix A

Narrow width approximation:

Approximate the true resonance shape with a delta function

• This avoids low-mass tails as PDFs will act only in the surrounding of the peak

$$\sigma_{had}(m_R) = 16\pi^2 \times \mathcal{N} \times \mathcal{A}_{\cos\theta^*} \times BR \times \left[\frac{1}{s}\frac{dL(\bar{y}_{min}, \bar{y}_{max})}{d\tau}\right]_{\tau = m_R^2/s} \times \frac{\Gamma_R}{m_R}, \quad (44)$$

where the parton luminosity $\frac{dL}{d\tau}$ is calculated at $\tau = m_R^2/s$, and constrained in the inematic range $[\bar{y}_{min}, \bar{y}_{max}]$. **Searches for Dijet Resonances at Hadron Colliders** Robert M. Harris, Konstantinos Kousouris arXiv:1110.5302

Andreas Korn

Rapidity distribution, Selection

Beauty-jets and missing E₁

Eur. Phys. J. C (2015) 75:92 DOI 10.1140/epjc/s10052-015-3306-z

Andreas Korn

Direct Detection

Mono-Jet

Mono-Jet

Andreas Korn

Eur. Phys. J. C (2015) 75:299 DOI 10.1140/epjc/s10052-015-3517-3

DM@LHC2016, 30th March

34

Mono-Jet

Eur. Phys. J. C (2015) 75:299 DOI 10.1140/epjc/s10052-015-3517-3

Andreas Korn DM@LHC2016, 30th March

m

35

Mono-Jet

Andreas Korn

Eur. Phys. J. C (2015) 75:235 DOI 10.1140/epjc/s10052-015-3451-4

IIIII

Di-beauty-Jets

• Gaussian limits: model independent approach

Andreas Korn

Di-Jet

Physics Letters B 754 (2016) 302–322 http://dx.doi.org/10.1016/j.physletb.2016.01.032

DM@LHC2016, 30th March

Andreas Korn

38