The Future of Simplified Models

Joachim Kopp

Joachim Kopp

The current simplified model portfolio

see talks by Sarah A. Malik and Oliver Buchmueller

Outline

Simplified models off the beaten paths

- 2 Looking for the mediators
- 3 Non-minimal dark sectors
- Data-Driven Phenomenology: Advocacy for Ambulance Chasing

Simplified Models off the Beaten Paths

What may we be missing?

A bottom-up exercise in classifying simplified models

What may we be missing?

A bottom-up exercise in classifying simplified models

One step beyond minimal simplified models

Assumptions:

- \leq 3 new multiplets:
 - Dark matter
 - Coannihilation partner
 - Mediator
- DM is colorless and electrically neutral
- DM is a thermal relic
- DM annihilation/coannihilation is a 2–2 process
- Tree-level, renormalizable interactions
- New particles are spin 0, 1/2, or 1

Baker et al., The Coannihilation Codex, arXiv:1510.03434

Four classes of simplified models

• Choose DM in $(1, N, \beta)$ of $SU(3) \times SU(2) \times U(1)$.

- Choose DM in $(1, N, \beta)$ of $SU(3) \times SU(2) \times U(1)$.
- Choose representation of coannihilation partner X.

- Choose DM in $(1, N, \beta)$ of $SU(3) \times SU(2) \times U(1)$.
- Choose representation of coannihilation partner X.
- Allowed representations for mediator *M* are now fixed

- Choose DM in $(1, N, \beta)$ of $SU(3) \times SU(2) \times U(1)$.
- Choose representation of coannihilation partner X.
- Allowed representations for mediator *M* are now fixed
- Choose spin of mediator M
 - Determines the spins of DM and X

- Choose DM in $(1, N, \beta)$ of $SU(3) \times SU(2) \times U(1)$.
- Choose representation of coannihilation partner X.
- Allowed representations for mediator *M* are now fixed
- Choose spin of mediator M
 - Determines the spins of DM and X
- Allowed couplings to SM particles now determined

Tables, tables, tables

ID	x	$\alpha + \beta$	M_s	Spin	$(SM_1 SM_2)$	$X-DM-SM_3$	M_s -X-X
SU1			(1, 1, 0)	в	$ \begin{split} & (u_R \overline{u_R}), (d_R \overline{d_R}), (\ell_R \overline{\ell_R}) \\ & (Q_L \overline{Q_L}), (L_L \overline{L_L}), (H H^\dagger) \end{split} $	H1	~
SU2		0		F	$(L_L H)$		
SU3			$(1, 2, 0)^{N \ge 2}$	В	$(Q_L \ \overline{Q_L}), (L_L \ \overline{L_L}), (H H^{\dagger})$	H1	~
SU4	$(1 N \alpha)$		(1, 3, 0) -	F	$(L_L H)$		
SU5	(1, 1, a)		(1 1 - 2)	В	$(d_R \overline{u_R}), (H^\dagger H^\dagger), (L_L L_L)$		~
SU6		-2	(1, 1, -2)	F	$(L_L H^{\dagger})$	H2	
SU7			$(1,3,-2)^{N\geq 2}$	В	$(H^{\dagger} H^{\dagger}), (L_L L_L)$		$\checkmark(\alpha=\pm 1)$
SU8				F	$(L_L H^{\dagger})$	H2	
SU9		-4	(1, 1, -4)	В	$(\ell_R \ell_R)$		$\checkmark (\alpha = \pm 2)$
SU10		-1	(1, 2, -1)	В	$(d_R\overline{Q_L}), (\overline{u_R}Q_L), (\overline{L_L}\ell_R)$	H3	
SU11	$(1 N \pm 1 \alpha)$			F	$(\ell_R H)$	H4	
SU12	$(1, 1 + 1, \alpha)$		(1.2.2)	В	$(L_L \ell_R)$		
SU13			(1, 2, -3)	F	$(\ell_R H^{\dagger})$		
SU14	$(1, N \pm 2, \alpha)$	0	(1.2.0)	В	$(Q_L \ \overline{Q_L}), (L_L \ \overline{L_L}), (H H^{\dagger})$		$\checkmark (\alpha = 0)$
SU15		U	(1, 3, 0)	F	(L _L H)		
SU16		2	(1.2	В	$(H^{\dagger} H^{\dagger}), (L_L L_L)$		$\checkmark (\alpha = \pm 1)$
SU17		$^{-2}$	(1, 3, -2)	F	$(L_L H^{\dagger})$		

