Potential Performance for p-p, Pb-Pb and p-Pb collisions in FCC-hh

Michaela Schaumann (CERN, RWTH Aachen) In collaboration with J.M. Jowett (CERN)

2nd October 2014 FCC-hh Collaboration Meeting, CERN

Outline

- General assumptions (lattice and beam parameters)
- Estimates for:
	- IBS and radiation damping
	- Luminosity and beam evolution
	- Beam-beam tune shift

in p-p, Pb-Pb and p-Pb collisions.

• Conclusions

Smooth Lattice Approximation

Approximations for smooth lattice functions are used where necessary.

100km Circumference

Cell Length from aperture constraints

$$
L_c = [1, 2] L_{c,LHC} \rightarrow 203 \text{m}
$$

Assume FODO cell with $\mu = \frac{\pi}{2}$

$$
\beta^{\pm} = \frac{L_c (1 \pm \sin \frac{\mu}{2})}{\sin \mu} \propto L_c
$$

$$
\langle D_x \rangle = \frac{L_c \theta_c}{4} \left(\frac{1}{\sin^2 \frac{\mu}{2}} - \frac{1}{12} \right) \propto L_c^2
$$

$$
L_{Dipoles} = 2\pi \rho_0 = F_{Arc} L_{Arcs}
$$

$$
L_{Arcs} = N_c L_c = \frac{2\pi}{\theta_c} L_c
$$

$$
2\pi = \Sigma \theta_{c,i} = N_c \theta_c
$$

$$
\Rightarrow L_c \theta_c = F_{Arc} \frac{L_c^2}{\rho_0}
$$

Beam Parameters

Proton baseline parameters taken from FCC-ACC-SPC-0001, Date 2014-02-11

Average Pb parameters from 2013 are assumed as VERY conservative baseline for FCC-hh!

 \rightarrow Improvements are already under study for HL-LHC!

Beam and Luminosity Evolution

During the beams are in collision the instantaneous value of the luminosity will change:

$$
\mathcal{L}(t) = A \frac{N_b^2(t)}{\sqrt{\epsilon_x(t)\epsilon_y(t)}}
$$

The beam evolution with time is obtained by solving a system of four differential equations:

 $\mathrm{d}N_b$ $= -\sigma_{c,\text{tot}}A \frac{N_b^2}{\sqrt{\epsilon_x \epsilon_y}}$ **Intensity** α_{rad} : rad. damping rate $\mathrm{d}t$ $\frac{\mathrm{d} \epsilon_x}{\mathrm{d} t}$ **Analytical solution** = $\epsilon_x(\alpha_{\text{IBS},x} - \alpha_{\text{rad},x})$

= $\epsilon_y(\alpha_{\text{IBS},y} - \alpha_{\text{rad},y})$

= $\frac{1}{2}\sigma_s(\alpha_{\text{IBS},s} - \alpha_{\text{rad},s})$ Hor. Emittance **difficult, due to complicated** $\frac{\mathrm{d}\epsilon_y}{\mathrm{d}t}$ dependency of α_{IBS} Ver. Emittance **on** N_b , ϵ_x , ϵ_y , σ_s . $\frac{\mathrm{d}\sigma_s}{\sigma_s}$ Bunch Length

with $A = f_{\rm rev} k_b/(4\pi\beta^*)$ f_{rev} : revolution freq. k_b : no. bunches/beam β^* : β-function at IP N_b : no. particles/bunch ϵ : geom. emittances σ_s : bunch length $\sigma_{c,\text{tot}}$: total cross-section α _{IBS}: IBS growth rate

Effects on the Emittance – a new regime

Growth rate dynamically changing with **beam properties**:

 $\alpha_{IBS} \propto \frac{r_0^2}{\gamma^4} \frac{N_b}{\epsilon_x \epsilon_y \sigma_s \sigma_p}$

IBS is weak for initial beam parameters, but increases with decreasing emittance .

Intra-Beam Scattering (IBS) (Synchrotron) Radiation Damping

Emittance Growth | The Reset Life Construction | Emittance Shrinkage

Damping rate is **constant** for a given energy:

$$
\alpha_{rad} \propto \frac{E^3 C_{\alpha}}{\rho_0 C_{ring}}
$$

$$
\approx \frac{E_{\rm FCC}^3/C_{\rm FCC}^2}{E_{\rm LHC}^3/C_{\rm LHC}^2} \approx \frac{7^3}{4^2} \approx 22
$$

Fast emittance decrease at the beginning of the fill, until IBS becomes strong enough to counteract the radiation damping.

