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 1) Tensions in the LHCb data coming from                     B ! K⇤µ+µ�

 2) Hint of violation of lepton universality in RK

• A possible solution (SM)….

Long distance QCD

Statistical fluctuation

• New Physics at the LHC motived by Naturalness problem of the EW scale

Which is the interpretation of these anomalies in the context of 
SUSY and Composite Higgs?

• If New Physics
1) Simple and economic interpretation at the EFT level, NP in the muon sector !
2) Quite large effects in Cµ
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MSSM
• B ! K⇤µ+µ�
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Figure 7: Example Feynman diagrams that correspond to MSSM contributions to the e↵ective
Hamiltonian for b ! s`` transitions proportional to flavour-changing trilinear cou-
plings. In the penguin diagrams, the photon, gluon and Z propagators need to be
attached to the loop in all possible ways.

The flavour-changing trilinears give contributions to the e↵ective Hamiltonian in (1) at the one
loop level. Contributions can arise from boxes, photon penguins, and Z penguins and example
Feynman diagrams are shown in fig. 7. A straightforward flavour spurion analysis shows the
following points:

• contributions to C 0
7,8, are suppressed by ms/mb with respect to contributions to C7,8;

• contributions to C 0
9,10 are suppressed by msmb/m2

t with respect to contributions to C9,10;

• contributions proportional to Atc are suppressed by mc/mt compared to contributions
proportional to Act.

We therefore concentrate on the Wilson coe�cients C7, C8, C9, and C10 in the presence of a
non-zero Act. To illustrate the main parameter dependence, in the following we give simple
approximate expressions for the Wilson coe�cients that are obtained at leading order in an
expansion in m2

EW/m2
SUSY. The most important SUSY masses involved are the Wino mass

M2, the Higgsino mass µ, the left-handed slepton mass m˜̀, the stop masses mt̃L
and mt̃R

, as
well as the left-handed charm squark mass mc̃L . The largest e↵ects in b ! s transitions can
obviously be achieved if the SUSY spectrum is as light as possible. To keep the expressions

23

• Large effects possible in CZ
10

• Better than SM but worse than NP in 

• Lepton universal

•  RK

�F = 1 �F = 2 Collider-flavour interplay in SUSY

Trying to explain R

K

< 1 in the MSSM

Only hope to generate an appreciable effect: Wino box
[Altmannshofer and Straub 1308.1501]

bL sLb̃L s̃L

W̃ W̃

˜̀µ µ

(e)

I Implies CNP
9 = �CNP

10

I Best-fit value CNP
9 ⇡ �0.7

Need:

I Extremely light W̃

I Extremely light µ̃L

I Heavy ẽL

I Large b̃L-s̃L mixing

I Not too heavy b̃L, s̃L (̃tL, c̃L)

David Straub (Universe Cluster) 14

• Lepton universality is broken by slepton masses

• Box diagrams are numerically small, very light particles in 
the loop

mẽ � mµ̃

• Direct searches (LHC+LEP) give strong constraints, 
probably no holes left (but a careful analysis is required)

The LHCb results suggest an extensions of the MSSM 

Altmannshofer, Straub !
arXiv:1308.1501, arXiv:1411.3161 

Cµ
9
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• The Higgs is a pseudo Goldstone boson 



Composite Higgs

Ô
g⇢, m⇢

Strong 
sector

Elementary 
sectorf ⇠ SM

✏Ôf

• The Higgs is a pseudo Goldstone boson 
• Possible contributions to semileptonic B decays

bL `+L

sL

`�L

⇧

bL
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sL

`�L
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• Spin-1 Vector exchange
Niehoff, Stangl, Straub !

1503.03865 

• Scalar leptoquark
Based on 1412.5942, JHEP,!

Ben Gripaios and Sophie Renner



Leptoquarks

6

To construct a leptoquark model for Oµ
LL, note that it

must involve both left-handed quarks and leptons. Thus
we write

L = ��bµ �
⇤ q

3

`
2

� �sµ �
⇤ q

2

`
2

, (50)

where qi is the i-th generation left-handed quark dou-
blet and `i is the i-th generation left-handed lepton
doublet. These couplings require the leptoquark � to
have (SU(3), SU(2))U(1)

quantum numbers (3, 1)�1/3

or (3, 3)�1/3, depending on how the SU(2) indices in
Eq. (50) are contracted. The (3, 1)�1/3 leptoquark cou-
ples down-type quarks only to neutrinos; it cannot gen-
erate the decays to muons that we are interested in. We
therefore consider the (3, 3)�1/3 which mediates FCNCs
with |�B| = |�S| = 1 decays to muons as well as to
neutrinos.
Integrating out the leptoquark and Fierz rearranging, we
obtain flavor-preserving four-Fermi terms as well as

H
e↵

= �
�⇤
sµ�bµ

M2

✓
1

4
[q̄

2

⌧a�µPLq3] [ ¯̀2⌧
a�µPL`2]

+
3

4
[q̄

2

�µPLq3] [ ¯̀2�µPL`2]

◆
(51)

where ⌧a are Pauli matrices contracted with the SU(2)L
indices of the fermions. Since the fermions are SU(2)L
doublets, these operators contain several di↵erent flavor-
contractions for up- and down-type quarks, muons and
muon neutrinos. In addition to the FCNC for b ! sµµ
which was the goal of the model we also obtain 3 others

[s̄�µPLb] [µ̄�µPLµ] ,
1

2
[s̄�µPLb] [⌫̄µ�µPL⌫µ] ,

1

2
[c̄�µPLt] [µ̄�µPLµ] , [c̄�µPLt] [⌫̄µ�µPL⌫µ] , (52)

all with the same coe�cient. The two operators involving
top quarks mediate top FCNC decays. Fixing the overall
coe�cient of the operator to explain the RK data, the
top quark FCNC branching fraction is about 10�11, far
too small to be observable.
Moving on to the operator for b decays to muons, we
obtain

CNPµ
9

= �CNPµ
10

=
⇡

↵e

�⇤
sµ�bµ

VtbV ⇤
ts

p
2

2M2GF
' �0.5 , (53)

where the last equality corresponds to the choice of Wil-
son coe�cients which we determined as our benchmark
point in Section IIIA. Solving for the combination of free
parameters in the model we find that we must choose
M2 ' �⇤

sµ�bµ(48TeV)2.
Constraints on the parameter space of this model are very
similar to the constraints of the electron model discussed
in Section IVA. There is a bound from leptoquark pair
production at the LHC, a bound from Bs mixing, and
a bound from g � 2 of the muon. These bounds are all
easily satisfied for leptoquark masses between 1 and 48

TeV and
q
|�⇤

sµ�bµ| ' M/(48TeV).

From Eq. (52) we see that the neutrino operator O⌫µ

L is
induced such that

C
⌫µ

R |
LQ

= 0 , C
⌫µ

L |
LQ

= CNPµ
9

/2 ' �0.25 . (54)

This implies that the B̄ ! K̄(⇤)⌫⌫ and B̄ ! Xs⌫⌫
branching ratios are enhanced by 3% whereas there is
no e↵ect on FL.
In addition, there is a 1-loop induced contribution to the
electromagnetic dipole operator O

7

/ mbs̄�µ⌫F
µ⌫PRb.

Given Cµ
LL ⇠ �1, it implies an order few percent cor-

rection to the SM Wilson coe�cient of O
7

. Besides in
the global |�B| = |�S| = 1 fits, this could be probed
e.g. with the b ! s� branching ratio or the location
of the zero of A

FB

(B̄ ! Xs``). Future high luminosity
flavor factories (with 75ab�1) are close to matching the
requisite experimental precision [29].

V. SUMMARY

Flavor physics can provide clues for physics at the weak
scale and beyond. In this article we studied BSM physics
that can a↵ect the ratio RK . A value of RK which dif-
fers from one would be a clean indication for lepton-
non-universal BSM physics which a↵ects b ! see and
b ! sµµ transitions di↵erently. Unlike the individual
B̄ ! K̄``, ` = e, µ branching fractions, RK is essentially
free of hadronic uncertainties, notably form factors.
Anticipating that the current experimental situation
holds up and a value of RK significantly smaller than
one is confirmed, we explore possible new physics ex-
planations. Interpretations with bs`` tensor operators
are already excluded by current data. Interpretations
with (pseudo-)scalar operators are disfavored by data on
B̄s ! ee, B̄s ! µµ and B̄ ! K̄ee decays. However,
a fine-tuned possibility still survives which requires the
simultaneous presence of Oe

S,P and the chirality-flipped
Oe0

S,P . This scenario can be tested with an angular anal-

ysis of B̄ ! K̄ee decays.
(Axial)-vector operators can provide an explanation of
the RK measurement (2). The e↵ect could come from
new physics coupling to muons, or electrons, or a combi-
nation thereof as in Eq. (18) [14]. In the near term, high
statistics analyses of B̄ ! K̄(⇤)µµ and related decays at
LHC(b) should clarify the situation in the muon channel.
We stress that the chiral nature of the SM fermion moti-
vates the expectation that dimension six operators from
new physics may be simplest in a chiral basis. We pro-
pose that global fits with chiral SU(2)L-invariant lepton
currents be performed. It seems reasonable to assume
that a single chiral operator dominates so that the fit
includes only a single parameter (the coe�cient CXY of
one of the OXY with X,Y 2 L,R). In the standard ba-
sis this would mean that one turns on only two of the 4

operators O(

0
)