in $(1, N, \beta)$ representation of $SU(3) \times SU(2) \times U(1)$
coannihilation partner
s-channel mediator
SM particles in coannihilation $DM + X \rightarrow SM_1SM_2$
Possible additional vertex DM-X-SM ₃

Joachim Kopp

Tables, tables, tables

ID	х	$\alpha + \beta$	M_s	Spin	$(SM_1 SM_2)$	$X-DM-SM_3$	M_s –X–X
SU1			(1, 1, 0)	в	$ \begin{split} & (u_R \overline{u_R}), (d_R \overline{d_R}), (\ell_R \overline{\ell_R}) \\ & (Q_L \overline{Q_L}), (L_L \overline{L_L}), (H H^\dagger) \end{split} $	H1	~
SU2		0		F	$(L_L H)$		
SU3			$(1, 2, 0)^{N \ge 2}$	В	$(Q_L \ \overline{Q_L}), (L_L \ \overline{L_L}), (H \ H^{\dagger})$	H1	×
SU4	$(1 N \alpha)$		(1, 3, 0) -	F	$(L_L H)$		
SU5	$(1, 1, \alpha)$		(1 1 0)	В	$(d_R \overline{u_R}), (H^{\dagger} H^{\dagger}), (L_L L_L)$		√

Tally

In total 161 simplified models (defined by representations of DM, X and M)

49 s-channel, 105 t-channel, 7 hybrid

SU12 SU13		-3	(1, 2, -3)	F	$(L_L \epsilon_R)$ $(\ell_R H^{\dagger})$	
SU14		0	(1, 2, 0)	в	$(Q_L \overline{Q_L}), (L_L \overline{L_L}), (H H^{\dagger})$	$\checkmark (\alpha = 0)$
SU15	$(1 N \pm 2 \infty)$	0	(1, 3, 0)	F	$(L_L H)$	
SU16	$(1, N \pm 2, \alpha)$		(1, 3, -2)	в	$(H^{\dagger} H^{\dagger}), (L_L L_L)$	$\checkmark (\alpha = \pm 1)$
SU17		-2		F	$(L_L H^{\dagger})$	

DM	in $(1, N, \beta)$ representation of $SU(3) \times SU(2) \times U(1)$
Х	coannihilation partner
Ms	s-channel mediator
SM_1 , SM_2	SM particles in coannihilation $DM + X \rightarrow SM_1SM_2$
SM ₃	Possible additional vertex DM-X-SM ₃

LHC pheno classification

Another table ...

