Recent ATLAS measurement sensitive to PDFs

Pavel Starovoitov

DESY

November 3, 2014
Outlook

1. Jet measurements
2. W-production in association with jets and W–jet/Z–jet ratios
3. Production of Z-boson in association with b-jets
4. Simultaneous measurements of the $t\bar{t}$, WW, and $Z \rightarrow \tau\tau$ production cross-sections: AIDA
5. PDF uncertainties in W-boson mass
6. Summary
Jet measurements. JES uncertainty

Calorimeter jets (EM or LCW scale)
- Pile-up offset correction
 Corrects for the energy offset introduced by pile-up. Depends on μ and N_{PV}. Derived from MC.
- Origin correction
 Changes the jet direction to point to the primary vertex. Does not affect the energy.
- Energy & η calibration
 Calibrates the jet energy and pseudorapidity to the particle jet scale. Derived from MC.
- Residual in situ calibration
 Residual calibration derived using in situ measurements. Derived in data and MC. Applied only to data.
- Calorimeter jets (EM+JES or LCW+JES scale)

Three jet cross-section measurements with the same JES systematics

- Dijet production
 JHEP05(2014)059
- Inclusive jet cross-section
 arXiv:1410.8857
- Three-jet mass spectrum
 ATLAS-CONF-2014-045

Combination of in situ measurements (Z/γ–jet, multi-jet)

$\sim 5\times$ reduction in the JES uncertainty

- Dijet production
 JHEP05(2014)059
- Inclusive jet cross-section
 arXiv:1410.8857
- Three-jet mass spectrum
 ATLAS-CONF-2014-045

Pavel Starovoitov (DESY)
Recent ATLAS measurement sensitive to PDFs
PDF4LHC-Nov/2014
Jet measurements. Inclusive jet p_T

- $p_T > 100$ GeV, binned according to resolution
- $|y| < 3$, six rapidity bins, in steps of 0.5
- Theory:
 - NLOJET++ \times NPC \times EW
 - non-pert. correction:
 - Pythia/Herwig with various tunes

- theory is corrected for EW effects

Good agreement between data and theory over 7 orders of magnitude
Inclusive jets. Detailed comparison to theory (I)

Recent ATLAS measurement sensitive to PDFs

Pavel Starovoitov (DESY)
Inclusive jets. Detailed comparison to theory (II)

ATLAS
\[\int L \, dt = 4.5 \, fb^{-1} \]
\(\overline{s} = 7 \, TeV \)
Non-pert and EW corr.

Different set of PDFs

Pavel Starovoitov (DESY)

Recent ATLAS measurement sensitive to PDFs
Inclusive jets. Test of gaussianity of uncertainties

ATLAS
anti-\(k_t\) jets, \(R=0.6\)
\(|y| < 0.5\)
\(838 \leq p_T \text{ [GeV]} < 894\)

--- Nominal Quantiles
Experimental
\(\nabla\) Gaussian
\(\triangle\) LogNormal

1 \(\sigma\)
2 \(\sigma\)
3 \(\sigma\)
4 \(\sigma\)
5 \(\sigma\)

Uncertainty in the energy deposited in the EM calorimeter
Jet measurements. Dijet mass

\(m_{12} = \sqrt{p_1 + p_2} \)
\(y^* = |y_1 - y_2|/2 \)

- \(p_T^1 > 100 \text{ GeV}, p_T^2 > 50 \text{ GeV}, |y^{| < 3} \)
- \(|y^*| < 3 \), six rapidity separation bins, in steps of 0.5

Theory:
- NLOJET++ × NPC × EW
- non-pert. correction: Pythia/Herwig with various tunes

\[
\int L \, dt = 4.5 \text{ fb}^{-1} \\
\sqrt{s} = 7 \text{ TeV} \\
\text{anti-}k_T \text{ jets}, R = 0.4
\]

- theory is corrected for EW effects

Good agreement between data and theory over 7 orders of magnitude
Jet measurements. Three-jet mass

\[
\begin{align*}
\rho_T^1 & > 150 \text{ GeV}, \rho_T^2 > 100 \text{ GeV}, \rho_T^3 > 50 \text{ GeV}, \\
|y^{\text{jet}}| & < 3 \\
Y^* & = |y_1 - y_2| + |y_1 - y_3| + |y_2 - y_3| \\
|Y^*| & < 10, \text{ five rapidity separation bins, in steps of 2}
\end{align*}
\]

- Theory: NLOJET++ \times NPC
- non-pert. correction: Pythia/Herwig with various tunes
- no EW correction is available

Good agreement between data and theory over 6 orders of magnitude
Three-jets. Detailed comparison to theory (I)

ATLAS Preliminary

\[\int L \, dt = 4.5 \, fb^{-1} \]

\(\sqrt{s} = 7 \, TeV \)

\(\text{anti-} k_t, R = 0.4 \)

DATA Uncert.