9,10 with one of the constraints

CNP`
9

= ±CNP`
10

, CNP0`
9

= ±CNP0`
10

. (55)

bL `+L

sL

`�L

⇧

• A leptoquark interpretation

• Quantum number of the new states, uniquely 
determined  by the the Left-Left structure

Hiller, Schmaltz 1408.1627

⇧ ⇠ (3,3, 1/3)

�ij/(cijg
1/2
⇢ ✏q3) j = 1 j = 2 j = 3

i = 1 1.92⇥ 10�5 8.53⇥ 10�5 1.67⇥ 10�3

i = 2 2.80⇥ 10�4 1.24⇥ 10�3 2.43⇥ 10�2

i = 3 1.16⇥ 10�3 5.16⇥ 10�3 0.101

Figure 3. Values of leptoquark couplings, �ij , where i denotes the lepton generation label and j
the quark generation label.

e↵ective field theory (EFT) of the form

L =
m4

⇢

g2⇢
L(0)

 
g⇢✏ai f

a
i

m3/2
⇢

,
Dµ

m⇢
,
g⇢H

m⇢
,
g⇢⇧

m⇢

!
. (3.6)

In the strongly-coupled, UV theory we expect the presence of an operator of the form

g⇢⇧OLOQ, where OQ (or OL) is a composite operator with the same quantum numbers as

a SM quark (or lepton). Below the scale m⇢, this operator generates a contribution to L
of the form ⇠ g⇢✏`i✏

q
j⇧`iqj . At low energies, the renormalizable lagrangian of the model is

L = LSM + (Dµ⇧)†Dµ⇧�M2⇧†⇧+ �ij q
c
Lji⌧2⌧a`Li⇧+ h.c., (3.7)

with �ij = g⇢cij✏
q
i ✏

`
j , where we have omitted quartic terms involving H and ⇧ that are not

relevant to our discussion. Note that we have explicitly re-introduced the cij parameters

that are expected to be of O(1), but are otherwise unknown. We summarise the values of

the leptoquark couplings in Fig. 3.

3.2 Coset structure

Here we supply a coset space construction that gives rise to the required SM quantum

numbers for the Higgs and leptoquark fields. First we describe the pattern of spontaneous

breaking of the symmetry of the strong sector G/H, and the embedding of the SM gauge

group SU(3)C ⇥ SU(2)L ⇥U(1)Y therein. We then discuss additional symmetry structure

required to avoid constraints from nucleon decay and neutron-antineutron oscillations.

To build a coset, we start from the minimal composite Higgs model [10], in which

a single SM Higgs doublet arises from the spontaneous breaking of SO(5) to SU(2)H ⇥
SU(2)R, with H transforming as a (2,2) of the unbroken subgroup. We must now enlarge

the coset space somehow to include the leptoquark ⇧ and its conjugate ⇧†. To see how

this may be achieved, consider first a model with just the leptoquark and no Higgs boson.

This can be achieved using SO(9) broken to SU(4) ⇥ SU(2)⇧. The 6 Goldstone bosons,

(⇧,⇧†), transform as (6,3).

Now form the direct product of SO(5) and SO(9) and consider the coset space

SO(9)⇥ SO(5)

SU(4)⇥ SU(2)⇧ ⇥ SU(2)H ⇥ SU(2)R
. (3.8)

This has, of course, the same Goldstone boson content as the two models above. The trick

is to somehow embed the SM gauge group in H so as to get the right charges for H and ⇧.

– 8 –

• Anomalies are fitted when 

• Just two, non-vanishing leptoquark coupling

• Scale of New Physics not predicted



Theoretical Framework

m⇢

mH

m⇧

10 TeV

E

1 TeV

125 GeV

Ô

g⇢, m⇢

⇧, H
Strong 
sector

Elementary 
sectorf ⇠ SM

• Being PGB, Higgs and Leptoquarks are lighter than the other 
resonances coming from the strong sector!
!

• SM fermion masses are generated by the mechanism of 
partial compositeness!
!
!
!
• BSM Flavour violation regulated by the same mechanism!
!

• Naturalness (…)

|SMi = cos ✏|fi + sin ✏|Oi

✏Ôf



Leptoquarks as PNGB
• Partial compositeness requires the presence of coloured composite state, plausible to 
expect coloured PNGB!
!

• Depending on the quantum numbers of the PNGB, diquark and leptoquark couplings are 
expected!

• Colour gauge group can be part of the symmetries of the strong sector (in analogously to 
the EW group)

Gripaios 0910.1789

Gripaios, Giudice, Sundrum 1105.3189

• Coset structure (1,2, 1/2) + (3,3, 1/3) + (3,3,�1/3)

SO(9)! SU(4)⇥ SU(2)⇧
(⇧ + ⇧†) ⇠ (6,3)

SO(5)! SU(2)H ⇥ SU(2)R

H ⇠ (2,2)

SU(3)C ⇥ U(1) � SU(4)
SU(2)L = (SU(2)H ⇥ SU(2)⇧)D

TY = � 1
2T + T3R

• SM embedding

• Mass term generated by the colour gauge interactions m2
⇧ ⇠

↵s

4⇡
m2

⇢



Partial Compositeness in CH models
• Yukawa sector:

H

⇥L

⇥R

fL

fR

g�

⇥L

⇥R

fL

fR

g� fL

fR

g�

1/m2
�

⇥L

⇥R

Figure 3: The contribution from the exchange of heavy modes to the Yukawas and to the FCNC operators.

the estimates that follow). The way out is again MFV, i.e. the conditions Y u
1 ⇤ Y u

3 ⇤ . . . and similarly

for the downs. Interestingly, this can be automatically enforced in PNGB composite Higgs models where

selection rules of the global group G can imply, at lowest order in the proto-Yukawa couplings, a factorized

flavor structure [11]

q̄L
�
Y u
1 H̃Fu(H

†H/f2)
⇥
uR + q̄L

�
Y d
1 HFd(H

†H/f2)
⇥
dR + h.c. . (16)

This feature eliminates the leading contribution to Higgs-mediated FCNC.

Now, in the composite 2HDM the issues exemplified by eq. (14) and eq. (15) will both be present, but

at the same time one will be able to rely, as explained above, on both, discrete symmetries or ansätze

and on G selection rules. Let us discuss in more detail how these mechanisms work and protect from

Higgs-mediated flavor transitions. As previously explained, the SM fermions are coupled linearly to the

strong sector through fermionic composite operators OfL,fR . The latter describe couplings at microscopic

scales, where the breaking G ⇥ H can be neglected, and therefore correspond to some representations of

G that we denote, respectively, as rL and rR. For one generation, eq. (2) can be rewritten more explicitly

as

Lmix = (f̄L)�(yL
�)IfLOIfL

+ (f̄R)(yR)
IfROIfR

+ h.c. , (17)

where the IfL and IfR indices of yL,R are in the conjugate representation of rL,R while � denotes the

SM SU(2)L-doublet index. As the notation suggests, in eq. (17) we have uplifted the yL,R couplings to

representations (spurions) of the G� SU(2)W � U(1)Y . This will allow us to exploit fully the constraints

from G-invariance.

Adding flavor to eq. (17), amounts to adding an index i to fL, yL, yR, OIfL
, OIfR

. Notice that in general

there is no notion of orthogonality for the composite operators, meaning that the correlator ⌃Oi
IfL

Oj
IfL

⌥ is
in general non zero for any i, j pair (similarly for Oi

IfR
). E�ective Yukawa couplings, in principle of the

general form of eqs. (14) and (15), arise at low energy via the exchange of the heavy modes excited by

OfL,fR – see fig. 3. By applying power counting as depicted in the figure, we expect for the Y ij
1 , Y ij

2 and

13

Lelem = if�µDµf

L
comp

= L
comp

(g⇢, m⇢, H)

L
mix

= ✏L fLOL + ✏L fROR + h.c.

Y ij ⇠ ✏i
L✏j

Rg⇢Y ij = cij ✏i
L✏j

R g⇢
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Mixing parameters
• Mixing parameters are related to values of fermion masses and mixing

⇥ai to reproduce the SM masses and would thus lead to larger e⇥ects in flavor-violating processes,
e.g. in meson-meson mixing. We will emphasize in section 3 that in order to avoid danger-
ous tree-level Higgs corrections to �F = 2 processes it helps to realize the Higgs as a pseudo
Nambu-Goldstone boson (NGB) of the strong sector.