	$pp \rightarrow \ldots$	Prod. via	Signatures	Search
	DM + DM + ISR	gauge int. or $SM_1 \in p$ for t-channel	mono-Y + $\not \!$	[55, 56, 62, 63, 104]
common	$\begin{array}{l} \mathbf{X} \; (\rightarrow \; \mathrm{SM}_1^{\mathrm{soft}} \; \mathrm{SM}_2^{\mathrm{soft}} \; \mathrm{DM}) \\ + \; \mathbf{X} \; (\rightarrow \; \mathrm{SM}_1^{\mathrm{soft}} \; \mathrm{SM}_2^{\mathrm{soft}} \; \mathrm{DM}) \; + \; \mathrm{ISR} \end{array}$	gauge int. or $SM_2 \in p$ for <i>t</i> -channel	mono-Y + $\not E_T$ mono-Y + $\not E_T$ + ≤ 4 SM	[55,56,62,63,104] Partial coverage [105]
	$\rm DM$ + X (\rightarrow $\rm SM_1^{soft}$ $\rm SM_2^{soft}$ DM) + ISR	$(SM_1 SM_2) \in p$	mono-Y + $\not \!\!\! E_T$ mono-Y + $\not \!\!\! E_T$ + ≤ 2 SM	[55,56,62,63,104] Partial coverage [105]
	$\begin{split} \mathbf{M}_{s} & (\rightarrow [\mathrm{SM}_{1} \ \mathrm{SM}_{2}]^{\mathrm{res}}) \\ &+ \mathbf{M}_{s} \ (\rightarrow [\mathrm{SM}_{1} \ \mathrm{SM}_{2}]^{\mathrm{res}}) \end{split}$		2 resonances	[106-112]
	$ \begin{split} & \left[\mathbf{M}_s \ (\rightarrow \ [\mathrm{SM}_1 \ \mathrm{SM}_2]^{\mathrm{res}}) \right. \\ & \left. + \ \mathbf{M}_s \ (\rightarrow \ \mathrm{DM} + \mathbf{X} \ (\rightarrow \ \mathrm{SM}_1^{\mathrm{soft}} \ \mathrm{SM}_2^{\mathrm{soft}} \ \mathrm{DM}) \right) \end{split} $	gauge int.	resonance + $\not\!$	No search No search
nnel	$ \begin{split} & \mathbf{M}_s \ (\rightarrow \mathbf{DM} + \mathbf{X} \ (\rightarrow \mathbf{SM}_1^{\mathrm{soft}} \ \mathbf{SM}_2^{\mathrm{soft}} \ \mathbf{DM})) \\ & + \mathbf{M}_s \ (\rightarrow \mathbf{DM} + \mathbf{X} \ (\rightarrow \mathbf{SM}_1^{\mathrm{soft}} \ \mathbf{SM}_2^{\mathrm{soft}} \ \mathbf{DM})) \end{split} $		$\not\!\!\!E_T + \leq 4~{\rm SM}$	[113,114,114–124]
-cha	$M_s (\rightarrow [SM_1 \ SM_2]^{res})$		1 resonance	[125-146]
s	$\mathbf{M}_s \ (\rightarrow \mathbf{D}\mathbf{M} + \mathbf{X} \ (\rightarrow \mathbf{SM}_1^{\mathrm{soft}} \ \mathbf{SM}_2^{\mathrm{soft}} \ \mathbf{D}\mathbf{M}))$	$(SM_1 SM_2) \in p$	$\not\!\!\!E_T + \leq 2~{\rm SM}$	[120-122,124] [104,147-153]
	$SM_{1,2} + M_s (\rightarrow [SM_1 \ SM_2]^{res})$		1 resonance + 1 SM	Partial coverage [154,155]
	$\begin{array}{l} \mathrm{SM}_{1,2} \\ + \mathrm{M}_s \ (\rightarrow \mathrm{DM} + \mathrm{X} \ (\rightarrow \mathrm{SM}_1^{\mathrm{soft}} \ \mathrm{SM}_2^{\mathrm{soft}} \ \mathrm{DM})) \end{array}$	$SM_{2,1} \in p$	${\not\!\! E}_T+1\leq 3~{\rm SM}$	[114,120–124] [147–153,156–158]
	$ \begin{aligned} \mathbf{M}_t & (\rightarrow \mathrm{SM}_1 \ \mathrm{DM}) \\ &+ \mathbf{M}_t \ (\rightarrow \mathrm{SM}_1 \ \mathrm{DM}) \end{aligned} $		$\not E_T + \le 2 \ \text{SM}$	[120–122,124] [104,147–153]
I	Joschim Kopp The F	L Juture of Simplified M	lodels	[100, 110]

10

LHC pheno classification

Another table ...