Total

Statistical

\(\times \) non-pert. corr.

\(\otimes \) PDF

NLO QCD

CT 10

MSTW 2008

HERAPDF 1.5

<table>
<thead>
<tr>
<th>Prediction/Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
</tr>
<tr>
<td>1.2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0.8</td>
</tr>
<tr>
<td>0.6</td>
</tr>
<tr>
<td>0.4</td>
</tr>
</tbody>
</table>

| 4 | 2 |
| | |

| 2 | 6 |
| | |

| 1.4 |
| 1.2 |
| 1 |
| 0.8 |
| 0.6 |
| 0.4 |

| 4 | 2 |
| | |

| 2 | 6 |
| | |

different set of PDFs
Three-jets. Detailed comparison to theory (II)

ATLAS Preliminary

\[\int L \, dt = 4.5 \, \text{fb}^{-1} \]
\[\sqrt{s} = 7 \, \text{TeV} \]
\[\text{anti-}k_t, \, R = 0.4 \]

\[|Y^*| < 2 \]
\[2 < |Y^*| < 4 \]
\[4 < |Y^*| < 6 \]
\[6 < |Y^*| < 8 \]
\[8 < |Y^*| < 10 \]

Prediction/Data

0.6
0.8
1
1.2
1.4
4\times10^2
10^3
2\times10^3
m_{jjj}[\text{GeV}]\times10^2
10^3
2\times10^3
m_{jjj}[\text{GeV}]

GJR 08
ABM 11
NNPDF 2.3

\[\times \text{non-perf. corr.} \]
\[\times \text{PDF} \]
\[\times \text{NLO QCD} \]

Different set of PDFs

Pavel Starovoitov (DESY)
Recent ATLAS measurement sensitive to PDF
W-production in association with jets and W–jet/Z–jet ratios

Same systematics and binning between W/Z–jets measurements allows to measure cross-section ratios \rightarrow reduction of exp. uncertainties

- W–jets cross-sections (arXiv:1409.8639)
- R–jets cross-sections (arXiv:1408.6510)
- Z–jets cross-sections (JHEP07(2013)032)

Many interesting results

Will discuss only a few examples which are the most relevant for PDFs studies
Very good agreement between NLO calculations and data for jet rapidity distribution

NLO theory undershoots data at high-p_T.

Interesting input for MC tuning PDF studies
Recent ATLAS measurement sensitive to PDFs
Production of Z-boson in association with b-jets

Clean experimental signature:
- leptonically decaying $Z +$ HF jet
 - Allows to test the associated heavy flavour production
 - Large uncertainties in theory calculations → measurement provides important constraints
 - Probes b-quark PDF (5FNS)

PDF4LHC-Nov/2014 15 / 24
Inner bar – stat. uncert.

Outer bar – total uncert.

MCFM is corrected for QED FSR, hadronisation, MPI

Theory uncert.:

PDF+scale+\(\alpha_s\)+corr. Scale is the dominant

Best PDF sensitivity from \(y_Z\) in 1\(b\)-jet channel

2\(b\)-jet channel is not very sensitive to PDFs (splitting)

\(b\)-jet \(p_T\) spectrum potentially is very interesting for PDF studies (need more precise theory . . .)
Simultaneous measurements of the $t\bar{t}$, WW, and $Z \rightarrow \tau \tau$ production cross-sections: AIDA

High accuracy in theoretical prediction \rightarrow good experimental test

- Study of the common final state ($e\mu$)-events
- two-dimensional parameter space (E_{T}^{miss}, N_{jets})

Allows to "see" correlation between cross-section induced by a use of common PDFs in MC

measurements are consistent with dedicated analyses
AIDA results. Total cross-section

Fiducial results are corrected to the total phase-space

- **NNLO** calculations describe data much better than NLO
- **scale uncert.** @NLO is the dominant source
- **PDF uncert.** @NNLO is the dominant source

NLO - MCFM

NNLO - FEWZ, TOP++
The extraction of m_W from the p_T^ℓ spectrum, is likely to be limited by theoretical uncertainties.

