Potential Performance for p-p, Pb-Pb and p-Pb collisions in FCC-hh

Michaela Schaumann (CERN, RWTH Aachen) In collaboration with J.M. Jowett (CERN)

2nd October 2014 FCC-hh Collaboration Meeting, CERN

Outline

- General assumptions (lattice and beam parameters)
- Estimates for:
 - IBS and radiation damping
 - Luminosity and beam evolution
 - Beam-beam tune shift

in p-p, Pb-Pb and p-Pb collisions.

Conclusions

Smooth Lattice Approximation

Approximations for smooth lattice functions are used where necessary.

100km Circumference

Cell Length from aperture constraints

$$L_{c} = [1, 2] L_{c, LHC} \rightarrow 203m$$
Assume FODO cell with $\mu = \frac{\pi}{2}$

$$\beta^{\pm} = \frac{L_{c}(1 \pm \sin \frac{\mu}{2})}{\sin \mu} \propto L_{c}$$

$$\langle D_{x} \rangle = \frac{L_{c}\theta_{c}}{4} \left(\frac{1}{\sin^{2} \frac{\mu}{2}} - \frac{1}{12}\right) \propto L_{c}^{2}$$

$$L_{Dipoles} = 2\pi\rho_0 = F_{Arc}L_{Arcs}$$
$$L_{Arcs} = N_c L_c = \frac{2\pi}{\theta_c}L_c$$
$$2\pi = \Sigma\theta_{c,i} = N_c\theta_c$$
$$\Rightarrow L_c\theta_c = F_{Arc}\frac{L_c^2}{\rho_0}$$

	Unit	LHC Design	FCC
Cell Length L _c	[m]	106.9	203
Arc Filling Factor F _{Arc}	-	0.79	0.79
Average β-function	[m]	[66, 71]	119
Average Dispersion (hor.)	[m]	1.4	1.5
Gamma Transition γ_T	-	55.7	103

Beam Parameters

			Protons		Heavy	/-lons
Parameter	Symbol	Unit	$25\mathrm{ns}$	$5\mathrm{ns}$	Pb-Pb	p-Pb
No. of particles per bunch	N_b	$[10^{11}]$	1.0	0.2	0.0014	0.115
Normalised transv. emittance	ϵ_n	$[\mu m]$	2.2	0.44	1.5	3.75
RMS bunch length	σ_s	[m]	0.08	0.08	0.08	0.08
No. of bunches per beam	k_b	-	10600	53000	432	432
β -function at IP	β^*	[m]	1.1	1.1	1.1	1.1
Total cross section	$\sigma_{c,\mathrm{tot}}$	[mb]	153	153	597000	2000
No. of main IPs	-	-	2	2	1	1

Proton baseline parameters taken from FCC-ACC-SPC-0001, Date 2014-02-11

Average Pb parameters from 2013 are assumed as **VERY conservative baseline for FCC-hh!**

 \rightarrow Improvements are already under study for HL-LHC!

Beam and Luminosity Evolution

During the beams are in collision the instantaneous value of the luminosity will change:

$$\mathcal{L}(t) = A \frac{N_b^2(t)}{\sqrt{\epsilon_x(t)\epsilon_y(t)}}$$

The beam evolution with time is obtained by solving a system of four differential equations:

 $\frac{\mathrm{d}N_b}{\mathrm{d}t} = -\sigma_{c,\mathrm{tot}}A\frac{N_b^2}{\sqrt{\epsilon_x\epsilon_y}} \qquad \text{Intensity} \qquad \begin{array}{l} \alpha_{\mathrm{IBS}\,:\,\mathrm{IB}}\\ \alpha_{\mathrm{rad}\,:\,\mathrm{rad}}\\ \alpha_{\mathrm{rad}\,:\,\mathrm{rad}}\\ \frac{\mathrm{d}\epsilon_x}{\mathrm{d}t} &= \epsilon_x(\alpha_{\mathrm{IBS},x} - \alpha_{\mathrm{rad},x}) \\ \frac{\mathrm{d}\epsilon_y}{\mathrm{d}t} &= \epsilon_y(\alpha_{\mathrm{IBS},y} - \alpha_{\mathrm{rad},y}) \\ \frac{\mathrm{d}\sigma_s}{\mathrm{d}t} &= \frac{1}{2}\sigma_s(\alpha_{\mathrm{IBS},s} - \alpha_{\mathrm{rad},s}) \\ \end{array} \qquad \begin{array}{l} \text{Intensity} \\ \text{Hor. Emittance} \\ \text{dependential}\\ \text{dependential}\\ \text{on } N_b, \end{array}$