	$pp \rightarrow \dots$		Prod. via	Signatures	Search
uot	DM + DM + ISR X (→ SM ^{soft} SM ^{soft} DM) Frequent features		gauge int. or $SM_1 \in p$ for <i>t</i> -channel	mono-Y + $\not{\!\!\!E}_T$	[55,56,62,63,104]
	 Cascade decays (1- or 2-step, involv Soft SM particles (in coannihilation s Resonances mediator M_s → SM 	ves MET) S cenarios) 1 ₁ SM ₂)		-
8-0	$M_s \ (\rightarrow {\rm DM} + {\rm X} \ (\rightarrow {\rm SM_1^{\rm soft}} \ {\rm SM_2^{\rm so}}$	^{ft} DM))	$(SM_1 SM_2) \in p$	$\not \!$	[120–122,124] [104,147–153]
	$\mathrm{SM}_{1,2} + \mathrm{M}_s \ (\rightarrow [\mathrm{SM}_1 \ \mathrm{SM}_2]^{\mathrm{res}})$			1 resonance + 1 SM	Partial coverage [154,155]
	$\begin{array}{l} \mathrm{SM}_{1,2} \\ + \mathrm{M}_s \ (\rightarrow \mathrm{DM} + \mathrm{X} \ (\rightarrow \mathrm{SM}_1^{\mathrm{soft}} \end{array}) \end{array}$	$SM_{2,1} \in p$	${\not\!\! E}_T+1\leq3~{\rm SM}$	$\begin{bmatrix} 114, 120 - 124 \end{bmatrix}$ $\begin{bmatrix} 147 - 153, 156 - 158 \end{bmatrix}$	
	$\begin{array}{l} \mathbf{M}_t \ (\rightarrow \ \mathbf{SM}_1 \ \mathbf{DM}) \\ + \ \mathbf{M}_t \ (\rightarrow \ \mathbf{SM}_1 \ \mathbf{DM}) \end{array}$		$\not\!\!\! E_T + \leq 2~{\rm SM}$	[120–122,124] [104,147–153]	
1	Joachim Kopp	The F	uture of Simplified M	lodels	L [100, 110]

10

Take-home messages (part 1)

- Look for the mediators!
- Many searches sensitive (though not yet interpreted in terms of DM)
 Important role for recasting tools (ATOM, CheckMate, GAMBIT, MadAnalysis 5, SModelS, ...)

Looking for the Mediators

Specific example: a leptoquark model

ID	х	$\alpha + \beta$	M_s	\mathbf{Spin}	$(SM_1 SM_2)$	$X-DM-SM_3$	M_s –X–X
ST1		$\frac{10}{3}$ (3, 1, $\frac{10}{3}$)		В	$(u_R \overline{l_R})$		$\checkmark (\alpha = -\frac{5}{3})$
ST2			(2, 1, 4)	В	$(d_R \overline{\ell_R}), (Q_L \overline{L_L}), (\overline{d_R} \overline{d_R})$		$\checkmark (\alpha = -\frac{2}{3})$
ST3		4	(0, 1, 3)	F	$(Q_L H)$	H5	
ST4		3	$(3, 3, \frac{4}{2})^{N \ge 2}$	в	$(Q_L \ \overline{L_L})$		$\checkmark (\alpha = -\frac{2}{3})$
ST5	$(3 N \alpha)$		$(3, 3, \frac{3}{3}) =$	F	$(Q_L H)$	H5	
ST6	(0, 11, 0)		$(3, 1, -\frac{2}{3})$	В	$(\overline{Q_L} \overline{Q_L}), (\overline{u_R} \overline{d_R}), (u_R \ell_R), (Q_L L_L)$		$\checkmark(\alpha = \frac{1}{3})$
ST7		$-\frac{2}{3}$	(3, 1, -3)	F	$(Q_L H^{\dagger})$	H6	
ST8			3	$(3, 3, -2)N \ge 2$	в	$(\overline{Q_L} \ \overline{Q_L}), (Q_L \ L_L)$	
ST9			$(3, 3, -\frac{1}{3})$ –	F	$(Q_L H^{\dagger})$	H6	
ST10		$-\frac{8}{3}$	$(3,1,-rac{8}{3})$	В	$(\overline{u_R}\overline{u_R}),(d_R\ell_R)$		$\checkmark(\alpha = \frac{4}{3})$
ST11		7 (3.2.7)		В	$(Q_L \ \overline{\ell_R}), (u_R \ \overline{L_L})$		
ST12		3	(0, 2, 3)	F	$(u_R H)$		
ST13	$(3 N \pm 1 \alpha)$	1	$(3, 2, \frac{1}{2})$	В	$(d_R \overline{L_L}), (\overline{Q_L} \overline{d_R}), (u_R L_L)$		
ST14	(0,11 ± 1,4)	3	(0, 2, 3)	F	$(u_R H^\dagger), (d_R H)$	H7	
ST15		_ 5	$(3, 2, -\frac{5}{2})$	В	$(\overline{Q_L} \overline{u_R}), (Q_L \ell_R), (d_R L_L)$		
ST16		3	(0,2, 3)	F	$(d_R H^{\dagger})$		
ST17		4	$(3, 3, \frac{4}{3})$	в	$(Q_L \ \overline{L_L})$		$\checkmark (\alpha = -\frac{2}{3})$
ST18	$(3 N \pm 2 \alpha)$	3		F	$(Q_L H)$		
ST19	$(0, 1, \pm 2, \alpha)$	_2	(3,3,-2)	в	$(\overline{Q_L} \ \overline{Q_L}), (Q_L \ L_L)$		$\checkmark(\alpha = \frac{1}{3})$
ST20		3	(0, 0, -3)	F	$(Q_L H^{\dagger})$		

