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The current simplified model portfolio

s-channel

t-channel

Scalar portal

see talks by Sarah A. Malik and Oliver Buchmueller
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Simplified Models
off the Beaten Paths



What may we be missing?

A bottom-up exercise
in classifying simplified models

Allow for coannihilation
→ thermal relics even at weak coupling/heavy mass
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One step beyond minimal simplified models
Assumptions:

≤ 3 new multiplets:
I Dark matter
I Coannihilation partner
I Mediator

DM is colorless and electrically neutral
DM is a thermal relic
DM annihilation/coannihilation is a 2–2 process
Tree-level, renormalizable interactions
New particles are spin 0, 1/2, or 1

Baker et al., The Coannihilation Codex, arXiv:1510.03434
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Four classes of simplified models
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Classification procedure
Choose DM in (1,N, β) of SU(3)× SU(2)× U(1).

Choose representation of coannihilation partner X .
Allowed representations for mediator M are now fixed
Choose spin of mediator M

I Determines the spins of DM and X

Allowed couplings to SM particles now determined
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Tables, tables, tables

DM in (1,N, β) representation of SU(3)× SU(2)× U(1)
X coannihilation partner
Ms s-channel mediator
SM1, SM2 SM particles in coannihilation DM + X→ SM1SM2

SM3 Possible additional vertex DM–X–SM3
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Tally
In total 161 simplified models (defined by representations of DM, X and M)

49 s-channel, 105 t-channel, 7 hybrid



LHC pheno classification
Another table . . .

3.5 Classes of LHC signatures

pp→ . . . Prod. via Signatures Search

c
o
m
m
o
n

DM + DM + ISR

gauge int.

mono-Y + /ET [55,56,62,63,104]or SM1 ∈ p
for t-channel

X (→ SMsoft
1 SMsoft

2 DM) gauge int. mono-Y + /ET [55,56,62,63,104]

+ X (→ SMsoft
1 SMsoft

2 DM) + ISR or SM2 ∈ p mono-Y + /ET+ ≤ 4 SM Partial coverage [105]

for t-channel

DM + X (→ SMsoft
1 SMsoft

2 DM) + ISR (SM1 SM2) ∈ p
mono-Y + /ET [55,56,62,63,104]

mono-Y + /ET+ ≤ 2 SM Partial coverage [105]

s
-c
h
a
n
n
e
l

Ms (→ [SM1 SM2]
res)

gauge int.

2 resonances [106–112]
+ Ms (→ [SM1 SM2]

res)

Ms (→ [SM1 SM2]
res) resonance + /ET No search

+ Ms (→ DM + X (→ SMsoft
1 SMsoft

2 DM)) resonance + /ET+ ≤ 2 SM No search

Ms (→ DM + X (→ SMsoft
1 SMsoft

2 DM))
/ET+ ≤ 4 SM [113,114,114–124]

+ Ms (→ DM + X (→ SMsoft
1 SMsoft

2 DM))

Ms (→ [SM1 SM2]
res)

(SM1 SM2) ∈ p
1 resonance [125–146]

Ms (→ DM + X (→ SMsoft
1 SMsoft

2 DM)) /ET+ ≤ 2 SM
[120–122,124]

[104,147–153]

SM1,2 + Ms (→ [SM1 SM2]
res)

SM2,1 ∈ p
1 resonance + 1 SM Partial coverage [154,155]

SM1,2
/ET + 1 ≤ 3 SM

[114,120–124]

+ Ms (→ DM + X (→ SMsoft
1 SMsoft

2 DM)) [147–153,156–158]

t-
ch

a
n
n
e
l

Mt (→ SM1 DM)

gauge int.

/ET+ ≤ 2 SM
[120–122,124]

+ Mt (→ SM1 DM) [104,147–153]

Mt (→ SM1 DM)
/ET+ ≤ 4 SM

[106–112]

+ Mt (→ SM2 + X (→ SMsoft
1 SMsoft

2 DM)) [114,119–124]

Mt (→ SM2 + X (→ SMsoft
1 SMsoft

2 DM))
/ET+ ≤ 6 SM

[113,114,120–124]

+ Mt (→ SM2 + X (→ SMsoft
1 SMsoft

2 DM)) [116–118,159–163]

DM + Mt (→ SM1 DM)

SM1 ∈ p
/ET+ ≤ 1 SM

[55,56,62,63]

[104,149]

DM
/ET+ ≤ 3 SM

[114,120–124]

+ Mt (→ SM2 + X (→ SMsoft
1 SMsoft

2 DM)) [152,153,156–158]

Mt (→ SM1 DM)

SM2 ∈ p
/ET+ ≤ 3 SM

[114,120–124]

+ X (→ SMsoft
1 SMsoft

2 DM) [152,153,156–158]

Mt (→ SM2 + X (→ SMsoft
1 SMsoft

2 DM))
/ET+ ≤ 5 SM

[113,114,116–124]

+ X (→ SMsoft
1 SMsoft

2 DM) [159–161,164]

h
y
b
ri
d

X (→ DM + SMsoft
3 ) gauge int.