with $A = f_{rev}k_b/(4\pi\beta^*)$ $f_{rev} : revolution freq.$ $k_b : no. bunches/beam$ $\beta^* : \beta - function at IP$ $N_b : no. particles/bunch$ $\epsilon : geom. emittances$ $\sigma_s : bunch length$ $\sigma_{c,tot} : total cross-section$ $\alpha_{IBS} : IBS growth rate$ $\alpha_{rad} : rad. damping rate$

Analytical solution difficult, due to complicated dependency of α_{IBS} on N_b , ϵ_x , ϵ_y , σ_s .

Effects on the Emittance – a new regime

Intra-Beam Scattering (IBS)

Emittance Growth

Growth rate dynamically changing with beam properties:

 $\alpha_{IBS} \propto \frac{r_0^2}{\gamma^4} \frac{N_b}{\epsilon_x \epsilon_y \sigma_s \sigma_p}$

IBS is weak for initial beam parameters, but increases with decreasing emittance.

Growth Times	Pb	р-р
$1/lpha_{\mathrm{IBS,s}}$ [h]	29	265
$1/lpha_{\mathrm{IBS,x}}$ [h]	30	32

(Synchrotron) Radiation Damping

Emittance Shrinkage

Damping rate is **constant** for a given energy:

$$\alpha_{rad} \propto \frac{E^3 C_\alpha}{\rho_0 C_{ring}}$$

$\alpha_{\rm rad,FCC}$	
$\overline{\alpha_{\mathrm{rad,LHC}}}$	

$$\approx \frac{E_{\rm FCC}^3/C_{\rm FCC}^2}{E_{\rm LHC}^3/C_{\rm LHC}^2} \approx \frac{7^3}{4^2} \approx 22$$

Damping Times	Pb	р-р
$1/lpha_{ m rad,s}$ [h]	0.24	0.5
$1/lpha_{ m rad,x}$ [h]	0.49	1.0

Fast emittance decrease at the beginning of the fill, until IBS becomes strong enough to counteract the radiation damping.

Proton-Proton Operation

p-p: Intra-Beam Scattering

Variation of IBS growth times for *initial beam conditions* with FODO cell length.

@ Injection:

- 25ns beam moderate growth times > 15h.
- 5ns beam more critical
- ightarrow rates for baseline lattice:

 $1/\alpha_{\text{IBS,s}} = 21h$ $1/\alpha_{\text{IBS,x}} = 6h$

strongest effect for 5ns hor.

negligible rates

@ 50TeV:

p-p: Beam Evolution

- 2 experiments are in collisions
- Full coupling = equal transv. emittances.
- Solid lines: free beam evolution.
 - → Balanced regime of IBS and rad. damping after ~2h.
- Dashed lines:
 - \rightarrow beam-beam tune-shift ξ =const.
 - → modified ODE with artificial emittance blow-up:

$$\frac{\mathrm{d}\epsilon}{\mathrm{d}t} = \alpha_{\mathrm{IBS},x} \ \epsilon - \alpha_{\mathrm{rad},x} \left(\epsilon - \frac{N_b}{N_{b0}}\epsilon_0\right)$$
$$\frac{\mathrm{d}\sigma_s}{\mathrm{d}t} = 0,$$

p-p: Beam-Beam Tune Shift

- Total tune shift can go up to ~5 times the expected limit in case of 25ns beam.
- Peak for 5ns beam at $\xi = 2.5 \times \text{limit}$
- With artificial longitudinal and transverse blow-up ξ = const.= limit.