Specific example: a leptoquark model

Lagrangian

$$\begin{split} \mathcal{L} &= \frac{i}{2} \overline{\text{DM}} \not \partial \text{DM} \, + \, i \overline{X} \, \overline{\mathcal{D}} \, X \, + \, |D_{\mu} M_{s}|^{2} \\ &- \frac{m_{\text{DM}}}{2} \overline{\text{DM}} \, \text{DM} \, - \, m_{X} \overline{X} \, X \, - \, V(M_{s}, H) \\ &- \left(y_{D} \overline{X} \, M_{s} \, \text{DM} \, + \, y_{Q\ell} \, \overline{Q_{L}} M_{s} \, \ell_{R} \, + \, y_{Lu} \overline{L_{L}} M_{s}^{c} u_{R} \, + \, \text{h.c.} \right), \end{split}$$

Specific example: a leptoquark model

Baker et al., The Coannihilation Codex, arXiv:1510.03434

Non-Minimal Dark Sectors

Dark Matter Production at the LHC

Traditional DM searches: initial state radiation

(invisible @ LHC)

Monojet

Monophoton

How about final state radiation?

Model Framework: Self-Interacting DM

Dark Sector Lagrangian

$$\mathcal{L}_{\text{dark}} \equiv \bar{\chi} (i\partial \!\!\!/ - m_{\chi} + ig_{\mathcal{A}'} \mathcal{A}') \chi - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} - \frac{1}{2} m_{\mathcal{A}'}^2 \mathcal{A}'_{\mu} \mathcal{A}'^{\nu} - \frac{\epsilon}{2} F'_{\mu\nu} F^{\mu\nu} ,$$

Buschmann JK Liu Wang, arXiv:1505.07459

Dark Radiation — Analytics vs. Numerics

A' Decay

Phenomenological Results

- Recast ATLAS prompt lepton jet search (arXiv:1212.5409)
- Recast ATLAS displaced lepton jet search (arXiv:1409.0746)
- Conservative projections for 13 TeV
 - Type-0 (muonic lepton jets only) cannot estimate multijet background

Phenomenological Results

- Recast ATLAS prompt lepton jet search (arXiv:1212.5409)
- Recast ATLAS displaced lepton jet search (arXiv:1409.0746)
- Conservative projections for 13 TeV
 - Type-0 (muonic lepton jets only) cannot estimate multijet background

Take-home messages (part 2)

- Very conventional dark sectors may lead to very unconventional signatures
 - Lepton jets

. . .

e.g. Buschmann et al., arXiv:1505.07459

Emerging jets

e.g. talk by Will Shepherd Strassler Zurek, hep-ph/0604261 Bai Rajaraman, arXiv:1109.6009 Schwaller Stolarski Weiner, arXiv:1502.05409

Missing energy within jets

e.g. Cohen Lisanti Lou, arXiv:1503.00009

- In extended dark sectors, the particle that is easiest to discover is typically the one with the lowest cosmological abundance (large coupling to SM → low relic density)
- Don't take simplified models too serious!