This study addresses:

- u and d PDF uncertainties on the average W polarisation
- strange PDF uncertainty on the charm-initiated W-production
- impact of the muon momentum resolution on the PDF uncertainties

TOOLS:

- MCFM (W-jet LO, finite width, leptonic decay, spin correlations)
- CuTe (NLO+NNLL, ZWA, no decay)

→ need to combine two tools

Dedicated PDF set : HERA I data, $m_{ch} = 1.38$ GeV, $m_b = 4.75$ GeV, $m_t = 3.5$ TeV, $r_s = s/\bar{d} = 1$, $Q_0^2 = 1.7$ GeV2 13p→26 hessian errors, 4 model vars : $m_{ch} \uparrow$, $r_s \uparrow$
Methodology

Event selection

- $|\eta^\ell| < 2.4$
- $p_T^\nu > 30$ GeV
- $M_T > 60$ GeV
- $30 < p_T^\ell < 50$ GeV

Test sample: normalised p_T^ℓ spectrum with $M_W = 80.385$ GeV. Stat. uncert. corresponds to $5 fb^{-1}$

Set of p_T^ℓ templates as a function of M_W

calculate χ^2 profile and fit it with parabolic function to get minima and uncertainty
W-polarisation

The uncertainty on the u and d valence and sea PDF translates into an uncertainty in the average W polarisation, which affects the p_T^ℓ distribution.

Disentangle the impact of polarisation: Keep only u and d quarks.

- Randomise decay angle of leptons in the W rest frame
- Sign flip to the lepton momentum
- Full spin correlations

Dramatic shrink of PDF uncert. with spin corr. off

- ~ 20 MeV in W^+ (mostly r_s);
- ~ 25 MeV in W^- (many);
- ~ 15 MeV for W^\pm due to some cancellations.

Pavel Starovoitov (DESY)

Recent ATLAS measurement sensitive to PDF

PDF4LHC-Nov/2014
Charm quark and strange PDF

- A charm-initiated production changes the W kinematics
- Disentangle the impact of the charm: Randomise decay angle of leptons

1. Switch between configurations with only light quarks, only charm and standard mix

- Dramatic shrink of PDF uncert. without initial state charm
 - $\sim 3(6)\text{ MeV in } W^+ (W^-)$
 - increases to $\sim 8(10)\text{ MeV in } W^+ (W^-)$. (mostly r_s)

Total PDF uncertainties

- $12(20)$ for $W^+ (W^-)$
- 10 for W^\pm

There is some cancellation of uncertainties for the combination of polarisation and charm-induced effects.
Detector effects (muon ρ_T)

Muon ρ_T is smeared according to (arxiv:1404.4562)

SUMMARY of PDF uncertainties

<table>
<thead>
<tr>
<th></th>
<th>MW-NLO</th>
<th>CT10nlo</th>
<th>MSTW2008CPdeutnlo</th>
<th>NNPDF30.nlo.as.118</th>
</tr>
</thead>
<tbody>
<tr>
<td>W^+</td>
<td>+13 -12</td>
<td>+18 -22</td>
<td>+11 -10</td>
<td>+8 -10</td>
</tr>
<tr>
<td>W^-</td>
<td>+22 -22</td>
<td>+18 -23</td>
<td>+11 -10</td>
<td>+8 -9</td>
</tr>
<tr>
<td>W^\pm</td>
<td>+11 -11</td>
<td>+14 -18</td>
<td>+7 -7</td>
<td>+6 -5</td>
</tr>
</tbody>
</table>

- reasonable uncert. for the dedicated PDF set
- W^-: larger uncert. due to limited constraining power of HERA I data

SUMMARY of biases

<table>
<thead>
<tr>
<th></th>
<th>MW-NLO</th>
<th>CT10nlo</th>
<th>MSTW2008CPdeutnlo</th>
<th>NNPDF30.nlo.as.118</th>
</tr>
</thead>
<tbody>
<tr>
<td>W^+</td>
<td>-9</td>
<td>-0.1</td>
<td>-20</td>
<td>-1.2</td>
</tr>
<tr>
<td>W^-</td>
<td>+48</td>
<td>+0.2</td>
<td>+13</td>
<td>+12</td>
</tr>
<tr>
<td>W^\pm</td>
<td>+16</td>
<td>0.0</td>
<td>-6</td>
<td>+5</td>
</tr>
</tbody>
</table>