Proton-Proton Operation

p-p: Intra-Beam Scattering

Variation of IBS growth times for **initial beam conditions** with FODO cell length.

@ Injection:

- 25ns beam moderate growth times > 15h.
- 5ns beam more critical
- \rightarrow rates for baseline lattice:

 $1/\alpha$ _{IBS.s} = 21h $1/\alpha_{\text{IBS},x} = 6h$

strongest effect for 5ns hor.

• negligible rates

@ 50TeV:

p-p: Beam Evolution

- *2 experiments are in collisions*
- *Full coupling = equal transv. emittances.*
- Solid lines: free beam evolution.
	- \rightarrow Balanced regime of IBS and rad. damping after \sim 2h.
- Dashed lines:
	- \rightarrow beam-beam tune-shift ξ =const.
	- \rightarrow modified ODE with artificial emittance blow-up:

$$
\begin{aligned}\n\frac{\mathrm{d}\epsilon}{\mathrm{d}t} &= \alpha_{\text{IBS},x} \epsilon - \alpha_{\text{rad},x}(\epsilon - \frac{N_b}{N_{b0}} \epsilon_0) \\
\frac{\mathrm{d}\sigma_s}{\mathrm{d}t} &= 0,\n\end{aligned}
$$

p-p: Beam-Beam Tune Shift

- Total tune shift can go up to ~**5 times the expected limit** in case of 25ns beam.
- Peak for 5ns beam at $\xi = 2.5 \times$ limit
- **With artificial longitudinal and transverse blow-up** ξ = const.= limit.

p-p: Luminosity Evolution

- Solid lines: free beam evolution → **Increasing luminosity** due to shrinking emittances!
- Dashed lines: beam-beam tuneshift ξ =const.
	- → **Luminosity decrease** due to

intensity burn-off:

$$
\mathcal{L} \propto \frac{N_b^2}{\epsilon} \propto N_b \xi
$$

• If operation with max. ξ is possible the **integrated luminosity could be increased** by ~**30% (5ns) to 70% (25ns)** in a 12h fill.

Heavy-Ion Operation

Pb-Pb: Beam Evolution (1 Experiment)

- **Red: tracking simulation** taking into account IBS, rad. damping, burn-off, …
- **Black:** numerical solution of the ODE system on slide 7, using J. Wei's analytical IBS formalism*.
	- \rightarrow emittances and bunch length become very small!
- **Green:** $d\sigma_s/dt = 0$: artificial longitudinal blowup to σ_s = 8cm.
- **Blue:** artificial longitudinal and transverse

Pb-Pb: Luminosity Evolution (1 Experiment)

If the beam dimensions become too small and artificial blow-up has to be used, the luminosity will be affected:

- **Peak Enhancement for long. blow-up**, since long. and horizontal IBS are reduced, due to larger $\sigma_s \rightarrow$ smaller ϵ_n .
- **Reduced luminosity,** due to blown-up ϵ_n .

Summary for free beam evolution

(no artificial blow-up)

p-Pb: Beam Evolution (1 Experiment)

Initial conditions:

- Pb-beam as for Pb-Pb operation.
- Equal beam sizes, σ^* , for p and Pb.
- Rad. damping $\propto Z^5/A^4 \approx 2$ \rightarrow 2 $\alpha_{rad}(p) \approx \alpha_{rad}(Pb)$
- **IBS scales with** $\propto (Z^2/A)^2 N_b$
- $N_h(p) \approx 100 N_h(Pb)$ \rightarrow Fast Pb burn-off, while $N_h(p) \approx$ const.

p-Pb: Luminosity Evolution (1 Experiment)

Peak shifted to later times \rightarrow p shrinks slower than Pb $2\alpha_{rad}(p) \approx \alpha_{rad}(Pb)$ Luminosity decays slower \rightarrow $N_b(p) \approx$ const. \rightarrow 1/e-Luminosity lifetime \approx 14h.