The NDA Lagrangian (2.2) predicts the following structure for the SM Yukawa matrices of the
up and down quarks:

(Yu)ij ⇥ g⇥⇥
q
i ⇥

u
j , (Yd)ij ⇥ g⇥⇥

q
i ⇥

d
j . (2.4)

(We use ⇥ throughout the text to indicate that the equalities hold up to unknown O(1) matrices
in flavor space.) Eq. (2.4) suggests that the non-trivial hierarchies of the SM fermion masses could
follow from hierarchical mixing parameters ⇥ai , as anticipated above. Taking as a phenomenological
input ⇥a1 < ⇥a3 < ⇥a3, and keeping only the leading terms in the expansion, the Yukawa matrices can
be straightforwardly diagonalized by unitary matrices:

(Lu)ij ⇥ (Ld)ij ⇥ min

�
⇥qi
⇥qj
,
⇥qj
⇥qi

⇥
, (Ru,d)ij ⇥ min

⇤
⇥u,di

⇥u,dj

,
⇥u,dj

⇥u,di

⌅
. (2.5)

The resulting quark masses, renormalized at the scale m⇥, read mu,d
i = yu,di v, with:

(L†
uYuRu)ij = g⇥⇥

u
i ⇥

q
i �ij � yui �ij , (L†

dYdRd)ij = g⇥⇥
d
i ⇥

q
i �ij � ydi �ij , (2.6)

and v(mZ) ⇤ 174 GeV.
Furthermore, noticing that VCKM = L†

dLu ⇥ Lu,d we see that the present framework can
naturally explain the hierarchical structure of the mixing matrix provided that:

⇥q1
⇥q2

⇥ ⇤
⇥q2
⇥q3

⇥ ⇤2 ⇥q1
⇥q3

⇥ ⇤3, (2.7)

where ⇤ ⇤ 0.22 is the Cabibbo angle. In the following we assume that the approximate equalities
in (2.7) hold. With these identifications the mixing parameters of the left-handed quarks are
completely determined up to an overall normalization factor, whereas the ⇥u,di ’s are constrained
by (2.6):

⇥u,di

⇥u,dj

=
yu,di

yu,dj

⇥qj
⇥qi
. (2.8)

We are thus left with two free parameters that can be ⇥q3 and ⇥u3 or equivalently one of the two
and g⇥.

The above discussion generalizes to the lepton sector, with the important di⇥erence that the
neutrinos are much lighter than the charged leptons. As a consequence, it is plausible that the
neutrino masses come from a di⇥erent source, and there is more arbitrariness in the determination
of the ⇥ai ’s.

In fact there is overwhelming experimental evidence indicating that the mixing matrix VPMNS =
L†
eL� is non-hierarchical. Because this latter feature generically occurs whenever L� is anarchic,

and whatever the structure of the charged lepton matrix is, we argue that in order to accommo-
date current data in the lepton sector it su⇧ces to generate hierarchical Yukawa couplings for the
charged leptons:

(Ye)ij ⇥ g⇥⇥
↵
i⇥

e
j , (2.9)

3• In the lepton sector parameters cannot be univocally connected to physical inputs, due to 
our ignorance on neutrino masses, will assume that left and right mixing have similar size

Fermion Mass

e 0.487 MeV

µ 103 MeV

⌧ 1.78 GeV

d 2.50+1.08
�1.03 MeV

s 47+14
�13 MeV

b 2.43± 0.08 GeV

u 1.10+0.43
�0.37 MeV

c 0.53± 0.07 GeV

t 150.7± 3.4 GeV

Figure 1. Values of running fermion masses at the scale µ = 1 TeV [40].

Mixing Parameter Value

✏q1 = �3✏q3 1.15⇥ 10�2 ✏q3
✏q2 = �2✏q3 5.11⇥ 10�2 ✏q3

✏u1 = mu
vg⇢

1
�3✏q3

5.48⇥ 10�4/(g⇢✏
q
3)

✏u2 = mc
vg⇢

1
�2✏q3

5.96⇥ 10�2/(g⇢✏
q
3)

✏u3 = mt
vg⇢

1
✏q3

0.866/(g⇢✏
q
3)

✏d1 = md
vg⇢

1
�3✏q3

1.24⇥ 10�3/(g⇢✏
q
3)

✏d2 = ms
vg⇢

1
�2✏q3

5.29⇥ 10�3/(g⇢✏
q
3)

✏d3 = mb
vg⇢

1
✏q3

1.40⇥ 10�2(g⇢✏
q
3)

✏`1 = ✏e1 =
⇣

me
g⇢v

⌘1/2
1.67⇥ 10�3/g1/2⇢

✏`2 = ✏e2 =
⇣
mµ

g⇢v

⌘1/2
2.43⇥ 10�2/g1/2⇢

✏`3 = ✏e3 =
⇣

m⌧
g⇢v

⌘1/2
0.101/g1/2⇢

Figure 2. Partial compositeness mixing parameters and values.

Evidently, this condition is implied by (but does not imply) our assumption that the left

and right leptonic mixings are equal.

In this way, we are able to fix all parameters in the lepton sector in terms of g⇢, and so

all the NP e↵ects of the model are parameterized by M , g⇢, and ✏3q . The phenomenological

inputs and the expressions of the various mixing parameters are summarised in Figs. 1

and 2.

We may now determine the leptoquark couplings, as follows. Similarly to [41], below the

scale of the strongly-coupled resonances we can describe the low energy physics by an
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⇥ai to reproduce the SM masses and would thus lead to larger e⇥ects in flavor-violating processes,
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Nambu-Goldstone boson (NGB) of the strong sector.

The NDA Lagrangian (2.2) predicts the following structure for the SM Yukawa matrices of the
up and down quarks:
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q
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u
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q
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d
j . (2.4)

(We use ⇥ throughout the text to indicate that the equalities hold up to unknown O(1) matrices
in flavor space.) Eq. (2.4) suggests that the non-trivial hierarchies of the SM fermion masses could
follow from hierarchical mixing parameters ⇥ai , as anticipated above. Taking as a phenomenological
input ⇥a1 < ⇥a3 < ⇥a3, and keeping only the leading terms in the expansion, the Yukawa matrices can
be straightforwardly diagonalized by unitary matrices:
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Furthermore, noticing that VCKM = L†

dLu ⇥ Lu,d we see that the present framework can
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where ⇤ ⇤ 0.22 is the Cabibbo angle. In the following we assume that the approximate equalities
in (2.7) hold. With these identifications the mixing parameters of the left-handed quarks are
completely determined up to an overall normalization factor, whereas the ⇥u,di ’s are constrained
by (2.6):
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=
yu,di
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. (2.8)

We are thus left with two free parameters that can be ⇥q3 and ⇥u3 or equivalently one of the two
and g⇥.

The above discussion generalizes to the lepton sector, with the important di⇥erence that the
neutrinos are much lighter than the charged leptons. As a consequence, it is plausible that the
neutrino masses come from a di⇥erent source, and there is more arbitrariness in the determination
of the ⇥ai ’s.

In fact there is overwhelming experimental evidence indicating that the mixing matrix VPMNS =
L†
eL� is non-hierarchical. Because this latter feature generically occurs whenever L� is anarchic,

and whatever the structure of the charged lepton matrix is, we argue that in order to accommo-
date current data in the lepton sector it su⇧ces to generate hierarchical Yukawa couplings for the
charged leptons:

(Ye)ij ⇥ g⇥⇥
↵
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e
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follow from hierarchical mixing parameters ⇥ai , as anticipated above. Taking as a phenomenological
input ⇥a1 < ⇥a3 < ⇥a3, and keeping only the leading terms in the expansion, the Yukawa matrices can
be straightforwardly diagonalized by unitary matrices:

(Lu)ij ⇥ (Ld)ij ⇥ min

�
⇥qi
⇥qj
,
⇥qj
⇥qi

⇥
, (Ru,d)ij ⇥ min

⇤
⇥u,di

⇥u,dj

,
⇥u,dj

⇥u,di

⌅
. (2.5)

The resulting quark masses, renormalized at the scale m⇥, read mu,d
i = yu,di v, with:

(L†
uYuRu)ij = g⇥⇥

u
i ⇥

q
i �ij � yui �ij , (L†

dYdRd)ij = g⇥⇥
d
i ⇥

q
i �ij � ydi �ij , (2.6)
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Furthermore, noticing that VCKM = L†

dLu ⇥ Lu,d we see that the present framework can
naturally explain the hierarchical structure of the mixing matrix provided that:
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where ⇤ ⇤ 0.22 is the Cabibbo angle. In the following we assume that the approximate equalities
in (2.7) hold. With these identifications the mixing parameters of the left-handed quarks are
completely determined up to an overall normalization factor, whereas the ⇥u,di ’s are constrained
by (2.6):
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We are thus left with two free parameters that can be ⇥q3 and ⇥u3 or equivalently one of the two
and g⇥.

The above discussion generalizes to the lepton sector, with the important di⇥erence that the
neutrinos are much lighter than the charged leptons. As a consequence, it is plausible that the
neutrino masses come from a di⇥erent source, and there is more arbitrariness in the determination
of the ⇥ai ’s.