p-p: Luminosity Evolution

- Solid lines: free beam evolution
 → Increasing luminosity due to
 shrinking emittances!
- Dashed lines: beam-beam tuneshift ξ=const.
 - ightarrow Luminosity decrease due to

intensity burn-off:

$$\mathcal{L} \propto \frac{N_b^2}{\epsilon} \propto N_b \xi$$

If operation with max. ξ is possible the integrated luminosity could be increased by ~30% (5ns) to 70% (25ns) in a 12h fill.

Heavy-lon Operation

Pb-Pb: Beam Evolution (1 Experiment)

- **Red: tracking simulation** taking into account IBS, rad. damping, burn-off, ...
- **Black:** numerical solution of the ODE system on slide 7, using J. Wei's analytical IBS formalism*.
 - → emittances and bunch length become very small!
- Green: $d\sigma_s/dt = 0$: artificial longitudinal blowup to $\sigma_s = 8$ cm.
- Blue: artificial longitudinal and transverse blow-up to σ_s = 8cm and $\epsilon_n \ge 0.5 \mu m$.

Pb-Pb: Luminosity Evolution (1 Experiment)

If the beam dimensions become too small and artificial blow-up has to be used, the luminosity will be affected:

- Peak Enhancement for long. blow-up, since long. and horizontal IBS are reduced, due to larger $\sigma_s \rightarrow$ smaller ϵ_n .
- **Reduced luminosity**, due to blown-up ϵ_n .

Summary for free beam evolution

(no artificial blow-up)

	Unit	per Bunch	whole Beam
$L_{ m initial}$	[Hz/mb]	0.006	2.6
L_{peak}	[Hz/mb]	0.017	7.3
$L_{\rm int, fill}$	$[\mu b^{-1}]$	0.13	57.8

p-Pb: Beam Evolution (1 Experiment)

Initial conditions:

- Pb-beam as for Pb-Pb operation.
- Equal beam sizes, σ^* , for p and Pb.
- Rad. damping $\propto Z^5/A^4 \approx 2$ $\rightarrow 2\alpha_{rad}(p) \approx \alpha_{rad}(Pb)$
- IBS scales with $\propto (Z^2/A)^2 N_b$
- $N_b(\mathbf{p}) \approx 100 N_b(Pb)$ \rightarrow Fast Pb burn-off, while $N_b(\mathbf{p}) \approx \text{const.}$

p-Pb: Luminosity Evolution (1 Experiment)

Peak shifted to later times \rightarrow p shrinks slower than Pb $2\alpha_{rad}(p) \approx \alpha_{rad}(Pb)$ Luminosity decays slower $\rightarrow N_b(p) \approx \text{const.}$ $\rightarrow 1/\text{e-Luminosity lifetime} \approx 14\text{h.}$

	Unit	per Bunch	whole Beam
$L_{ m initial}$	[Hz/mb]	0.5	213
$L_{\rm peak}$	[Hz/mb]	2.8	1192
$L_{\rm int, fill}$	$[\mu b^{-1}]$	48.7	21068

Average Luminosity

 $n_{ini} = 1$ (no. injections from LHC)

Heavy-Ion Integrated Luminosity per Run

• Consider more LHC injections:

 \rightarrow max. $n_{inj} = 4$ (= FCC Length)

- \rightarrow Dwell time at FCC inj. plateau
 - \rightarrow lengthen

 $t_{\text{ta}} = t_{\text{ta,FCC}} + (n_{\text{inj}} - 1)t_{\text{ta,LHC}}$ \rightarrow Particle losses (& emittance growth)

- \rightarrow Loss rate of Pb at injection: $R_{\text{loss}} = 5\%$
- \rightarrow Total beam intensity:

$$N_{\text{beam}} = k_b N_b \sum_{i=1}^{n_{\text{mj}}} (1 - R_{\text{loss}} t_{\text{ta}}(i-1))$$