Data-Driven Phenomenology Why Ambulance Chasing is Awesome

From Data to Theory

Traditional Motivation for Simplified Models

Present experimental results in a way that allows theorists to apply them to large classes of models

Problem

Theorists invent too many exotic models (which cannot be reduced to the established simplified models)

My Dream

Exchange data on event-by-event basis (like many direct/indirect searches)

A Pheno-Level Event Record

```
class HEPEventRecord {
                                // Number of particles
 int np;
 HEPParticle *p;
                                // List of particles
  . . .
};
class HEPParticle {
 double pT, eta, phi;
                                // 3-momentum
  double E;
                                // Energy
                                // Type - jet, photon, e+, e-, etc.
 int type:
 double em fraction;
                                // Fraction of E in E-cal
 int n_tracks;
                                // Number of tracks
 bool b_tag;
 int n spec;
  double *spec;
                                // Analysis-specific info
  . . .
};
```

(Heavily inspired by the good old LHC Olympics Format)

- Easy to implement in existing analysis frameworks
- Easy to use
- Customizable

Criticism

- Less credit for experimental collaborations
 - Share data after collaboration has exploited it (ATLAS/CMS have demonstrated that they can act very fast!)
 - Experimentalists' analyses will always be more trusted

Criticism

- Less credit for experimental collaborations
 - Share data after collaboration has exploited it
 (ATLAS/CMS have demonstrated that they can act very fast!)
 Experimentalists' analyses will always be more trusted
- Some will misinterpret/overinterpret data
 - Happens anyway
 - Blame falls on theorists
 - Not aware of any experiment whose reputation has suffered from this

Criticism

- Less credit for experimental collaborations
 - Share data after collaboration has exploited it (ATLAS/CMS have demonstrated that they can act very fast!) Experimentalists' analyses will always be more trusted
- Some will misinterpret/overinterpret data
 - Happens anyway
 - Blame falls on theorists
 - Not aware of any experiment whose reputation has suffered from this
- Even more ambulance chasing
 - IMHO not a bad thing

Recent Ambulances

We've learned about

- Pulsars
- Cosmic ray propagation
- Innumerable new DM models
- Sommerfeld enhancement

- Spurred Interest in low-mass DM
- Now main target for many experiments (→ talk by J. Billard)

We've learned about

- High-E astrophysics
- Better CR models
- Analyzing Fermi data (
 → talk by M. Lisanti)

DAMA/CoGeNT

Galactic Center Excess

PAMELA

Take-home messages (part 3)

- Sharing event-level data
 - is easy
 - benefits experimentalists and theorists
 - works great in astrophysics
- Ambulance chasing
 - moves the field forward
 - is educational
 - is great fun!

Summary

- Look for the mediators!
- Many searches sensitive (though not yet interpreted in terms of DM)
- Very conventional dark sectors may lead to very unconventional signatures
- Don't take simplified models too serious!
- Sharing event-level data would be great.
- Ambulance chasing is a great

Bonus Slides

Dark Radiation Showers — Semi-Analytical Results

Notation, notation, notation, ...