In fact there is overwhelming experimental evidence indicating that the mixing matrix VPMNS =
L†
eL� is non-hierarchical. Because this latter feature generically occurs whenever L� is anarchic,

and whatever the structure of the charged lepton matrix is, we argue that in order to accommo-
date current data in the lepton sector it su⇧ces to generate hierarchical Yukawa couplings for the
charged leptons:

(Ye)ij ⇥ g⇥⇥
↵
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e
j , (2.9)

3

• In the quarks sector everything is fixed up to 2 parameters, (g⇢, ✏
q
3)



Flavour Violation & Leptoquarks
• Comment later about the flavour physics associated with  m⇢

 QuarksqL

�ij/(cijg
1/2
⇢ ✏q3) j = 1 j = 2 j = 3

i = 1 1.92⇥ 10�5 8.53⇥ 10�5 1.67⇥ 10�3

i = 2 2.80⇥ 10�4 1.24⇥ 10�3 2.43⇥ 10�2

i = 3 1.16⇥ 10�3 5.16⇥ 10�3 0.101

Figure 3. Values of leptoquark couplings, �ij , where i denotes the lepton generation label and j
the quark generation label.

e↵ective field theory (EFT) of the form

L =
m4

⇢

g2⇢
L(0)

 
g⇢✏ai f

a
i

m3/2
⇢

,
Dµ

m⇢
,
g⇢H

m⇢
,
g⇢⇧

m⇢

!
. (3.6)

In the strongly-coupled, UV theory we expect the presence of an operator of the form

g⇢⇧OLOQ, where OQ (or OL) is a composite operator with the same quantum numbers as

a SM quark (or lepton). Below the scale m⇢, this operator generates a contribution to L
of the form ⇠ g⇢✏`i✏

q
j⇧`iqj . At low energies, the renormalizable lagrangian of the model is

L = LSM + (Dµ⇧)†Dµ⇧�M2⇧†⇧+ �ij q
c
Lji⌧2⌧a`Li⇧+ h.c., (3.7)

with �ij = g⇢cij✏
q
i ✏

`
j , where we have omitted quartic terms involving H and ⇧ that are not

relevant to our discussion. Note that we have explicitly re-introduced the cij parameters

that are expected to be of O(1), but are otherwise unknown. We summarise the values of

the leptoquark couplings in Fig. 3.

3.2 Coset structure

Here we supply a coset space construction that gives rise to the required SM quantum

numbers for the Higgs and leptoquark fields. First we describe the pattern of spontaneous

breaking of the symmetry of the strong sector G/H, and the embedding of the SM gauge

group SU(3)C ⇥ SU(2)L ⇥U(1)Y therein. We then discuss additional symmetry structure

required to avoid constraints from nucleon decay and neutron-antineutron oscillations.

To build a coset, we start from the minimal composite Higgs model [10], in which

a single SM Higgs doublet arises from the spontaneous breaking of SO(5) to SU(2)H ⇥
SU(2)R, with H transforming as a (2,2) of the unbroken subgroup. We must now enlarge

the coset space somehow to include the leptoquark ⇧ and its conjugate ⇧†. To see how

this may be achieved, consider first a model with just the leptoquark and no Higgs boson.

This can be achieved using SO(9) broken to SU(4) ⇥ SU(2)⇧. The 6 Goldstone bosons,

(⇧,⇧†), transform as (6,3).

Now form the direct product of SO(5) and SO(9) and consider the coset space

SO(9)⇥ SO(5)

SU(4)⇥ SU(2)⇧ ⇥ SU(2)H ⇥ SU(2)R
. (3.8)

This has, of course, the same Goldstone boson content as the two models above. The trick

is to somehow embed the SM gauge group in H so as to get the right charges for H and ⇧.
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numbers for the Higgs and leptoquark fields. First we describe the pattern of spontaneous

breaking of the symmetry of the strong sector G/H, and the embedding of the SM gauge

group SU(3)C ⇥ SU(2)L ⇥U(1)Y therein. We then discuss additional symmetry structure

required to avoid constraints from nucleon decay and neutron-antineutron oscillations.

To build a coset, we start from the minimal composite Higgs model [10], in which

a single SM Higgs doublet arises from the spontaneous breaking of SO(5) to SU(2)H ⇥
SU(2)R, with H transforming as a (2,2) of the unbroken subgroup. We must now enlarge

the coset space somehow to include the leptoquark ⇧ and its conjugate ⇧†. To see how

this may be achieved, consider first a model with just the leptoquark and no Higgs boson.

This can be achieved using SO(9) broken to SU(4) ⇥ SU(2)⇧. The 6 Goldstone bosons,

(⇧,⇧†), transform as (6,3).

Now form the direct product of SO(5) and SO(9) and consider the coset space

SO(9)⇥ SO(5)

SU(4)⇥ SU(2)⇧ ⇥ SU(2)H ⇥ SU(2)R
. (3.8)

This has, of course, the same Goldstone boson content as the two models above. The trick

is to somehow embed the SM gauge group in H so as to get the right charges for H and ⇧.
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Fit to the anomalies

(iii) Charged currents

These are generated by the operators (u0L�
µdL)kj (eL�µ⌫L)`i and

�
dL�µu0L
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kj
(⌫L�µeL)`i.

Processes generated by these operators are also present at tree level in the SM, so

NP contributions are not expected to be large relative to the SM predictions. The

largest NP rates will occur in processes with ⌧ or ⌫⌧ in the final state.

With these considerations in mind, in the remainder of this Section we discuss the

values of the model parameters that are needed to fit recent B-decay anomalies and then

list important constraints on the model and predictions for its e↵ects in other processes.

4.1 Anomalies in B decays

4.1.1 Fit to muonic �B = �S = 1 processes

We consider recent results of [20], in which a fit to all available data on muonic (or lepton-

universal) �B = �S = 1 processes is described. A part of that work involved allowing

one Wilson Coe�cient (or chiral combination thereof) to vary while assuming all other

coe�cients are set to their SM values (for details of the fit please see [20]). The best fit

value found in this way for the chiral combination relevant to our leptoquark is CNPµ
9 =

�CNPµ
10 = �0.46, with 1� and 2� ranges

CNPµ
9 = �CNPµ
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.

Thus, if this anomaly is to be explained, there are 3 immediate implications for the

parameters of our model:

1. the mass of the leptoquark states should be low enough, M . 1 TeV, to be within

the reach of the second run of the LHC;

2. the left-handed doublet of the third quark family should be largely composite, ✏q3 ⇠ 1;
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Flavour violation at the tree level

• “Vertical” correlations induced by SM gauge invariance 

• “Horizontal” correlations induced by partial compositeness

⇧

the lepton doublet, `i =
�
⌫i, eiL

�T
. We assume that the mass di↵erences between the

components of the leptoquark triplet are small compared to the masses themselves, so that

the components can be assumed to have a common mass, M . Therefore we may write

Leff
LQ =

X

ij`k

�ij(�`k)⇤

2M2

h
2
�
dL�µdL

�
kj
(eL�µeL)`i + 2 (u0L�

µu0L)kj (⌫L�µ⌫L)`i

+
�
dL�µdL

�
kj
(⌫L�µ⌫L)`i + (u0L�

µu0L)kj (eL�µeL)`i (4.2)

+ (u0L�
µdL)kj (eL�µ⌫L)`i +

�
dL�µu0L

�
kj
(⌫L�µeL)`i

i
,

where u0jL = V †jk
CKMukL. All unprimed fields are mass eigenstates.10

We now comment briefly on the qualitative consequences of the various operators that

appear above.

(i) Flavour changing neutral currents (FCNC) in the down quark sector

These are generated by the operators
�
dL�µdL

�
kj
(eL�µeL)`i and

�
dL�µdL

�
kj
(⌫L�µ⌫L)`i.

They can mediate meson decays via the transitions b ! s``, b ! s⌫⌫, s ! d``,

s ! d⌫⌫, b ! d`` and b ! d⌫⌫.

The b ! s`` transition is the main motivation for this work and will be discussed in

more detail below. The decays involving neutrinos can have large NP contributions,

because couplings to tau neutrinos are large in the partial compositeness framework

considered here. We provide a quantitative analysis of the decays B ! K(⇤)⌫⌫ and

K ! ⇡⌫⌫ below. Constraints on leptoquark couplings from measurements of (lepton-

flavour-conserving) K and B decays are summarized in Fig. 4 below, excluding b !
s`` and b ! s⌫⌫ processes, which will be discussed in more detail in the text. Lepton-

flavour-violating (LFV) processes, recently investigated in [44], are also possible in

our set-up, but current bounds on these are weak. We will comment more on LFV

processes in § 4.2.5.

(ii) FCNC in the up quark sector

These are generated by the operators (u0L�
µu0L)kj (⌫L�µ⌫L)`i and (u0L�

µu0L)kj (eL�µeL)`i.

They can mediate decays of charmed mesons via c ! u`` and c ! u⌫⌫ transitions.

Bounds on these processes are weak, and we know of no bounds for decays with ⌧

leptons or neutrinos in the final state, which would receive the largest NP contribu-

tions. These operators can also generate top decays into u or c quarks plus a pair of

charged leptons or of neutrinos. The rates of these decays will be very small relative

to current limits on FCNC top quark decays [42] (which in any case search specifically

for t ! Zq, meaning they cannot be directly applied to leptoquarks). Since current

measurements of FCNC in the up sector do not provide strong constraints on our

model, we will not discuss them further.