- very large bias for the dedicated PDF set
- charge dependent analysis brings considerable improvement in the PDF uncertainties

PDF uncert. increases by $\sim 10\%$
Summary

- Three new jet cross-section measurements at 7 TeV are presented: provide constraints on gluon PDF and α_s
- W–jets and R–jets: new observables for MC tuning and PDF analysis
- Z-b-jets: provide constraints on the b-quark PDF
- AIDA analysis: broader test of the Standard Model
- Theoretical uncertainties in W-boson mass are studied
Back-up
Inclusive jets. Detailed comparison to theory (I)

Recent ATLAS measurement sensitive to PDFs

ATLAS

\[\int L \, dt = 4.5 \text{ fb}^{-1} \]
\[\sqrt{s} = 7 \text{ TeV} \]

anti-k jets, \(R=0.4 \)

Data

NLOJET++
\(\mu_F = \mu_R = p_T^\text{max} \)

Non-pert and EW corr.

CT10

MSTW 2008

NNPDF 2.1

Pavel Starovoitov (DESY)
Inclusive jets. Detailed comparison to theory (II)

Different set of PDFs
Inclusive jets. Detailed comparison to theory (I)

Recent ATLAS measurement sensitive to PDFs

ATLAS
\[\int L \, dt = 4.5 \, fb^{-1} \]
\[\sqrt{s} = 7 \, TeV \]
anti-k_\text{j} jets, \(R=0.4 \)

Data

NLOJET++
\(\mu_F = \mu_R = p_T^{\text{max}} \)
Non-pert and EW corr.

Theory / data

\[0.6 < |\gamma| < 0.8 \]
\[1 \]
\[1.2 < |\gamma| < 2 \]
\[2.5 < |\gamma| < 3 \]

\[10^2 \] \[p_T \, [GeV] \] \[10^3 \]
different set of PDFs
Recent ATLAS measurement sensitive to PDFs

\[\int L \, dt = 4.5 \text{ fb}^{-1} \]
\[\sqrt{s} = 7 \text{ TeV} \]
\[\text{anti-}k_t \text{ jets, } R = 0.4 \]

- Statistical uncertainty
- Systematic uncertainties

NLOJET++
\[\mu = p_T \exp(0.3 \, y^*) \]
Non-pert. & EW corr.

ATLAS

\begin{align*}
1.0 & \leq y^* < 1.5 \\
\text{ATLAS} & \\
\text{CT10} & \\
\text{HERAPDF1.5} & \\
\text{epATLJet13} & \\
\text{exp. only} & \\
\text{HERAPDF1.5} & \\
\text{exp. only} &
\end{align*}
Dijets. Detailed comparison to theory (II)

\[y^* < 0.5 \]
\[P_{\text{CT}}^{\text{obs}} = 0.616 \quad P_{\text{HERA}}^{\text{obs}} = 0.271 \]

\[0.5 \leq y^* < 1.0 \]
\[P_{\text{CT}}^{\text{obs}} = 0.153 \quad P_{\text{HERA}}^{\text{obs}} = 0.009 \]

\[1.0 \leq y^* < 1.5 \]
\[P_{\text{CT}}^{\text{obs}} = 0.523 \quad P_{\text{HERA}}^{\text{obs}} = 0.269 \]

\[2.0 \leq y^* < 2.5 \]
\[P_{\text{CT}}^{\text{obs}} = 0.925 \quad P_{\text{HERA}}^{\text{obs}} = 0.880 \]

\[2.5 \leq y^* < 3.0 \]
\[P_{\text{CT}}^{\text{obs}} = 0.060 \quad P_{\text{HERA}}^{\text{obs}} = 0.060 \]

ATLAS
\[\int L \, dt = 4.5 \, \text{fb}^{-1} \]
\[\sqrt{s} = 7 \, \text{TeV} \]
anti-\(k_t\) jets, \(R = 0.6\)

- Statistical uncertainty
- Systematic uncertainties

NLOJET++
\[\mu = p_T \exp(0.3 \, y^*) \]
Non-pert. & EW corr.