Average Luminosity

 $n_{ini} = 1$ (no. injections from LHC)

Heavy-Ion Integrated Luminosity per Run

• **Consider more LHC injections**:

 \rightarrow max. $n_{inj} = 4$ (= FCC Length)

- \rightarrow Dwell time at FCC inj. plateau
	- \rightarrow lengthen

 $t_{\rm ta} = t_{\rm ta, FCC} + (n_{\rm ini} - 1)t_{\rm ta, LHC}$

- \rightarrow Particle losses (& emittance growth)
	- \rightarrow Loss rate of Pb at injection: $R_{\text{loss}} = 5\%$
	- \rightarrow Total beam intensity:

$$
N_{\text{beam}} = k_b N_b \sum_{i=1}^{n_{\text{inj}}} (1 - R_{\text{loss}} t_{\text{ta}} (i - 1))
$$

 \rightarrow < \mathcal{L}_{int} > \Box $(N_{\text{beam}}/k_hN_h)^2 \times$ < \mathcal{L}_{int} >

- Optimised fill length $(n_{ini} = 1)$:
	- Pb-Pb: 3h \rightarrow < \mathcal{L}_{int} >/run \approx 8nb⁻¹
	- p-Pb: 6.5h \rightarrow < \mathcal{L}_{int} >/run \approx 1700nb⁻¹
- **Uncertainty** on prediction significantly enhanced for $n_{ini} > 1$
	- \rightarrow Early beam aborts and longer inj. times

Conclusions

Strong rad. damping: **small emittances and bunch length**

→ Effective intensity burn-off.

- \rightarrow But high beam-beam tune shift in p-p (5 \times *limit*).
- \rightarrow Artificial blow-up could be used as levelling method to keep **beam-beam tune shift below limit,** but **significant reduction of potential luminosity outcome**.
- \rightarrow If operation with max. beam-beam tune shift is possible **int. luminosity +70%** with equal initial beam parameters.

Reduce turn around time!

 \rightarrow Significant luminosity increase for heavy-ion operation

Potential performance of Pb-Pb and p-Pb presented at:

- Ions at the Future Hadron Collider, 16-17 Dec. 2013, CERN. → *<https://indico.cern.ch/event/288576/timetable/#20131216>*
- FCC Study Kickoff Meeting, 12-15 Feb. 2014, Geneva. → *<https://indico.cern.ch/event/282344/timetable/#20140212>*
- Ions at the Future Circular Collider, 22-23 Sep. 2014, CERN. → *<https://indico.cern.ch/event/331669/timetable/#20140922>*

Report covering Pb-Pb, p-Pb and p-p is in preparation…

THANK YOU FOR YOUR ATTENTION

FCC-hh Storage Ring Parameters

Heavy-Ion Beam Parameter Summary

Heavy-Ion Luminosity Summary

Intra-Beam Scattering

A. Piwinski Formalism for IBS **growth rates**:

A. Piwinski Formalism for ibs growth rates.
\n
$$
\alpha_{IBS,s} = \sqrt{A \frac{\sigma_h^2}{\sigma_p^2} f(a, b, q)}
$$
\n
$$
\alpha_{IBS,x} = \sqrt{A \left[f \left(\frac{1}{a}, \frac{b}{a}, \frac{q}{a} \right) + \frac{D_x^2 \sigma_h^2}{\sigma_{x\beta}^2} f(a, b, q) \right]}
$$
\n
$$
\alpha_{IBS,y} = \sqrt{A \left[f \left(\frac{1}{b}, \frac{a}{b}, \frac{q}{b} \right) + \frac{D_y^2 \sigma_h^2}{\sigma_{y\beta}^2} f(a, b, q) \right]}
$$
\nIBS strength changes dynamically with beam properties.

Lattice and beam sizes

$$
\frac{1}{\sigma_h^2} = \frac{1}{\sigma_p^2} + \frac{D_x^2}{\sigma_{x\beta}^2} + \frac{D_y^2}{\sigma_{y\beta}^2}
$$
\n
$$
f(a, b, q) = 8\pi \int_0^1 \left\{ 2\ln\left[\frac{q}{2}\left(\frac{1}{P} + \frac{1}{Q}\right)\right] - 0.577 \dots \right\} \frac{1 - 3u^2}{PQ} du
$$
\n
$$
\begin{cases}\nq = \sigma_h \beta \sqrt{\frac{2d}{r_0}} \\
P^2 = a^2 + (1 - a^2)u^2 \\
Q^2 = b^2 + (1 - b^2)u^2\n\end{cases}
$$
\n
$$
a = \frac{\sigma_h \beta_x}{\gamma \sigma_{x\beta}}
$$

2014/09/22 ²⁵ M. Schaumann, FCC-hh Collaboration Meeting, CERNHandbook of Accelerator Physics and Engineering, 1st Edition, 3rd Print, pp. 141

Pb: Intra-Beam Scattering

Variation of IBS growth times for **initial beam conditions** with FODO cell length.