 $\Rightarrow <\mathcal{L}_{int} > \Box \qquad (N_{beam}/k_bN_b)^2 \times <\mathcal{L}_{int} >$

- Optimised fill length ($n_{inj} = 1$):
 - Pb-Pb: $3h \rightarrow \langle \mathcal{L}_{int} \rangle / run \approx 8 nb^{-1}$
 - p-Pb: 6.5h $\rightarrow \langle \mathcal{L}_{int} \rangle / run \approx 1700 nb^{-1}$
- Uncertainty on prediction significantly enhanced for $n_{inj} > 1$
 - ightarrow Early beam aborts and longer inj. times

Conclusions

Strong rad. damping: small emittances and bunch length

→ Effective intensity burn-off.

- \rightarrow But high beam-beam tune shift in p-p (5 \times *limit*).
- → Artificial blow-up could be used as levelling method to keep beam-beam tune shift below limit, but significant reduction of potential luminosity outcome.
- → If operation with max. beam-beam tune shift is possible int. luminosity +70% with equal initial beam parameters.

Reduce turn around time!

→ Significant luminosity increase for heavy-ion operation

Potential performance of Pb-Pb and p-Pb presented at:

- Ions at the Future Hadron Collider, 16-17 Dec. 2013, CERN.
 → <u>https://indico.cern.ch/event/288576/timetable/#20131216</u>
- FCC Study Kickoff Meeting, 12-15 Feb. 2014, Geneva.
 → <u>https://indico.cern.ch/event/282344/timetable/#20140212</u>
- Ions at the Future Circular Collider, 22-23 Sep. 2014, CERN.
 → <u>https://indico.cern.ch/event/331669/timetable/#20140922</u>

Report covering Pb-Pb, p-Pb and p-p is in preparation...

THANK YOU FOR YOUR ATTENTION

FCC-hh Storage Ring Parameters

	TIn:+	LHC	FCC	FCC				
	Umt	Design	Injection	Collision				
Geometry and Main Magnets								
Circumference	[km]	26.659	10	00				
Field of main bends	[T]	8.33	1.0	16				
Bending radius	[m]	2803.95	10424					
Example Lattice								
Cell length	[m]	106.9	203					
Gamma transition γ_T		55.7	103					
	RF Syst	em						
Revolution frequency	[kHz]	11.245	2.9	98				
RF frequency	[MHz]	400.8	400	0.8				
Harmonic number		35640	133692					
Total RF Voltage	[MV]	16	13 32					
Synchrotron frequency	[Hz]	23.0	8.4	3.4				
Bucket height $(\Delta E/E)$	$[10^{-4}]$	3.56	4.5	1.8				
Bucket area	[eVs/charge]	8.0	4.7	28.6				

Heavy-Ion Beam Parameter Summary

	I.I.a.it	LHC	FCC	FCC	FCC
	Om	\mathbf{Design}	Injection	Collision	Collision
G	eneral Beam	Parameter	s	<u> </u>	
Operation mode	-	Pb-Pb	Pb	Pb-Pb	p-Pb
Beam energy	$[{ m TeV}]$	574	270	4100	50
Relativistic γ -factor		2963.5	1397	21168	53290
No. of bunches	-	592		432	
No. of particles per bunch	$[10^8]$	0.7	1.	4	115
Transv. norm. emittance	$[\mu m.rad]$	1.5	1.	5	3.75
RMS bunch length	[cm]	7.94	10.0	8	.0
RMS energy spread	$[10^{-4}]$	1.1	1.9	1.9 0.6	
Long. emittance (4σ)	[eVs/charge]	2.5	2.6	2.6 10.1	
Circulating beam current	[mA]	6.12	2.38		
Stored beam energy	[MJ]	3.8	2.6	39).8
	Intra Beam	Scattering			
Long. IBS emit. growth time	[h]	7.7	6.2	29.2	4×10^3
Hor. IBS emit. growth time	[h]	13	10.0	30.0	4×10^3
	Synchrotron	Radiation	·		·
Long. emit. rad. damping time	[h]	6.3	852	0.24	0.5
Hor. emit. rad. damping time	[h]	12.6	1704	0.49	1.0
Power loss per ion	[W]	2.0×10^{-9}	1.1×10^{-11}	5.7×10^{-7}	3.4×10^{-9}
Power loss per meter in main bends	[W/m]	0.005	1.0×10^{-5}	0.53	0.26
Energy loss per ion per turn	[MeV]	1.12	0.01	775.3	4.7
Synchrotron radiation power per ring	[W]	83.9	0.7	34389	17016
Critical photon energy	[eV]	2.77	0.08	269.3	4300.8