- CT10
- HERAPDF1.5
- exp. only
- HERAPDF1.5

- different set of PDFs

Pavel Starovoitov (DESY) Recent ATLAS measurement sensitive to PDFs PDF4LHC-Nov/2014
Dijets. Detailed comparison to theory (I)

\[
\begin{align*}
&\text{Theory/data} & \text{Theory/data} \\
&y^* < 0.5 & 1.5 \leq y^* < 2.0 \\
&P_{\text{MSTW}}^{\text{obs}} = 0.276 & P_{\text{MSTW}}^{\text{obs}} = 0.307 \\
&P_{\text{NNPDF2.1}}^{\text{obs}} = 0.189 & P_{\text{NNPDF2.1}}^{\text{obs}} = 0.383 \\
&P_{\text{ABM}}^{\text{obs}} < 0.001 & P_{\text{ABM}}^{\text{obs}} = 0.169 \\
&0.5 \leq y^* < 1.0 & 2.0 \leq y^* < 2.5 \\
&P_{\text{MSTW}}^{\text{obs}} = 0.930 & P_{\text{MSTW}}^{\text{obs}} = 0.656 \\
&P_{\text{NNPDF2.1}}^{\text{obs}} = 0.873 & P_{\text{NNPDF2.1}}^{\text{obs}} = 0.640 \\
&P_{\text{ABM}}^{\text{obs}} < 0.001 & P_{\text{ABM}}^{\text{obs}} = 0.009 \\
&1.0 \leq y^* < 1.5 & 2.5 \leq y^* < 3.0 \\
&P_{\text{MSTW}}^{\text{obs}} = 0.066 & P_{\text{MSTW}}^{\text{obs}} = 0.965 \\
&P_{\text{NNPDF2.1}}^{\text{obs}} = 0.068 & P_{\text{NNPDF2.1}}^{\text{obs}} = 0.964 \\
&P_{\text{ABM}}^{\text{obs}} < 0.001 & P_{\text{ABM}}^{\text{obs}} = 0.909 \\
&2.0 \leq y^* < 2.5 & & \\
&P_{\text{MSTW}}^{\text{obs}} = 0.930 & P_{\text{MSTW}}^{\text{obs}} = 0.965 \\
&P_{\text{NNPDF2.1}}^{\text{obs}} = 0.873 & P_{\text{NNPDF2.1}}^{\text{obs}} = 0.964 \\
&P_{\text{ABM}}^{\text{obs}} < 0.001 & P_{\text{ABM}}^{\text{obs}} = 0.909 \\
&y^* \leq 0.5 & & \\
&P_{\text{MSTW}}^{\text{obs}} = 0.276 & P_{\text{MSTW}}^{\text{obs}} = 0.930 \\
&P_{\text{NNPDF2.1}}^{\text{obs}} = 0.189 & P_{\text{NNPDF2.1}}^{\text{obs}} = 0.873 \\
&P_{\text{ABM}}^{\text{obs}} < 0.001 & P_{\text{ABM}}^{\text{obs}} = 0.009 \\
&y^* \leq 1.0 & & \\
&P_{\text{MSTW}}^{\text{obs}} = 0.276 & P_{\text{MSTW}}^{\text{obs}} = 0.930 \\
&P_{\text{NNPDF2.1}}^{\text{obs}} = 0.189 & P_{\text{NNPDF2.1}}^{\text{obs}} = 0.873 \\
&P_{\text{ABM}}^{\text{obs}} < 0.001 & P_{\text{ABM}}^{\text{obs}} = 0.009 \\
&y^* \leq 1.5 & & \\
&P_{\text{MSTW}}^{\text{obs}} = 0.276 & P_{\text{MSTW}}^{\text{obs}} = 0.930 \\
&P_{\text{NNPDF2.1}}^{\text{obs}} = 0.189 & P_{\text{NNPDF2.1}}^{\text{obs}} = 0.873 \\
&P_{\text{ABM}}^{\text{obs}} < 0.001 & P_{\text{ABM}}^{\text{obs}} = 0.009 \\
\end{align*}
\]
Dijets. Detailed comparison to theory (II)

\[y^* < 0.5 \]
\[P_{\text{MSTW}}^{\text{obs}} = 0.365 \quad P_{\text{NNPDF2.1}}^{\text{obs}} = 0.304 \]
\[P_{\text{ABM}}^{\text{obs}} < 0.001 \]