10We neglect neutrino masses.
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Predictions
• We expect large effects coming from third families of leptons

�ij/(cijg
1/2
⇢ ✏q3) j = 1 j = 2 j = 3

i = 1 1.92⇥ 10�5 8.53⇥ 10�5 1.67⇥ 10�3

i = 2 2.80⇥ 10�4 1.24⇥ 10�3 2.43⇥ 10�2

i = 3 1.16⇥ 10�3 5.16⇥ 10�3 0.101

Figure 3. Values of leptoquark couplings, �ij , where i denotes the lepton generation label and j
the quark generation label.

e↵ective field theory (EFT) of the form

L =
m4

⇢

g2⇢
L(0)

 
g⇢✏ai f

a
i

m3/2
⇢

,
Dµ

m⇢
,
g⇢H

m⇢
,
g⇢⇧

m⇢

!
. (3.6)

In the strongly-coupled, UV theory we expect the presence of an operator of the form

g⇢⇧OLOQ, where OQ (or OL) is a composite operator with the same quantum numbers as

a SM quark (or lepton). Below the scale m⇢, this operator generates a contribution to L
of the form ⇠ g⇢✏`i✏

q
j⇧`iqj . At low energies, the renormalizable lagrangian of the model is

L = LSM + (Dµ⇧)†Dµ⇧�M2⇧†⇧+ �ij q
c
Lji⌧2⌧a`Li⇧+ h.c., (3.7)

with �ij = g⇢cij✏
q
i ✏

`
j , where we have omitted quartic terms involving H and ⇧ that are not

relevant to our discussion. Note that we have explicitly re-introduced the cij parameters

that are expected to be of O(1), but are otherwise unknown. We summarise the values of

the leptoquark couplings in Fig. 3.

3.2 Coset structure

Here we supply a coset space construction that gives rise to the required SM quantum

numbers for the Higgs and leptoquark fields. First we describe the pattern of spontaneous

breaking of the symmetry of the strong sector G/H, and the embedding of the SM gauge

group SU(3)C ⇥ SU(2)L ⇥U(1)Y therein. We then discuss additional symmetry structure

required to avoid constraints from nucleon decay and neutron-antineutron oscillations.

To build a coset, we start from the minimal composite Higgs model [10], in which

a single SM Higgs doublet arises from the spontaneous breaking of SO(5) to SU(2)H ⇥
SU(2)R, with H transforming as a (2,2) of the unbroken subgroup. We must now enlarge

the coset space somehow to include the leptoquark ⇧ and its conjugate ⇧†. To see how

this may be achieved, consider first a model with just the leptoquark and no Higgs boson.

This can be achieved using SO(9) broken to SU(4) ⇥ SU(2)⇧. The 6 Goldstone bosons,

(⇧,⇧†), transform as (6,3).

Now form the direct product of SO(5) and SO(9) and consider the coset space

SO(9)⇥ SO(5)

SU(4)⇥ SU(2)⇧ ⇥ SU(2)H ⇥ SU(2)R
. (3.8)

This has, of course, the same Goldstone boson content as the two models above. The trick

is to somehow embed the SM gauge group in H so as to get the right charges for H and ⇧.
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Leptonp
Y`

• Decay channels with taus are difficult to be reconstructed b! s⌧+⌧�

• More interesting are channels with tau neutrinos in the final state

these processes, discussing implications of current measurements on our model, as well as

highlighting promising channels for probing our scenario with future measurements.

4.2.1 b ! s⌫⌫

Due to the SU(2)L structure of the leptoquark, it will couple to neutrinos as well as

charged leptons and thus induce b ! s⌫⌫ transitions. The importance of this channel in

general for pinning down NP has been recently emphasised in [45]. These B ! K⇤⌫⌫ and

B ! K⌫⌫ decays are good channels to look for large e↵ects from the composite leptoquark

we consider. Indeed, since the identity of the neutrino cannot be determined in these

experiments, large contributions from the processes involving tau neutrinos are expected

in our model. Thus our model predicts a much larger rate than that expected in models

where NP couples only to the second generation lepton doublet.

Current NP bounds from these decays can be found in [45], which are quoted in terms

of ratios to Standard Model predictions. With a slight alteration of the notation of [45],

so as not to cause confusion with the notation used here, the relevant quantities, and the

limits thereon, are

R⇤⌫⌫
K ⌘ B (B ! K⇤⌫⌫)

B (B ! K⇤⌫⌫)SM
< 3.7, (4.13)

and

R⌫⌫
K ⌘ B (B ! K⌫⌫)

B (B ! K⌫⌫)SM
< 4.0. (4.14)

The leptoquark can in principle induce transitions involving any combination of neutrino

flavours, since it couples to all generations and also has flavour-violating couplings. There

will be interference between NP and SM processes only in flavour-conserving transitions.

The NP contributions to the ⌫⌧⌫⌧ and ⌫µ⌫µ processes will induce a shift from unity in R⌫⌫
K

and R(⇤)⌫⌫
K given by

�(R(⇤)⌫⌫
K )⌧⌧ =

"
0.439Re(c⇤32c33) + 0.145 |c⇤32c33|2 (✏

q
3)

2

✓
M

TeV

◆�2 ⇣ g⇢
4⇡

⌘#
(✏q3)

2

✓
M

TeV

◆�2 ⇣ g⇢
4⇡

⌘
,

�(R(⇤)⌫⌫
K )µµ ⇡ 2.54⇥ 10�2Re(c⇤32c33) (✏

q
3)

2

✓
M

TeV

◆�2 ⇣ g⇢
4⇡

⌘
.

(The expression for �(R(⇤)
K )µµ is approximate, because we have kept only the interference

term with the Standard Model, which is large compared to the term from purely NP

contributions.) The next biggest contribution comes from ⌫µ⌫⌧ and ⌫⌧⌫µ final states. In

these cases, there is no interference with the SM and the contribution is

�(R(⇤)⌫⌫
K )µ⌧ +�(R(⇤)⌫⌫

K )⌧µ = 8.38⇥ 10�3
�
|c⇤22c33|2 + |c⇤32c23|2

�
(✏q3)

4

✓
M

TeV

◆�4 ⇣ g⇢
4⇡

⌘2
.

(4.15)

As is clear from these equations, the most important contribution comes from the ⌫⌧⌫⌧
process. It is possible to pass the bound �(R(⇤)⌫⌫

K )⌧⌧ < 2.7 in a large fraction of the param-

eter space. Furthermore, large deviations in R⌫⌫
K and R⇤⌫⌫

K (⇠ 50% of the SM contribution)

represent an interesting prediction of our composite leptoquarks scenario, which will be
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• Considering just                           gives B ! K⇤⌫µ⌫µ

�R(⇤)⌫⌫
K < few %

• Including                                     , large deviation �R(⇤)⌫⌫
K ⇠ 50%

Testable at Belle II

BR(B ! K⌫⌧⌫⌧ )
See 1002.5012 



Predictions
• Rare Kaon decay

testable at the upcoming Belle II experiment [45, 46]. Our prediction can be compared

with the case in which the leptoquark has only muonic couplings, in which the contributions

to �(R(⇤)⌫⌫
K ) are . 5% (see section 4.5 of [45]).

4.2.2 K+ ! ⇡+⌫⌫

Given that measurements involving neutrinos have the ability to probe some of the largest

couplings in our model – those involving third generation leptons – it is necessary to check

other rare meson decays with final state neutrinos.

Following [47], (but rescaling the bound given there to match the slightly more recent

measurement in [42]), the measurement of B(K+ ! ⇡+⌫⌫) produces a bound (at 95%

confidence level) on the real NP coe�cient �C⌫⌫̄ (defined in [47]) of

�C⌫⌫̄ 2 [�6.3, 2.3]. (4.16)

The branching ratio is given in terms of �C⌫⌫̄ by
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via the dominant process involving a pair of tau neutrinos. So with c31 ⇠ c32 ⇠ O(1), and

M ⇠ TeV, our scenario passes current bounds.

However the NA62 experiment, due to begin data-taking in 2015, will measure B(K+ !
⇡+⌫⌫) to an accuracy of 10% of the SM prediction [48]. This means it will be able to shrink

the bounds on �C⌫⌫̄ to

�C⌫⌫̄ 2 [�0.2, 0.2] (4.19)

at 95%. Thus, if c31 ⇠ c32 ⇠ O(1) and M ⇠ TeV, measurements at NA62 will be sensitive

to our leptoquark.

4.2.3 Meson mixing

The leptoquark we consider can mediate mixing between neutral mesons via box diagrams.

This e↵ect will be largest in Bs mesons. From [35], the bound produced on the leptoquark

couplings when both leptons exchanged in the box are taus (the dominant contribution in
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From [49], fB0
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�mSM
B0

s
= (17.3± 2.6)⇥ 1012~s�1 = (1.14± 0.17)⇥ 10�8MeV, (4.21)

while from [42], the measured value of the mass splitting is

�mB0
s
= 17.69⇥ 1012~s�1 = 1.2⇥ 10�8MeV. (4.22)
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Composite leptoquark prediction

• Radiative decay

• Meson mixing

Taking the uncertainty in the prediction to be roughly the size of the NP contribution,

|�mNP
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s
/�mSM

B0
s
| < 0.15 (as in [14]), then

|�33�
⇤
32|2 < 0.017

✓
M

TeV

◆2

. (4.23)

In terms of the parameters of our model this becomes

|c33c⇤23| < 4.2
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◆2✓ M

TeV

◆2✓ 1

✏q3

◆4
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We are able to pass this bound taking O (1) values for c33 and c23 and taking the other

parameters at values necessary to fit the anomalies as discussed above. The leptoquark will

also contribute to mixing of other neutral mesons. However bounds from the measurement

of mixing observables are generally weaker than bounds from meson decays (see eg. [50]).