/ET+ ≤ 2 SM
[120–122,124]

+ X (→ DM + SMsoft
3 ) or SM3 ∈ p [104,147–153]

DM + X (→ DM + SMsoft
3 ) SM3 ∈ p /ET+ ≤ 1 SM

[128,129,149]

[55,56,62,63,104]

Table 9. Classification of LHC signatures for s-channel, t-channel, and hybrid simplified models.

For each hard process relevant to these models (second column), the table lists the conditions under

which it exists (third column) and the associated experimental signatures (fourth column). Where

available, we also include references to existing experimental searches that are sensitive to or provide

partial coverage of these signatures. In the list of processes the superscript “soft” indicates that

a particle is produced close to threshold in the rest frame of its parent particle. This is relevant

in particular for the decay products of X, thanks to the small mass splitting between X and DM.

The superscript “res” indicates that a pair of particles is produced from the decay of a resonance,

leading to a narrow invariant mass peak. Note that possible extra vertices appearing in specific

models, such as M–X–X or M–DM–DM interactions, are not included here.

– 40 –
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– 40 –
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Frequent features
Cascade decays
(1- or 2-step, involves MET)

Soft SM particles
(in coannihilation scenarios)

Resonances
mediator Ms → SM1 SM2



Take-home messages (part 1)
Look for the mediators!
Many searches sensitive
(though not yet interpreted in terms of DM)

I Important role for recasting tools
(ATOM, CheckMate, GAMBIT, MadAnalysis 5,
SModelS, . . . )



Looking for the Mediators



Specific example: a leptoquark model
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Specific example: a leptoquark model

Lagrangian

L =
i
2

DM /∂ DM + iX /D X + |DµMs|2

− mDM

2
DM DM − mXX X − V (Ms,H)

−
(

yDX Ms DM + yQ` QLMs `R + yLuLLMc
suR + h.c.

)
,

Joachim Kopp The Future of Simplified Models 14



Specific example: a leptoquark model

mLQ=400, Δ=0.1, y=0.5

mLQ=1000, Δ=0.1, y=0.5

mLQ=1000, Δ=0.15, y=0.5

mLQ=1500, Δ=0.1, y=0.1

mLQ=1500, Δ=0.1, y=0.5

Relic Density (3σ)

yD=yQl, yLu=0
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Baker et al., The Coannihilation Codex, arXiv:1510.03434
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Non-Minimal Dark Sectors



Dark Matter Production at the LHC
Traditional DM searches: initial state radiation
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Model Framework: Self-Interacting DM

Dark Sector Lagrangian

Ldark ≡ χ̄(i /∂ −mχ + igA′ /A′)χ− 1
4

F ′µνF ′µν − 1
2

m2
A′A′µA′ν − ε

2
F ′µνFµν ,

q̄

q

χ

χ̄

A′
A′

A′ A′

Buschmann JK Liu Wang, arXiv:1505.07459
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Dark Radiation — Analytics vs. Numerics
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A′ Decay
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Phenomenological Results
Recast ATLAS prompt lepton jet search (arXiv:1212.5409)
Recast ATLAS displaced lepton jet search (arXiv:1409.0746)
Conservative projections for 13 TeV

I Type-0 (muonic lepton jets only) — cannot estimate multijet background
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Take-home messages (part 2)
Very conventional dark sectors may lead to
very unconventional signatures

I Lepton jets
e.g. Buschmann et al., arXiv:1505.07459

I Emerging jets
e.g. talk by Will Shepherd

Strassler Zurek, hep-ph/0604261
Bai Rajaraman, arXiv:1109.6009

Schwaller Stolarski Weiner, arXiv:1502.05409
I Missing energy within jets

e.g. Cohen Lisanti Lou, arXiv:1503.00009
I . . .