\[0.5 \leq y^* < 1.0 \]
\[P_{\text{MSTW}}^{\text{obs}} = 0.255 \quad P_{\text{NNPDF2.1}}^{\text{obs}} = 0.091 \]
\[P_{\text{ABM}}^{\text{obs}} < 0.001 \]

\[1.0 \leq y^* < 1.5 \]
\[P_{\text{MSTW}}^{\text{obs}} = 0.534 \quad P_{\text{NNPDF2.1}}^{\text{obs}} = 0.494 \]
\[P_{\text{ABM}}^{\text{obs}} < 0.001 \]

\[1.5 \leq y^* < 2.0 \]
\[P_{\text{MSTW}}^{\text{obs}} = 0.299 \quad P_{\text{NNPDF2.1}}^{\text{obs}} = 0.326 \]
\[P_{\text{ABM}}^{\text{obs}} = 0.046 \]

\[2.0 \leq y^* < 2.5 \]
\[P_{\text{MSTW}}^{\text{obs}} = 0.984 \quad P_{\text{NNPDF2.1}}^{\text{obs}} = 0.984 \]
\[P_{\text{ABM}}^{\text{obs}} = 0.356 \]

\[2.5 \leq y^* < 3.0 \]
\[P_{\text{MSTW}}^{\text{obs}} = 0.086 \quad P_{\text{NNPDF2.1}}^{\text{obs}} = 0.081 \]
\[P_{\text{ABM}}^{\text{obs}} = 0.053 \]

\[\int L \, dt = 4.5 \, \text{fb}^{-1} \]
\[\langle \sqrt{s} \rangle = 7 \, \text{TeV} \]
\[\text{anti}-k_t \, \text{jets, } R = 0.6 \]

Statistical uncertainty
Systematic uncertainties
NLOJET++
\[\mu = p_T \exp(0.3 \, y^*) \]
Non-pert. & EW corr.

MSTW 2008
NNPDF2.3
ABM11

different set of PDFs
Three-jets. Detailed comparison to theory (I)

\[\int L \, dt = 4.5 \, fb^{-1} \]
\[\sqrt{s} = 7 \, TeV \]
\[R = 0.4 \]

ATLAS Preliminary

\[|Y^*| < 2 \]
\[2 < |Y^*| < 4 \]
\[4 < |Y^*| < 6 \]
\[6 < |Y^*| < 8 \]
\[8 < |Y^*| < 10 \]

Prediction/Data

0.6
0.8
1
1.2
1.4

\[|Y^*| < 2 \]
\[2 < |Y^*| < 4 \]
\[4 < |Y^*| < 6 \]
\[6 < |Y^*| < 8 \]
\[8 < |Y^*| < 10 \]

different set of PDFs
Three-jets. Detailed comparison to theory (II)

ATLAS Preliminary
\[\int L \, dt = 4.5 \, fb^{-1} \]
\[\sqrt{s} = 7 \, TeV \]
\[\text{anti-}k_t, R = 0.6 \]

DATA Uncert.
- Total
- Statistical

Different set of PDFs
- CT 10
- MSTW 2008
- HERAPDF 1.5

Pavel Starovoitov (DESY)
Recent ATLAS measurement sensitive to PDFs
Three-jets. Detailed comparison to theory (I)

ATLAS Preliminary

\[\int L \, dt = 4.5 \, fb^{-1} \]
\[\sqrt{s} = 7 \, TeV \]
anti-\(k_t \), \(R = 0.4 \)

Different set of PDFs

Pavel Starovoitov (DESY)
Three-jets. Detailed comparison to theory (II)

\[\int L \, dt = 4.5 \text{ fb}^{-1} \]
\[\sqrt{s} = 7 \text{ TeV} \]
\[R = 0.6 \]
\[\text{anti-}k_t, \text{ } R = 0.6 \]

\[\text{DATA Uncert.} \]
\[\text{Total} \]
\[\text{Statistical} \]

\[\times \text{non-pert. corr.} \]
\[\otimes \text{PDF} \]

NLO QCD

\[\text{different set of PDFs} \]

Pavel Starovoitov (DESY) Recent ATLAS measurement sensitive to PDFs

PDF4LHC-Nov/2014 37 / 24