4.2.4 µ ! e� and other radiative processes

The leptoquark has only left handed couplings, meaning that we will not get chiral en-

hancements to the branching ratio of µ ! e�. Nevertheless, the bound on B(µ ! e�) is

tight enough to be relevant for the model. The largest contributions come from diagrams

with a loop containing either a top or a bottom quark, together with the leptoquark. The

most recent measurement was performed by the MEG collaboration [51], who found a

bound at 90% confidence level of B(µ+ ! e+�) < 5.7 ⇥ 10�13. Using the formula for the

rate given in [35], and neglecting all but the processes involving 3rd generation quarks in

the loop,

|�⇤
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, (4.25)

which amounts to a bound on c⇤23c13 of

|c⇤23c13| < 1.4
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TeV

◆2✓ 1

✏q3

◆2

. (4.26)

This turns out to be a strong constraint for our model. Given that our EFT paradigm

assumes cij ⇠ O(1), the bound is, roughly, saturated.

Given our flavour structure we expect an even larger contribution to ⌧ ! µ� than to

µ ! e�. However the current bound on the branching ratio of this process is B(⌧ ! µ�) <

4.4⇥ 10�8 [42], which is several orders of magnitude larger than the model prediction.

The process b ! s� can be generated via similar diagrams. Current bounds on this

process, which leave room for NP contributions up to about 30% of the SM prediction,

lead to a bound on the combination |c⇤33c32| of roughly |c⇤33c32| . 100
⇣
4⇡
g⇢

⌘ �
M
TeV

�2 ⇣ 1
✏q3

⌘2
.

4.2.5 Comments on other constraints and predictions

Despite the fact that contributions from leptoquark diagrams will be largest for processes

containing taus (or tau neutrinos) in the final state, we have not yet mentioned any bounds

from meson decays with ⌧ leptons in the final state. This is because existing bounds are
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Figure 4. 90% confidence level bounds [50] on leptoquark couplings from branching ratios of
(semi-)leptonic meson decays involving b ! d and s ! d, rescaled to M = 1 TeV. A dagger denotes
bounds that have been rescaled to newer measurements [42]. The final column gives bounds on
partial compositeness parameters in units of the nominal values in (3.10).

4.3 Direct searches at the LHC

If the leptoquark is light enough, as the arguments in § 4.1 suggest it should be, it will be

pair-produced at the LHC with sizable cross-section via QCD interactions. The leptoquark

field comprises 3 charge eigenstates, ⇧4/3, ⇧1/3 and ⇧�2/3, with charges 4/3, 1/3 and �2/3

respectively. Since we expect them to be rather heavier than the top, their branching ratio

to third generation quarks and leptons is around 94% or greater. So they predominantly

decay as follows:

⇧4/3 ! ⌧ b,

⇧1/3 ! ⌧ t or ⇧1/3 ! ⌫⌧ b,

⇧�2/3 ! ⌫⌧ t.

There will be electroweak mass splittings between the three leptoquark states, allowing the

heavier ones to decay to the lighter ones, but these decays will be subdominant to those

through the leptoquark couplings, if the mass splittings are small. Of the LHC leptoquark

searches, dedicated searches for third generation leptoquarks will put the strongest limits

on our leptoquarks [58]. The ⇧�2/3 leptoquark will decay to tops and missing energy, so

stop searches, which look for the same signature, will apply. Likewise sbottom searches

will apply to ⇧1/3. A recent CMS search [59] ruled out leptoquarks decaying wholly to

⌧ and b up to a mass of 740 GeV. This bound roughly applies to the leptoquark ⇧4/3.

This leptoquark’s branching ratio to ⌧ and b is 0.94 (over the mass range of the search,

the variation is only in higher decimal places), so the bound on it from [59] is roughly 720

GeV. Another CMS search [60] rules out leptoquarks decaying wholly to top and tau to

masses of 634 GeV. This search results in a bound of 410 GeV on the mass of the ⇧1/3
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• With a breaking of lepton universality is generically associated a breaking of the lepton 
flavour. [Glashow, Guadagnoli, Lane, 1411.0565]

• In our framework, all the LFV decays are below the current experimental sensitivity 
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M > 720 GeV
M > 410 GeV
M > 640 GeV

• Stop and sbottom + 
dedicated leptoquark searches

[ATLAS arXiv:1407.0583]!
[CMS arXiv:1408.0806]!
[CMS-PAS-EXO-13-010]

M > 720 GeV



Naturalness
• From the B-meson decays anomalies we get M ⇠ 1 TeV, g⇢ ⇠ 4⇡

• We can infer the scale of the strong sector from M ⇠ ↵s

4⇡
m2

⇢ m⇢ ⇠ 10 TeV

• Flavour physics is (almost) fine in the quark sector, but we need a departure from flavour 
anarchy in the lepton sector See Rattazzi, etal. arXiv:1205.5803

• Higgs potential

of the new strong flavorful dynamics, thus suggesting a non-trivial link between the flavor puzzle
and the weak scale. In this respect notice that, in the absence of new dynamical assumptions, the
Higgs potential in composite Higgs models is dominantly determined by the top-quark couplings
and approximately reads:

V (H) ⇠ 3

4⇡2

(✏q,u
3

)2m4

⇢ V

✓
g⇢H

m⇢

◆
. (3.13)

The natural vacuum therefore sits at v ⇠ m⇢/g⇢, so that to obtain a phenomenologically viable
model one needs at least a fine-tuning of order:

g2⇢v
2

m2

⇢

⇡ 5%

✓
10 TeV

⇤

◆
2

. (3.14)

In general, however, a stronger tuning is required to obtain a light physical Higgs. After the
electroweak vacuum has been set to its phenomenological value, from (3.13) we find that a tuning
between the percent and the permille level is needed to accommodate mh ⇠ 125 GeV. If this is
really how nature works, then ATLAS and CMS will not be able to directly probe the confinement
scale ⇠ m⇢, and the most striking, generic signatures of Partial Compositeness would be visible
only in indirect, precision measurements.

This conclusion would change if the typical mass m of the fermionic resonances of the new
sector is somewhat smaller than m⇢, in which case the fine-tuning problem can be ameliorated, as
recently discussed in [42]-[44].

Let us briefly see how power counting should be modified under this assumption. Formally, the
fermion resonances  can be made parametrically lighter than the dynamical scale by imposing
an approximate chiral symmetry. As a consequence, all operators in (2.2) that violate such a
symmetry should be accompanied by appropriate powers of the small parameter

g 
g⇢

⌘ m 

m⇢

⌧ 1. (3.15)

Terms that violate the chiral symmetry include the mass mixing with the SM fermions, now
controlled by the operators ✏̃aim  

a

i f
a
i P (g⇢H/m⇢), and the coupling of the  ’s to the Higgs doublet,

which are now proportional to g rather than to g⇢. As a result one finds that the Yukawa matrix
scales as ⇠ g ✏̃ai ✏̃

b
j, and similarly that the Higgs boson mass is reduced by some power of g /g⇢

compared to the generic case.
However, no suppression is expected for non-chiral couplings among the  ’s and the other

heavy resonances, which are still set by g⇢. This implies that chirally-invariant flavor-violating
operators will become parametrically more relevant than in the generic g ⇠ g⇢ case. Keeping the
Yukawa matrix as well as ⇤ fixed, we consistently find that the couplings of the operators in (3.3)
are unchanged, but those in (3.4) and (3.5) are parametrically enhanced by a factor g⇢/g and
(g⇢/g )2, respectively. We find this unsatisfactory for our purpose, and therefore do not discuss
this regime any further.
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• In general, a larger tuning is required to obtain a light physical Higgs

v ⇠ f =
m⇢

g⇢
⇠ 1 TeVnatural value

We will later discuss the Lagrangian terms that purely involve the vector bosons. The

coupling constants ci are pure numbers of order unity. For phenomenological applications,

we have switched to a notation in which gauge fields are canonically normalized, and gauge

couplings explicitly appear in covariant derivatives. Also, we recall the definition H†←→D µH ≡
H†DµH − (DµH†)H .

In what follows, we will comment on the operators in eq. (15). Let us start with the

operators involving more than two Higgs fields. As previously discussed, by using the Fierz

identities for the Pauli matrices, one can write three independent operators involving four

H fields and two covariant derivatives. Two are shown in our Lagrangian with coefficients

cH and cT . The third operator H†H|DµH|2, can be written in terms of a combination of

cH , cT , c6, cy by a Higgs field redefinition Hα → Hα + (H†H)Hα/f 2, or, which is equivalent,

by using the leading order equations of motion. The operator with coefficient cH , as we will

show in sect. 4, plays a crucial role in testing the SILH in Higgs and vector boson scattering

at high-energy colliders. The operator proportional to cT violates custodial symmetry and

gives a contribution T̂ to the ρ parameter

∆ρ ≡ T̂ = cT ξ, (16)

ξ ≡
v2

f 2
, v =

(√
2GF

)−1/2
= 246 GeV. (17)

From the SM fit of electroweak data [16], we find −1.1 × 10−3 < cT ξ < 1.3 × 10−3 at 95%

CL (letting also Ŝ to vary one finds instead −1.7 × 10−3 < cT ξ < 1.9 × 10−3 at 95% CL).

Because of this strong limit, we will neglect new effects from this operator and set cT to zero.

Indeed, the bound on cT suggests that new physics relevant for electroweak breaking must

be approximately custodial-invariant. In our Goldstone Higgs scenario this corresponds to

assuming the coset SO(5)/SO(4). When gSM is turned on, cT receives a model dependent

contribution, which should be small enough to make the model acceptable. In the next

section, we will briefly discuss the size of cT in various models.

