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Introducing the problem

Problem: Reduce the size of a PDF set of MC replicas
with no loss of information.

xg(x,Q), 1000 MC replicas
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@ No statistical properties conservation = distortion of observables.
@ Complex procedure, many features to identify and control.
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Introducing the problem

Problem: Reduce the size of a PDF set of MC replicas
with no loss of information.

xg(x,Q), 50 compressed replicas
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@ Preserve the statistical properties of the
prior PDF set.

@ Avoid bias in the extrapolation region.

---+ Central value
Std. deviation
Q=1.41e+00 GeV

@ Conserve physical requirements:

> positivity
» sum rules
» PDF correlations
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@ No statistical properties conservation = distortion of observables.
@ Complex procedure, many features to identify and control.
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Conservation of statistical properties of PDFs

Compress: Preserve as much as possible the underlying statistical
distribution of a prior Monte Carlo PDF set.

@ Starting from a large sample of N,e, Monte Carlo replicas:

» find a compression algorithm to select N,ep < Nyep replicas so that
the basic properties of the underlying distribution are reproduced
within some tolerance.
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Conservation of statistical properties of PDFs

Compress: Preserve as much as possible the underlying statistical
distribution of a prior Monte Carlo PDF set.

@ Starting from a large sample of N,s, Monte Carlo replicas:

» find a compression algorithm to select N,ep < Nigp replicas so that
the basic properties of the underlying distribution are reproduced
within some tolerance.

Proposal:
Build a PDF set composed by Monte Carlo replicas from:
@ NNPDF, MMHT, CT14, HERAPDF2.0
selected by some criterion (PDF errors, dataset, etc.)

@ Combine all these MC sets into a single distribution, e.g. as explained by
Thorne and Watt, 1307.1347 Fig. 61.

© Apply the compression algorithm and reduce the MC set
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Towards a compression algorithm in 3 steps

@ Generate a prior MC PDF set:
» set with a large number of replicas
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Towards a compression algorithm in 3 steps

@ Generate a prior MC PDF set:
» set with a large number of replicas

@ Select replicas that minimize a convenient error function
» minimization driven by a genetic algorithm

Prior PDF set

Reduced set of replicas }4——1 Minimizat(i(t;z)algorithm :

‘ Compute the error function (ERF) ‘

ERF 9

No

¢ Yes

Completed/Stop Compression Algorithm
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Towards a compression algorithm in 3 steps

@ Generate a prior MC PDF set:
» set with a large number of replicas

@ Select replicas that minimize a convenient error function
» minimization driven by a genetic algorithm

Prior PDF set

. ‘ Minimization algorithm .
Reduced set of replicas H (GA) :

‘ Compute the error function (ERF) ‘

ERF 9

No

¢ Yes

Completed/Stop Compression Algorithm

@ Validate the compressed set:
» verify estimators, PDF plots, predictions, x?, distances, etc.
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Choosing the best error function

Possible ERF definitions:

Option A: Minimize the distance to the prior for the
= Central Value and Standard Deviation J
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Choosing the best error function

Possible ERF definitions:

Option A: Minimize the distance to the prior for the
= Central Value and Standard Deviation J

XxQ), cerirl value and standard dv. Possibility to satisfy such criteria by
] selecting only 2 curves:

@ bias of continuity, loss of structure

@ dramatic loss of statistical
information

Generated with APFEL 5.0.0 Web.
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Choosing the best error function

Possible ERF definitions:

Option A: Minimize the distance to the prior for the
= Central Value and Standard Deviation J

#2(xQ). cotral value and sanderd dev. Possibility to satisfy such criteria by
] selecting only 2 curves:

@ bias of continuity, loss of structure

@ dramatic loss of statistical
information

Generated with APFEL 5.0.0 Web.

Problem: Higher moments not represented. J
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Choosing the best error function

Option B: Minimize the distance between 2 probability distributions:
= Kolmogorov, Kullback, Chernhoff, L-distance
Higher moments are automatically adjusted

@ Kolmogorov: simplest distance between probability distributions.
Kullback: non-symmetric distance, encoding gain of information.

@ Chernhoff: gives exponentially decreasing bounds on tail distributions
of sums of independent random variables.

@ L-distance: is a metric defined on a vector space where the distance
between two vectors is the greatest of their differences along any
coordinate dimension.
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Choosing the best error function

Option B: Minimize the distance between 2 probability distributions:
= Kolmogorov, Kullback, Chernhoff, L-distance
Higher moments are automatically adjusted

@ Kolmogorov: simplest distance between probability distributions.
Kullback: non-symmetric distance, encoding gain of information.

@ Chernhoff: gives exponentially decreasing bounds on tail distributions
of sums of independent random variables.

@ L-distance: is a metric defined on a vector space where the distance
between two vectors is the greatest of their differences along any
coordinate dimension.

Problem: Ambiguity when defining the regions where the distance
is computed. Large errors with few replicas.
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Combine options A and B in a global error function. l




Practical implementation

Practical Idea
Combine options A and B in a global error function.

@ We define the error function of an estimator E as

1 —
ERFE = N7E Z Z (Ecomp - Eprior)2
fl X

where Ng is a normalization weight.
@ We construct a ERF which combines:

» the first 4th moments: central value, std. dev., skewness, kurtosis
» with the Kolmogorov distance

@ Loop over all PDF flavors at the initial scale Q.
In the next slides, ERF defined over 70 points in x € [107°,0.9]
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Preliminary results

@ Starting from a prior of 1000 replicas, we compare the ERF of:

» 1k random sets, blue points.
» compressed replicas, red points.

Error Function: Central Value Error Function: Standard Deviation
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@ Compression improves the description of CV and STD:
» 100 random replicas ~ 40-50 compressed replicas.
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Preliminary results

@ Similar behavior is observed also for

» skewness, kurtosis and Kolmogorov:

Error Function: Skewness

Error Function: Kurtosis

Error Function: Kolmogorov
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@ Compression improves all estimators used in the ERF:

» 100 random replicas ~ 40-50 compressed replicas.
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Validation: 1000—50 compressed

@ Compression (1000—50) agreement at the level of PDF plots:

xu(x,Q?)
T
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@ Good agreement at initial and high Q values:

Xg(x,Q), comparison
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000rep
Q=13TeV
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Validation: 1000—50 compressed

@ Agreement at the level of x? and predictions:

Distribution of ¥2 for experiments NMC Observables
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Exporiments

@ Agreement at the level of luminosities:

Gluon-Gluon, luminosity
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Validation: 1000—50 compressed

@ PDF distances and arc-length:

NNPDF Fit vs Reference Distances
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@ The compression preserves the properties of the prior set.
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Outlook

@ Conclusion:

» in this preliminary study we show
that the reduction 1000 — 50 is
possible to achieve with the
compression algorithm.
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@ Outlook:

study the behavior when varying the x points for the ERF
study the Kolmogorov normalization impact

study other distances

start from a larger set of 10k replicas

analyze each PDF separately

vV vy vy VvYYy
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Kolmogorov test

@ For each PDF flavor, for each x point where the ERF is defined we
divide the distribution in 6 regions delimited by multiples of the
standard deviation.

Example: Kolmogorov test
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@ We construct the rate of replicas in each region for the prior and
the compressed set. This quantity is then introduced in the ER
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APFEL Web

APFEL Web: a web-based application for the graphical visualization of PDFs.

http://apfel.mi.infn.it )

Prepare PDF

Select a plotting tool
|

Collect the result

See references: arXiv:1310.1394, arXiv:1410.5456.
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