Heavy-Ion Luminosity Summary

	Unit	LHC	FCC	FCC			
	Umt	\mathbf{Design}	Collision	Collision			
Luminosity							
Operation mode	-	Pb-Pb	Pb-Pb	p-Pb			
β -function at the IP	[m]	0.5	1	.1			
Initial RMS beam size at IP	$[\mu m]$	15.9	8.8				
Initial luminosity	[Hz/mb]	1	2.6	213			
Peak luminosity	[Hz/mb]	1	7.3	1192			
Integrated luminosity per fill	$[\mu b^{-1}]$	<15	57.8	21068			
Integrated luminosity per run	$[\mathrm{nb}^{-1}]$	-	8.3	1784			
Initial bb tune shift per IP	$[10^{-4}]$	1.8	3.7	3.7			
Total cross-section	[b]	515	597	2			
Peak BFPP beam power	[W]	26	1705	0			
Initial beam current lifetime	[h]	<11.2 (2 exp.)	10.9	39.3			
Luminosity lifetime (\mathcal{L}_0/e)	[h]	< 5.6 (2 exp.)	6.2	14.0			

Intra-Beam Scattering

A. Piwinski Formalism for IBS growth rates:

A. Provinsion for fibs growth rates:

$$\alpha_{IBS,s} = \left\langle A \frac{\sigma_h^2}{\sigma_p^2} f(a, b, q) \right\rangle$$

$$\alpha_{IBS,x} = \left\langle A \left[f\left(\frac{1}{a}, \frac{b}{a}, \frac{q}{a}\right) + \frac{D_x^2 \sigma_h^2}{\sigma_{x\beta}^2} f(a, b, q) \right] \right\rangle$$

$$\alpha_{IBS,y} = \left\langle A \left[f\left(\frac{1}{b}, \frac{a}{b}, \frac{q}{b}\right) + \frac{D_y^2 \sigma_h^2}{\sigma_{y\beta}^2} f(a, b, q) \right] \right\rangle$$
Beam properties

with beam properties.

Lattice and beam sizes

$$\frac{1}{\sigma_h^2} = \frac{1}{\sigma_p^2} + \frac{D_x^2}{\sigma_{x\beta}^2} + \frac{D_y^2}{\sigma_{y\beta}^2}$$

$$f(a, b, q) = 8\pi \int_0^1 \left\{ 2\ln\left[\frac{q}{2}\left(\frac{1}{P} + \frac{1}{Q}\right)\right] - 0.577\dots\right\} \frac{1 - 3u^2}{PQ} du \right\} \begin{array}{l} q = \sigma_h \beta \sqrt{\frac{2d}{r_0}} \\ P^2 = a^2 + (1 - a^2)u^2 \\ Q^2 = b^2 + (1 - b^2)u^2 \end{array} \right\} \begin{array}{l} a = \frac{\sigma_h \beta_x}{\gamma \sigma_{x\beta}} \\ b = \frac{\sigma_h \beta_y}{\gamma \sigma_{y\beta}} \end{array}$$

Handbook of Accelerator Physics and Engineering, 1st Edition, 3rd Print, pp. 141 M. Schaumann, FCC-hh Collaboration Meeting, CERN 2014/09/22

Pb: Intra-Beam Scattering

Variation of IBS growth times for **initial beam conditions** with FODO cell length.

Effect of long. (hor.) IBS decreases (increases) with increasing cell length at injection energy. At collision energy, IBS is weak for initial beam parameters.