The coefficient cy is universal at leading order in the Yukawa couplings, and non-universal

effects will appear at order y2
f/g

2
ρ. This is because this term purely originates from the

non linearity in H of the σ-model matrices. Indeed, the field redefinition mentioned above

precisely generates this universal cy.

The operators proportional to cW and cB are generated respectively by tree-level exchange

of a massive triplet and singlet vector field as explained in the previous section (see also

eq. (117) in appendix A). Their relative importance in 2-to-2 scattering amplitudes with

respect to the operator proportional to cH is (g2/g2
ρ)(cW,B/cH). Therefore, in weakly-coupled

10
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Conclusions

• Current anomalies in B decays can be explained in the context of a composite 
Higgs model featuring an additional (light) leptoquark as pseudo-Goldstone boson.

• Considering the present sensitivity and the future prospects, indirect effects could 
show up in various observables:  

• Composite leptoquarks could be within the reach of LHC13

• The scale of the composite sector is expected to be at                          , tuning is  
below the per cent level

m⇢ ⇠ 10 TeV

BR(B ! K(⇤)⌫⌫), BR(K+ ! ⇡+⌫⌫), BR(µ! e�), �MBs
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Fits
Coe↵. best fit 1� 2� �2

b.f. � �2
SM

CNP
7 �0.05 [�0.08,�0.02] [�0.11, 0.01] 3.2

C 0
7 �0.05 [�0.14, 0.04] [�0.22, 0.13] 0.3

CNP
9 �1.31 [�1.65,�0.95] [�1.98,�0.58] 12.9

C 0
9 0.26 [�0.02, 0.53] [�0.29, 0.81] 0.9

CNP
10 0.60 [0.32, 0.90] [0.06, 1.23] 5.1

C 0
10 �0.18 [�0.40, 0.03] [�0.62, 0.24] 0.7

CNP
9 = CNP

10 �0.09 [�0.36, 0.20] [�0.61, 0.53] 0.1

CNP
9 = �CNP

10 �0.55 [�0.74,�0.36] [�0.95,�0.19] 9.7

C 0
9 = C 0

10 �0.06 [�0.36, 0.24] [�0.67, 0.52] 0.

C 0
9 = �C 0

10 0.13 [�0.00, 0.25] [�0.13, 0.38] 0.9

Table 2: Constraints on individual Wilson coe�cients, assuming them to be real.

3.3. New physics in a single Wilson coe�cient

We now investigate whether new physics could account for the tension of the data with the
SM predictions. We start by discussing the preferred ranges for individual Wilson coe�cients
assuming our nominal size of hadronic uncertainties. We determine the 1� (2�) ranges by
computing ��2 = 1 (4) while fixing all the other coe�cients to their SM values. We also set
the imaginary part of the respective coe�cient to 0. In addition to the Wilson coe�cients

C(0)
7,9,10, we also consider the case where the NP contributions to C(0)

9 and C(0)
10 are equal up to

a sign, since this pattern of e↵ects is generated by SU(2)L-invariant four fermion operators in
the dimension-6 SM e↵ective theory.

Our results are shown in table 2. We summarize the most important points.

• A negative NP contribution to C9, approximately �30% of CSM
9 , leads to a sizable

decrease in the �2. The best fit point corresponds to a p-value of 12.0%, compared to
2.4% for the SM. This was already found in fits of low-q2 angular observables only [2]
and in global fits not including data released this year [3–5, 19], as well as in a recent
fit to a subset of the available data [9]. We find that the significance of this solution
has increased substantially. This is due in part to the reduced theory uncertainties, in
particular the form factors, as well as due to the new measurements by LHCb.

• A significant improvement is also obtained in the SU(2)L invariant direction CNP
9 =

�CNP
10 , corresponding to an operator with left-handed muons.

• A positive NP contribution to C10 alone can also improve the fit, although to a lesser
extent.

• NP contributions to individual right-handed Wilson coe�cients hardly lead to improve-
ments of the fit.

16

• Short distance effects from New Physics are expected to have a chiral structure

`�↵`
`�↵�5`

`L�↵`L

`R�↵`R

Best Fit with!
Left-Left currents!

Cµ,NP
9 = �Cµ,NP

10

• Assuming only one source of NP at high scale, data prefers effects in the muon sector 

state (` 2 {e, µ, ⌧}), and the operators O`
i are given in a standard basis by

O(0)
7 =

e

16⇡2
mb

�
s̄�↵�PR(L)b

�
F↵� ,

O`(0)
9 =

↵em

4⇡

�
s̄�↵PL(R)b

�
(¯̀�↵`) , (2.2)

O`(0)
10 =

↵em

4⇡

�
s̄�↵PL(R)b

�
(¯̀�↵�5`).

We neglect possible (pseudo-)scalar and tensor operators, since these have been shown [14,

15] to be constrained to be too small (in the absence of fine-tuning in the electron sector)

to explain LHCb anomalies. In the SM, the operator coe�cients are lepton universal and

the operators that have non-negligible coe�cients are O7, O`
9, and O`

10, with

CSM
7 = �0.319,

CSM
9 = 4.23, (2.3)

CSM
10 = �4.41.

at the scale mb [16].

The first tension with the SM was observed last year in angular observables in the

semileptonic decay B ! K⇤µ+µ� [4, 5]. The rôle of theoretical hadronic uncertainties in

the discrepancy is not yet clear, and there is ongoing debate as to whether the e↵ects of

unknown power corrections or long-distance charm loop contributions can explain these

anomalies without the need for new, short-distance physics [17–20]. Nevertheless, several

model-independent analyses [17, 21–24] have been performed on the B ! K⇤µ+µ� decay

data, as well as on other, relevant, semileptonic and leptonic processes, allowing for the

possibility of new physics contributions to the e↵ective operators in eq. (2.2). There seems

to be a consensus that, if only a single Wilson coe�cient is allowed to be non-vanishing,

then NP contributions to the e↵ective operator Oµ
9 are preferred, with the NP coe�cient

CNP
9 of this operator being negative. A number of models of NP were proposed to explain

this e↵ect [25–30].

Earlier this year LHCb measured another discrepancy in B decays. To wit, it was

found that a certain ratio, RK , of branching ratios of B ! Kµ+µ� to B ! Ke+e� lay

2.6� below the SM prediction [6]. Specifically, the observable is defined as

RK =

R 6
1 dq2 d�(B

+!K+µ+µ�)
dq2R 6

1 dq2 d�(B
+!K+e+e�)

dq2

, (2.4)

where q2 is the invariant mass of the di-lepton pair and the integral is performed over

the interval q2 2 [1, 6] GeV2. Like the B ! K⇤µ+µ� decay, these processes proceed via

a b ! s`` transition. The observable RK has the advantage of being theoretically well-

understood, predicted to be almost exactly 1 in the SM [31] (specifically, 1.0003 ± 0.0001

when mass e↵ects are taken into account [32]). A discrepancy in RK cannot be explained by

lepton-flavour-universal NP, nor by any of the sources of theoretical uncertainty that might

underlie the B ! K⇤µ+µ� anomalies. Analyses and fits including the RK data and other

recent measurements were performed in [14, 20, 33, 34]. Due to the lepton non-universality

– 4 –

[Fits by various groups,!
Gosh, MN, Renner,1408.4097,  !
Hurth, el al.,1410.4545,!
Altmannshofer, Straub, 1411.3161]

• If only one Wilson coefficient is allowed to be non vanishing, various groups agree that NP 
in        is preferred by the data. Cµ,NP

9 ⇡ �1Oµ
9
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• Explicit breaking of G due to the Yukawa sector and an effective potential for H is generated:

1. EW symmetry is broken

2. Higgs mass is generated

potential, associated to other G breaking couplings, possibly involving only the heavy states.

Provided the extra contributions have different form than the one from the top quark, we

may tune a little bit the quadratic term with respect to the quartic, thus suppressing ξ.

The second possibility to generate Yukawa couplings is to have the SM fermions couple

linearly to fermionic operators of the strong sector:

yLf̄LOR + yRf̄ROL + h.c. , (26)

where yL,R are matrices in flavor space. In the simplest cases, OL,R have definite quantum

numbers under G, and therefore eq. (26) formally determines the spurionic quantum numbers

of yL,R. The possibility of generating Yukawas from the linear couplings of eq. (26) was first

suggested in ref. [19] for Technicolor models, and it is the one implemented in Holographic

Higgs models [6]. Writing eq. (26) as a function of the physical states of the strong sector

Ψ, one can see that in these models the Yukawa couplings are generated through a sort of

universal see-saw

mρ

[
yL

gρ
f̄LΨRPL(H/f) +

yR

gρ
f̄RΨLPR(H/f) + Ψ̄LΨR

]
. (27)

Notice that for yL ∼ gρ or yR ∼ gρ respectively fL or fR should be considered as part of the

strong sector 8. This remark explains the normalization of the mixing term in eq. (27). The

effective SM Yukawa couplings after integrating out the Ψ have the form

yf ∼
yLyR

gρ
. (28)

For yL ∼ yR one has yL,R ∼ √
yfgρ, which is a coupling of intermediate strength. If the

polynomials PL and PR are flavor universal so will be the cy coefficient at leading order

in the yL,R. Nevertheless, the exchange of Ψ will give rise to non-universal (H dependent)

corrections to the kinetic terms of fL,R that will scale like y2
L,R/g2

ρ. By going to canonically

normalized fermions one induces then O(y2
L,R/g2

ρ) non-universal corrections to cy. The top

contribution to the Higgs potential receives now, in addition to terms of the form (24),

corrections scaling like

V (H) ∼
m4

ρ

g2
ρ

×
y2

L,R

16π2
× V̂ (H/f) . (29)

For yL ∼ yR this leads to a Higgs quartic coupling λ ∼ (gρ/4π)34πyt, and therefore a

moderately heavy Higgs boson (∼ 300 GeV) can in principle be obtained 9. For the same

reason the suppression of the coefficients of Og would be yt/gρ instead of y2
t /g

2
ρ. Obviously,

8For instance, for yR ∼ gρ the linear combination of fR and ΨR which is left massless by the second and
third terms in eq. (27) has the natural interpretation of a massless composite.