Effect of long. (hor.) IBS decreases (increases) with increasing cell length at injection energy. At collision energy, IBS is weak for initial beam parameters.

Radiation Damping

Damping Rates

$$
\alpha_{rad,s} = E^3 C_\alpha \frac{\mathcal{I}_2}{\mathcal{C}_{ring}} (2 + [\mathcal{I}_{4,x} + \mathcal{I}_{4,y}]/\mathcal{I}_2)
$$
\n
$$
\alpha_{rad,x} = E^3 C_\alpha \frac{\mathcal{I}_2}{\mathcal{C}_{ring}} (1 - \mathcal{I}_{4,x}/\mathcal{I}_2)
$$
\n
$$
\alpha_{rad,y} = E^3 C_\alpha \frac{\mathcal{I}_2}{\mathcal{C}_{ring}} (1 - \mathcal{I}_{4,y}/\mathcal{I}_2)
$$
\nEnergy Particle Type Ring

Handbook of Accelerator Physics and Engineering, 1st Edition, 3rd Print, pp. 210

 $C_{\alpha} = \frac{r_0 c}{3(mc^2)^3}$

Constant depending on particle's mass and charge

Radiation Integrals

\n
$$
\mathcal{I}_{2}[m^{-1}] = \oint \left(\frac{1}{\rho_{x}^{2}} + \frac{1}{\rho_{y}^{2}}\right) ds
$$
\nIsomagnetic ring with separated functions

\n
$$
\mathcal{I}_{4,x} \approx \frac{2\pi}{\rho_{0}} \frac{D_{x}}{\rho_{0}^{2}} \approx 0
$$
\n
$$
\mathcal{I}_{4,x} \approx 2\pi \frac{D_{x}}{\rho_{0}^{2}} \approx 0
$$
\n
$$
\mathcal{I}_{4,x} \approx 2\pi \frac{D_{x}}{\rho_{0}^{2}} \approx 0
$$
\n
$$
\mathcal{I}_{4,y} \approx 0
$$

Heavy-Ion: Beam-Beam Tune Shift

 $\xi_{m,u}$

 $= \frac{N_{b,n}r_{p0}Z_mZ_n\beta^*}{2\pi A_m\gamma_m\sigma_{n,u}(\sigma_{n,u}+\sigma_{n,v})}$

Beam-beam tune shift per experiment:

- Beam *m* receives kick from Beam *n*
- *u,v =x, y*

The tune shift due to beam-beam interactions remains well below assumed limit for Pb-Pb, but comes close to the limit for Pb in p-Pb collisions.

BFPP Beam Power

 EMD : Electromagnetic dissociation BFPP: Bound-free pair production

$$
\sigma_{tot} = \sigma_{BFPP} + \sigma_{EMD} + \sigma_{hadron}
$$

= 354 b + 235 b + 8 b = 597 k

 $(8\sigma_x, 8\sigma_y, 1\sigma_t)$ envelope for $\epsilon_x = 5.41311 \times 10^{-10}$ m, $\epsilon_y = 5.41311 \times 10^{-10}$ m, $\sigma_p = 0.0001137$

LHC

200

300

 s/m

400

500

 0.03

 0.02

 0.01

 -0.01

 -0.02

 -0.03

100

ξ 0.00

Smaller Z Ions – Impact on Luminosity

- New ions source & injectors \Box possibly higher N_h are available.
	- \triangleright No studies on improved heavy ion injectors done yet!
- Contribution of ultra-peripheral electromagnetic processes to the total cross-section would be reduced:
	- \circ $\sigma_{\rm BFPP} \propto Z^7$
	- \circ σ_{EMD} $\propto Z^4$
	- \triangleright Increased luminosity lifetime, more particles available for hadronic interactions.
	- \triangleright Reduced secondary beam power emerging from collision point.
- Radiation damping rate does not change much for Z>60:

 α _{rad} ∝ Z^5/A^4