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Introducing the problem

Problem: Reduce the size of a PDF set of MC replicas
with no loss of information.
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Preserve the statistical properties of the
prior PDF set.

Avoid bias in the extrapolation region.

Conserve physical requirements:

I positivity
I sum rules
I PDF correlations

No statistical properties conservation⇒ distortion of observables.
Complex procedure, many features to identify and control.
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Conservation of statistical properties of PDFs

Compress: Preserve as much as possible the underlying statistical
distribution of a prior Monte Carlo PDF set.

Starting from a large sample of Nrep Monte Carlo replicas:
I find a compression algorithm to select Ñrep � Nrep replicas so that

the basic properties of the underlying distribution are reproduced
within some tolerance.

Proposal:
Build a PDF set composed by Monte Carlo replicas from:

1 NNPDF, MMHT, CT14, HERAPDF2.0
selected by some criterion (PDF errors, dataset, etc.)

2 Combine all these MC sets into a single distribution, e.g. as explained by
Thorne and Watt, 1307.1347 Fig. 61.

3 Apply the compression algorithm and reduce the MC set
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Towards a compression algorithm in 3 steps

Generate a prior MC PDF set:
I set with a large number of replicas

Select replicas that minimize a convenient error function
I minimization driven by a genetic algorithm

  

Reduced set of replicas

Compute the error function (ERF)

Completed/Stop

Minimization algorithm
(GA)

Yes

No
ERF converges

Compression Algorithm

Prior PDF set

Validate the compressed set:
I verify estimators, PDF plots, predictions, χ2, distances, etc.
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Choosing the best error function

Possible ERF definitions:

Option A: Minimize the distance to the prior for the
⇒ Central Value and Standard Deviation
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Possibility to satisfy such criteria by
selecting only 2 curves:

Bad Choice!
bias of continuity, loss of structure
dramatic loss of statistical
information

Problem: Higher moments not represented.
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Choosing the best error function

Option B: Minimize the distance between 2 probability distributions:
⇒ Kolmogorov, Kullback, Chernhoff, L-distance
Higher moments are automatically adjusted

Kolmogorov: simplest distance between probability distributions.
Kullback: non-symmetric distance, encoding gain of information.
Chernhoff: gives exponentially decreasing bounds on tail distributions
of sums of independent random variables.
L-distance: is a metric defined on a vector space where the distance
between two vectors is the greatest of their differences along any
coordinate dimension.

Problem: Ambiguity when defining the regions where the distance
is computed. Large errors with few replicas.
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Practical implementation

Practical Idea
Combine options A and B in a global error function.

We define the error function of an estimator E as

ERFE =
1

NE

∑
fl

∑
x

(
Ecomp − Eprior

)2

where NE is a normalization weight.
We construct a ERF which combines:

I the first 4th moments: central value, std. dev., skewness, kurtosis
I with the Kolmogorov distance

Loop over all PDF flavors at the initial scale Q0.
In the next slides, ERF defined over 70 points in x ∈ [10−5,0.9]
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Preliminary results

Starting from a prior of 1000 replicas, we compare the ERF of:
I 1k random sets, blue points.
I compressed replicas, red points.

Number of Replicas
10

2
10

3
10

0

5

10

15

20

25

30

35

Error Function: Central Value

(20)σCompressed 1

Random Mean (1k)
Random Median (1k)

Random 50% c.l. (1k)

Random 68% c.l. (1k)
Random 90% c.l. (1k)

Lower 68% band

Number of Replicas
10

2
10

3
10

0

100

200

300

400

Error Function: Standard Deviation

(20)σCompressed 1

Random Mean (1k)
Random Median (1k)

Random 50% c.l. (1k)

Random 68% c.l. (1k)
Random 90% c.l. (1k)

Lower 68% band

Number of Replicas
10

2
10

3
10

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

Error Function: Skewness

(20)σCompressed 1

Random Mean (1k)
Random Median (1k)

Random 50% c.l. (1k)

Random 68% c.l. (1k)
Random 90% c.l. (1k)

Lower 68% band

Number of Replicas
10

2
10

3
10

0

50

100

150

200

250

300

3
10×

Error Function: Kurtosis

(20)σCompressed 1

Random Mean (1k)
Random Median (1k)

Random 50% c.l. (1k)

Random 68% c.l. (1k)
Random 90% c.l. (1k)

Lower 68% band

Number of Replicas
10

2
10

3
10

0

10

20

30

40

50

60

Error Function: Kolmogorov

(20)σCompressed 1

Random Mean (1k)
Random Median (1k)

Random 50% c.l. (1k)

Random 68% c.l. (1k)
Random 90% c.l. (1k)

Lower 68% band

Compression improves the description of CV and STD:
I 100 random replicas ∼ 40-50 compressed replicas.
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Preliminary results

Similar behavior is observed also for
I skewness, kurtosis and Kolmogorov:
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Compression improves all estimators used in the ERF:
I 100 random replicas ∼ 40-50 compressed replicas.
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Validation: 1000→50 compressed

Compression (1000→50) agreement at the level of PDF plots:
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Good agreement at initial and high Q values:
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Validation: 1000→50 compressed

Agreement at the level of χ2 and predictions:
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Validation: 1000→50 compressed

PDF distances and arc-length:
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The compression preserves the properties of the prior set.
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Outlook

Conclusion:
I in this preliminary study we show

that the reduction 1000→ 50 is
possible to achieve with the
compression algorithm.
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Outlook:
I study the behavior when varying the x points for the ERF
I study the Kolmogorov normalization impact
I study other distances
I start from a larger set of 10k replicas
I analyze each PDF separately
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Kolmogorov test

For each PDF flavor, for each x point where the ERF is defined we
divide the distribution in 6 regions delimited by multiples of the
standard deviation.
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Example: Kolmogorov test

We construct the rate of replicas in each region for the prior and
the compressed set. This quantity is then introduced in the ERF.
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APFEL Web
APFEL Web: a web-based application for the graphical visualization of PDFs.

http://apfel.mi.infn.it

See references: arXiv:1310.1394, arXiv:1410.5456.
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