- Incoming (off-shell) DM particle: $p_{\chi,in} = (E, 0, 0, p)$
- Outgoing DM particle: $p_{\chi,out} = (\mathbf{x}E, -k_t, \mathbf{0}, \sqrt{\mathbf{x}^2 E^2 k_t^2 m_{\chi}^2})$
- Outgoing dark photon: $k = ((1 x)E, k_t, 0, \sqrt{(1 x)^2 E^2 k_t^2 m_{A'}^2})$
- Virtuality: $t \equiv (p_{\chi,out} + k)^2 m_{\chi}^2$

Probability for a collinear splitting:

with the splitting kernel

$$P_{\chi \to \chi}(x,t) = \frac{1+x^2}{1-x} - \frac{2(m_{\chi}^2 + m_{A'}^2)}{t}$$

Dark Radiation Showers — Semi-Analytical Results

Average number radiated dark photons

$$\langle \mathbf{n}_{\mathbf{A}'}
angle \simeq rac{lpha_{\mathbf{A}'}}{2\pi} \int_{x_{\min}}^{x_{\max}} dx \int_{t_{\min}}^{t_{\max}} rac{dt}{t} \mathbf{P}_{\chi
ightarrow \chi}(\mathbf{x}) \, .$$

Splitting is a Poisson process.

Probability for *m* splittings

$$\mathcal{D}_m = rac{e^{-\langle n_{A'}
angle} \langle n_{A'}
angle^m}{m!}$$

Probability for no splitting (Sudakov factor)

$$\Delta \equiv \boldsymbol{p}_0 = \boldsymbol{e}^{-\langle \boldsymbol{n}_{\mathcal{A}'} \rangle}$$

Dark Radiation — Energy Spectrum of DM Particles

Compute first the moments of the *E* spectrum $f_{\chi}(X \equiv E_{\chi}/E_0)$:

Events with one emission

$$p_{1}\langle X^{s} \rangle_{1A'} = e^{-\langle n_{A'} \rangle} \frac{\alpha_{A'}}{2\pi} \int_{x_{\min}}^{x_{\max}} dx \, x^{s} \int_{t_{\min}}^{t_{\max}} \frac{dt}{t} P_{\chi \to \chi}(x)$$
$$\equiv e^{-\langle n_{A'} \rangle} \langle n_{A'} \rangle \, \overline{X^{s}}$$

Events with two emissions

$$\begin{aligned} \rho_{2}\langle X^{s} \rangle_{2A'} &= e^{-\langle n_{A'} \rangle} \left(\frac{\alpha_{A'}}{2\pi} \right)^{2} \int_{x_{\min}}^{x_{\max}} dx \, x^{s} \int_{t_{\min}}^{t_{\max}} \frac{dt}{t} \int_{x_{\min}}^{x_{\max}} dx' \, x'^{s} \int_{t_{\min}}^{t} \frac{dt'}{t'} P_{\chi \to \chi}(x) P_{\chi \to \chi}(x') \\ &\simeq e^{-\langle n_{A'} \rangle} \frac{1}{2!} \left(\frac{\alpha_{A'}}{2\pi} \right)^{2} \int_{x_{\min}}^{x_{\max}} dx \, x^{s} \int_{t_{\min}}^{t_{\max}} \frac{dt}{t} \int_{x_{\min}}^{x_{\max}} dx' \, x'^{s} \int_{t_{\min}}^{t_{\max}} \frac{dt'}{t'} P_{\chi \to \chi}(x) P_{\chi \to \chi}(x') \\ &= e^{-\langle n_{A'} \rangle} \frac{\langle n_{A'} \rangle^{2}}{2!} \overline{X^{s}}^{2} \end{aligned}$$

Events with *m* emissions

$$p_m \langle X^s \rangle_{mA'} = e^{-\langle n_{A'} \rangle} \frac{\langle n_{A'} \rangle^m}{m!} \overline{X^s}^m.$$

Dark Radiation — Energy Spectrum of DM Particles

• Summing over all m

$$\varphi(s+1) \equiv \langle X^s \rangle = \sum_{m=0}^{\infty} p_m \langle X^s \rangle_{mA'} = e^{-\langle n_{A'} \rangle (1-\overline{X^s})}.$$

Mellin Transform

$$\mathcal{M}[f](s+1) \equiv \varphi(s+1) \equiv \int_0^\infty dX \, X^s f(X)$$

Inverse Mellin Transform

$$f(\boldsymbol{X}) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} ds \, \boldsymbol{X}^{-s} \, \varphi(s)$$