In extended dark sectors, the particle that is
easiest to discover is typically the one with the
lowest cosmological abundance
(large coupling to SM→ low relic density)

Don’t take simplified models too serious!

http://arxiv.org/abs/1505.07459
http://arxiv.org/abs/hep-ph/0604261
http://arxiv.org/abs/1109.6009
http://arxiv.org/abs/1502.05409
http://arxiv.org/abs/1503.00009


Data-Driven Phenomenology
Why Ambulance Chasing is Awesome



From Data to Theory

Traditional Motivation for Simplified Models
Present experimental results in a way that allows theorists
to apply them to large classes of models

Problem
Theorists invent too many exotic models
(which cannot be reduced to the established simplified models)

My Dream
Exchange data on event-by-event basis
(like many direct/indirect searches)
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A Pheno-Level Event Record

class HEPEventRecord {
int np; // Number of particles
HEPParticle *p; // List of particles
...

};

class HEPParticle {
double pT, eta, phi; // 3-momentum
double E; // Energy
int type; // Type - jet, photon, e+, e-, etc.
double em_fraction; // Fraction of E in E-cal
int n_tracks; // Number of tracks
bool b_tag;
int n_spec;
double *spec; // Analysis-specific info
...

};

(Heavily inspired by the good old LHC Olympics Format)

Easy to implement in existing analysis frameworks
Easy to use
Customizable

Joachim Kopp The Future of Simplified Models 25



Criticism
Less credit for experimental collaborations

I Share data after collaboration has exploited it
(ATLAS/CMS have demonstrated that they can act very fast!)

I Experimentalists’ analyses will always be more trusted

Some will misinterpret/overinterpret data
I Happens anyway
I Blame falls on theorists
I Not aware of any experiment whose reputation has suffered from this

Even more ambulance chasing
I IMHO not a bad thing
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Recent Ambulances

We’ve learned about
Pulsars
Cosmic ray
propagation
Innumerable new
DM models
Sommerfeld
enhancement

PAMELA

Spurred Interest
in low-mass DM
Now main target for
many experiments
(→ talk by J. Billard)

DAMA/CoGeNT

We’ve learned about
High-E astrophysics
Better CR models
Analyzing Fermi data
(→ talk by M. Lisanti)

Galactic Center Excess

Joachim Kopp The Future of Simplified Models 27



Take-home messages (part 3)
Sharing event-level data

I is easy
I benefits experimentalists and theorists
I works great in astrophysics

Ambulance chasing
I moves the field forward
I is educational
I is great fun!



Summary
Look for the mediators!
Many searches sensitive
(though not yet interpreted in terms of DM)

Very conventional dark sectors may lead to
very unconventional signatures
Don’t take simplified models too serious!
Sharing event-level data would be great.
Ambulance chasing is a great

Joachim Kopp The Future of Simplified Models 29





Bonus Slides



Dark Radiation Showers — Semi-Analytical Results

Notation, notation, notation, . . .
Incoming (off-shell) DM particle: pχ,in = (E ,0,0,p)

Outgoing DM particle: pχ,out =
(
xE , −kt , 0,

√
x2E2 − k2

t −m2
χ

)
Outgoing dark photon: k =

(
(1− x)E , kt , 0,

√
(1− x)2E2 − k2

t −m2
A′

)
Virtuality: t ≡ (pχ,out + k)2 −m2

χ

Probability for a collinear splitting:

αA′

2π
dx

dt
t

Pχ→χ(x , t)

with the splitting kernel

Pχ→χ(x , t) =
1 + x2

1− x
− 2(m2

χ + m2
A′)

t
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Dark Radiation Showers — Semi-Analytical Results
Average number radiated dark photons

〈nA′〉 ' αA′

2π

∫ xmax

xmin

dx
∫ tmax

tmin

dt
t

Pχ→χ(x) .

Splitting is a Poisson process.

Probability for m splittings

pm =
e−〈nA′ 〉 〈nA′〉m

m!

Probability for no splitting (Sudakov factor)

∆ ≡ p0 = e−〈nA′ 〉
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Dark Radiation — Energy Spectrum of DM Particles
Compute first the moments of the E spectrum fχ(X ≡ Eχ/E0):

Events with one emission

p1
〈
X s〉

1A′ = e−〈nA′〉αA′

2π

∫ xmax

xmin

dx xs
∫ tmax

tmin

dt
t

Pχ→χ(x)

≡ e−〈nA′〉 〈nA′〉X s

Events with two emissions

p2
〈
X s〉

2A′ = e−〈nA′〉
(
αA′

2π

)2∫ xmax

xmin

dx xs
∫ tmax

tmin

dt
t

∫ xmax

xmin

dx ′ x ′s
∫ t

tmin

dt ′

t ′
Pχ→χ(x)Pχ→χ(x ′)

' e−〈nA′〉 1
2!