Growth Times	Unit	LHC Design	FCC injection	FCC collision
$1/\alpha_{\rm IBS,s}$	[h]	7.7	10.0	30.3
$1/\alpha_{\rm IBS,x}$	[h]	13	6.2	29.2

Radiation Damping

Damping Rates

$$\begin{aligned} \alpha_{rad,s} &= \begin{bmatrix} E^3 C_{\alpha} & \frac{\mathcal{I}_2}{C_{ring}} (2 + [\mathcal{I}_{4,x} + \mathcal{I}_{4,y}]/\mathcal{I}_2) \\ \alpha_{rad,x} &= \begin{bmatrix} E^3 C_{\alpha} & \frac{\mathcal{I}_2}{C_{ring}} (1 - \mathcal{I}_{4,x}/\mathcal{I}_2) \\ \alpha_{rad,y} &= \begin{bmatrix} E^3 C_{\alpha} & \frac{\mathcal{I}_2}{C_{ring}} (1 - \mathcal{I}_{4,y}/\mathcal{I}_2) \end{bmatrix} \end{aligned}$$
Energy Particle Type Ring

Handbook of Accelerator Physics and Engineering, 1st Edition, 3rd Print, pp. 210

 $C_{\alpha} = \frac{r_0 c}{3(mc^2)^3}$

Constant depending on particle's mass and charge

Radiation Integrals

$$\mathcal{I}_{2}[m^{-1}] = \oint \left(\frac{1}{\rho_{x}^{2}} + \frac{1}{\rho_{y}^{2}}\right) ds$$

$$Isomagnetic ring with separated function magnets \\ \& D_{y} = 0$$

$$\mathcal{I}_{2} \approx \frac{2\pi}{\rho_{0}}$$

$$\mathcal{I}_{4,x} \approx 2\pi \frac{D_{x}}{\rho_{0}^{2}} \approx 0$$

$$\mathcal{I}_{4,y} \approx 0$$

Heavy-Ion: Beam-Beam Tune Shift

 $\xi_{m,u}$

 $= \frac{N_{b,n}r_{p0}Z_mZ_n\beta^*}{2\pi A_m\gamma_m\sigma_{n,u}(\sigma_{n,u}+\sigma_{n,v})}$

Beam-beam tune shift per experiment:

- Beam *m* receives kick from Beam *n*
- *u*,*v* =*x*, *y*

Beam-Beam Parameter per Experiment	Unit	LHC Design p-p	LHC Design Pb-Pb	FCC Pb-Pb	FCC p-Pb
Initial	$[10^{-3}]$	3.7	0.18	0.37	0.37
Peak	$[10^{-3}]$	3.7	0.18	1.4	8.3

The tune shift due to beam-beam interactions remains well below assumed limit for Pb-Pb, but comes close to the limit for Pb in p-Pb collisions.

BFPP Beam Power

EMD: Electromagnetic dissociation BFPP: Bound-free pair production

Main contribution to fast Pb-Pb burn-off:

$$\sigma_{tot} = \sigma_{BFPP} + \sigma_{EMD} + \sigma_{hadron}$$

= 354 b + 235 b + 8 b = 597 b

LHC

200

300

s/m

400

500

0.03

0.02

0.01

-0.01

-0.02

-0.03

100

Ê 0.00

Smaller Z Ions – Impact on Luminosity

- New ions source & injectors \square possibly higher N_b are available.
 - > No studies on improved heavy ion injectors done yet!
- Contribution of ultra-peripheral electromagnetic processes to the total cross-section would be reduced:
 - $\circ \sigma_{\rm BFPP} \propto Z^7$
 - $\circ \ \ \sigma_{\rm EMD} \propto Z^4$
 - Increased luminosity lifetime, more particles available for hadronic interactions.
 - Reduced secondary beam power emerging from collision point.
- Radiation damping rate does not change much for Z>60:

 $\circ \ \alpha_{\rm rad} \propto Z^5/A^4$