Efficient numerical evaluation using Fast Fourier Transform (FFT)

00	ch	m	KO	nn
 υa			T\U	00

Dark Radiation — Energy Spectrum of Dark Photons With $Z \equiv E_{A'}/E_0$:

$$p_m \langle Z^s \rangle_{mA'} = \frac{1}{\langle n_{A'} \rangle} e^{-\langle n_{A'} \rangle} \frac{\langle n_{A'} \rangle^m}{m!} \overline{Z^s} \sum_{k=1}^m \overline{X^s}^{k-1}$$

with

$$\overline{Z^{s}} \equiv \frac{1}{\langle n_{A'} \rangle} \frac{\alpha_{A'}}{2\pi} \int_{x_{\min}}^{x_{\max}} dx \, (1-x)^{s} \int_{t_{\min}}^{t_{\max}} \frac{dt}{t} P_{\chi \to \chi}(x) \, .$$

Therefore,

$$\varphi(s+1) \equiv \langle Z^s \rangle = \frac{\overline{Z^s}}{\langle n_{A'} \rangle} \frac{1 - e^{-\langle n_{A'} \rangle (1-X^s)}}{1 - \overline{X^s}} \,.$$

Dark Radiation — Analytics vs. Numerics

Reasons for minor discrepancies:

- Assumption that integration limits are independent of x, t.
 - Energy loss in each splitting small
- Neglect of *t*-dependence in $P_{\chi \to \chi}(\mathbf{x})$

Dark Radiation — Analytics vs. Numerics

Reasons for minor discrepancies:
 Assumption that integration limits are independent of x, t.

- Energy loss in each splitting small
- Neglect of *t*-dependence in $P_{\chi \to \chi}(\mathbf{x})$

A' Decay

Phenomenological Results

- Recast ATLAS prompt lepton jet search (arXiv:1212.5409)
- Recast ATLAS displaced lepton jet search (arXiv:1409.0746)
- Conservative projections for 13 TeV
 - Type-0 (muonic lepton jets only) cannot estimate multijet background

Phenomenological Results

- Recast ATLAS prompt lepton jet search (arXiv:1212.5409)
- Recast ATLAS displaced lepton jet search (arXiv:1409.0746)
- Conservative projections for 13 TeV
 - Type-0 (muonic lepton jets only) cannot estimate multijet background

Prompt Lepton Jets

For short A' lifetime:

- Consider only muonic lepton jets
 - other categories difficult to implement without full detector simulation
- Selection criteria
 - 1 muon with $p_T > 18 \text{ GeV}$
 - or 3 muons with p_T > 6 GeV
 - ▶ |η| < 2.5</p>
 - Track in the inner detector
 - Small impact parameter $|d_0| < 1 \text{ mm}$

Displaced Lepton Jets

For long *A*' lifetime:

- Type 0 ("muonic") LJ
 - > \geq 2 muons (and no calorimeter jets) within $\Delta R = 0.5$.
- Type 1 ("mixed") LJ
 - > 2 1 muon + exactly 1 calorimeter jet
- Type 2 ("calorimeter") LJ
 - All other calorimeter jets with small EM fraction
 - Includes $A' \rightarrow ee$ with large displacement
 - Includes hadronic A' decay modes

Detector	$A' ightarrow e^+ e^-$		${\it A}' ightarrow \mu^+ \mu^-$		$A' ightarrow \pi^+ \pi^-$	K^+K^-
LJ type	2 (calori	meter)	0 (muor	nic)	2 (calorir	neter)
ID	trac	ж	track	ack		k
ECAL	EM fra	ction	\checkmark		\checkmark	
HCAL	\checkmark		\checkmark		\checkmark	
-	Detector	$A' \rightarrow c$	$\pi^{+}\pi^{-}\pi^{0}$	Α'	$\rightarrow K^0_L K^0_S$	
-	LJ type 2 (calc		rimeter)	2 (ca	alorimeter)	
-	ID tr		ack		(√)	
	ECAL EM f		raction		(√)	
	HCAL		\checkmark		\checkmark	