(
αA′

2π

)2∫ xmax

xmin

dx xs
∫ tmax

tmin

dt
t

∫ xmax

xmin

dx ′ x ′s
∫ tmax

tmin

dt ′

t ′
Pχ→χ(x)Pχ→χ(x ′)

= e−〈nA′〉 〈nA′〉2

2!
X s2

Events with m emissions

pm
〈
X s〉

mA′ = e−〈nA′〉 〈nA′〉m

m!
X sm

.
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Dark Radiation — Energy Spectrum of DM Particles
Summing over all m

ϕ(s + 1) ≡ 〈X s〉 =
∞∑

m=0

pm 〈X s〉mA′ = e−〈nA′ 〉(1−X s) .

Mellin Transform

M[f ](s + 1) ≡ ϕ(s + 1) ≡
∫ ∞

0
dX X sf (X )

Inverse Mellin Transform

f (X ) =
1

2πi

∫ c+i∞

c−i∞
ds X−s ϕ(s)

Efficient numerical evaluation using Fast Fourier Transform (FFT)
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Dark Radiation — Energy Spectrum of Dark Photons
With Z ≡ EA′/E0:

pm〈Z s〉mA′ =
1
〈nA′〉e

−〈nA′ 〉 〈nA′〉m
m!

Z s
m∑

k=1

X sk−1

with

Z s ≡ 1
〈nA′〉

αA′

2π

∫ xmax

xmin

dx (1− x)s
∫ tmax

tmin

dt
t

Pχ→χ(x) .

Therefore,

ϕ(s + 1) ≡ 〈Z s〉 =
Z s

〈nA′〉
1− e−〈nA′ 〉(1−X s)

1− X s
.
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Dark Radiation — Analytics vs. Numerics

n
0 2 4 6 8 10 12 14

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24
Benchmark A
analytic
Pythia8
Benchmark B
analytic
Pythia8

dn
σd σ

1

Reasons for minor discrepancies:
Assumption that integration limits are independent of x , t .

I Energy loss in each splitting small
Neglect of t-dependence in Pχ→χ(x)
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Dark Radiation — Analytics vs. Numerics

Reasons for minor discrepancies:
Assumption that integration limits are independent of x , t .

I Energy loss in each splitting small

Neglect of t-dependence in Pχ→χ(x)
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A′ Decay
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Phenomenological Results
Recast ATLAS prompt lepton jet search (arXiv:1212.5409)
Recast ATLAS displaced lepton jet search (arXiv:1409.0746)
Conservative projections for 13 TeV

I Type-0 (muonic lepton jets only) — cannot estimate multijet background
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Phenomenological Results
Recast ATLAS prompt lepton jet search (arXiv:1212.5409)
Recast ATLAS displaced lepton jet search (arXiv:1409.0746)
Conservative projections for 13 TeV

I Type-0 (muonic lepton jets only) — cannot estimate multijet background
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Prompt Lepton Jets
For short A′ lifetime:

Consider only muonic lepton jets
I other categories difficult to implement without full detector simulation

Selection criteria
I 1 muon with pT > 18 GeV
I or 3 muons with pT > 6 GeV
I |η| < 2.5
I Track in the inner detector
I Small impact parameter |d0| < 1 mm
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Displaced Lepton Jets
For long A′ lifetime:

Type 0 (“muonic”) LJ
I ≥ 2 muons (and no calorimeter jets) within ∆R = 0.5.

Type 1 (“mixed”) LJ
I ≥ 1 muon + exactly 1 calorimeter jet

Type 2 (“calorimeter”) LJ
I All other calorimeter jets with small EM fraction
I Includes A′ → ee with large displacement
I Includes hadronic A′ decay modes

Detector A′ → e+e− A′ → µ+µ− A′ → π+π−/K+K−

LJ type 2 (calorimeter) 0 (muonic) 2 (calorimeter)
ID track track track
ECAL EM fraction X X
HCAL X X X

Detector A′ → π+π−π0 A′ → K 0
L K 0

S
LJ type 2 (calorimeter) 2 (calorimeter)
ID track (X)
ECAL EM fraction (X)
HCAL X X
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