9Whether this can be achieved in practice depends on the specific model at hand. Depending on the
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Provided the extra contributions have different form than the one from the top quark, we

may tune a little bit the quadratic term with respect to the quartic, thus suppressing ξ.

The second possibility to generate Yukawa couplings is to have the SM fermions couple

linearly to fermionic operators of the strong sector:

yLf̄LOR + yRf̄ROL + h.c. , (26)

where yL,R are matrices in flavor space. In the simplest cases, OL,R have definite quantum

numbers under G, and therefore eq. (26) formally determines the spurionic quantum numbers
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Ψ, one can see that in these models the Yukawa couplings are generated through a sort of
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yR

gρ
f̄RΨLPR(H/f) + Ψ̄LΨR

]
. (27)

Notice that for yL ∼ gρ or yR ∼ gρ respectively fL or fR should be considered as part of the

strong sector 8. This remark explains the normalization of the mixing term in eq. (27). The

effective SM Yukawa couplings after integrating out the Ψ have the form

yf ∼
yLyR

gρ
. (28)

For yL ∼ yR one has yL,R ∼ √
yfgρ, which is a coupling of intermediate strength. If the

polynomials PL and PR are flavor universal so will be the cy coefficient at leading order

in the yL,R. Nevertheless, the exchange of Ψ will give rise to non-universal (H dependent)

corrections to the kinetic terms of fL,R that will scale like y2
L,R/g2

ρ. By going to canonically

normalized fermions one induces then O(y2
L,R/g2

ρ) non-universal corrections to cy. The top

contribution to the Higgs potential receives now, in addition to terms of the form (24),

corrections scaling like

V (H) ∼
m4

ρ

g2
ρ

×
y2

L,R

16π2
× V̂ (H/f) . (29)

For yL ∼ yR this leads to a Higgs quartic coupling λ ∼ (gρ/4π)34πyt, and therefore a

moderately heavy Higgs boson (∼ 300 GeV) can in principle be obtained 9. For the same

reason the suppression of the coefficients of Og would be yt/gρ instead of y2
t /g

2
ρ. Obviously,

8For instance, for yR ∼ gρ the linear combination of fR and ΨR which is left massless by the second and
third terms in eq. (27) has the natural interpretation of a massless composite.

9Whether this can be achieved in practice depends on the specific model at hand. Depending on the
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• EW tuning is characterised by 

We will later discuss the Lagrangian terms that purely involve the vector bosons. The

coupling constants ci are pure numbers of order unity. For phenomenological applications,

we have switched to a notation in which gauge fields are canonically normalized, and gauge

couplings explicitly appear in covariant derivatives. Also, we recall the definition H†←→D µH ≡
H†DµH − (DµH†)H .

In what follows, we will comment on the operators in eq. (15). Let us start with the

operators involving more than two Higgs fields. As previously discussed, by using the Fierz

identities for the Pauli matrices, one can write three independent operators involving four

H fields and two covariant derivatives. Two are shown in our Lagrangian with coefficients

cH and cT . The third operator H†H|DµH|2, can be written in terms of a combination of

cH , cT , c6, cy by a Higgs field redefinition Hα → Hα + (H†H)Hα/f 2, or, which is equivalent,

by using the leading order equations of motion. The operator with coefficient cH , as we will

show in sect. 4, plays a crucial role in testing the SILH in Higgs and vector boson scattering

at high-energy colliders. The operator proportional to cT violates custodial symmetry and

gives a contribution T̂ to the ρ parameter

∆ρ ≡ T̂ = cT ξ, (16)

ξ ≡
v2

f 2
, v =

(√
2GF

)−1/2
= 246 GeV. (17)

From the SM fit of electroweak data [16], we find −1.1 × 10−3 < cT ξ < 1.3 × 10−3 at 95%

CL (letting also Ŝ to vary one finds instead −1.7 × 10−3 < cT ξ < 1.9 × 10−3 at 95% CL).

Because of this strong limit, we will neglect new effects from this operator and set cT to zero.

Indeed, the bound on cT suggests that new physics relevant for electroweak breaking must

be approximately custodial-invariant. In our Goldstone Higgs scenario this corresponds to

assuming the coset SO(5)/SO(4). When gSM is turned on, cT receives a model dependent

contribution, which should be small enough to make the model acceptable. In the next

section, we will briefly discuss the size of cT in various models.

The coefficient cy is universal at leading order in the Yukawa couplings, and non-universal

effects will appear at order y2
f/g

2
ρ. This is because this term purely originates from the

non linearity in H of the σ-model matrices. Indeed, the field redefinition mentioned above

precisely generates this universal cy.

The operators proportional to cW and cB are generated respectively by tree-level exchange

of a massive triplet and singlet vector field as explained in the previous section (see also

eq. (117) in appendix A). Their relative importance in 2-to-2 scattering amplitudes with

respect to the operator proportional to cH is (g2/g2
ρ)(cW,B/cH). Therefore, in weakly-coupled
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effective SM Yukawa couplings after integrating out the Ψ have the form
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yfgρ, which is a coupling of intermediate strength. If the
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corrections to the kinetic terms of fL,R that will scale like y2
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normalized fermions one induces then O(y2
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ρ) non-universal corrections to cy. The top

contribution to the Higgs potential receives now, in addition to terms of the form (24),

corrections scaling like

V (H) ∼
m4

ρ

g2
ρ

×
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16π2
× V̂ (H/f) . (29)

For yL ∼ yR this leads to a Higgs quartic coupling λ ∼ (gρ/4π)34πyt, and therefore a

moderately heavy Higgs boson (∼ 300 GeV) can in principle be obtained 9. For the same

reason the suppression of the coefficients of Og would be yt/gρ instead of y2
t /g

2
ρ. Obviously,

8For instance, for yR ∼ gρ the linear combination of fR and ΨR which is left massless by the second and
third terms in eq. (27) has the natural interpretation of a massless composite.

9Whether this can be achieved in practice depends on the specific model at hand. Depending on the
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• Minimal realisation

1. H contains EW group and the custodial symmetry H = SO(4)

2. G/H contains only one Higgs doublet G/H = SO(5)/SO(4)

• EW tuning is characterised by 

We will later discuss the Lagrangian terms that purely involve the vector bosons. The
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operators involving more than two Higgs fields. As previously discussed, by using the Fierz

identities for the Pauli matrices, one can write three independent operators involving four
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From the SM fit of electroweak data [16], we find −1.1 × 10−3 < cT ξ < 1.3 × 10−3 at 95%

CL (letting also Ŝ to vary one finds instead −1.7 × 10−3 < cT ξ < 1.9 × 10−3 at 95% CL).

Because of this strong limit, we will neglect new effects from this operator and set cT to zero.

Indeed, the bound on cT suggests that new physics relevant for electroweak breaking must

be approximately custodial-invariant. In our Goldstone Higgs scenario this corresponds to

assuming the coset SO(5)/SO(4). When gSM is turned on, cT receives a model dependent

contribution, which should be small enough to make the model acceptable. In the next

section, we will briefly discuss the size of cT in various models.

The coefficient cy is universal at leading order in the Yukawa couplings, and non-universal

effects will appear at order y2
f/g

2
ρ. This is because this term purely originates from the

non linearity in H of the σ-model matrices. Indeed, the field redefinition mentioned above

precisely generates this universal cy.

The operators proportional to cW and cB are generated respectively by tree-level exchange

of a massive triplet and singlet vector field as explained in the previous section (see also

eq. (117) in appendix A). Their relative importance in 2-to-2 scattering amplitudes with

respect to the operator proportional to cH is (g2/g2
ρ)(cW,B/cH). Therefore, in weakly-coupled
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Parameters (quark sector)
• Yukawas are given by 

⇥ai to reproduce the SM masses and would thus lead to larger e⇥ects in flavor-violating processes,
e.g. in meson-meson mixing. We will emphasize in section 3 that in order to avoid danger-
ous tree-level Higgs corrections to �F = 2 processes it helps to realize the Higgs as a pseudo
Nambu-Goldstone boson (NGB) of the strong sector.

The NDA Lagrangian (2.2) predicts the following structure for the SM Yukawa matrices of the
up and down quarks:

(Yu)ij ⇥ g⇥⇥
q
i ⇥

u
j , (Yd)ij ⇥ g⇥⇥

q
i ⇥

d
j . (2.4)

(We use ⇥ throughout the text to indicate that the equalities hold up to unknown O(1) matrices
in flavor space.) Eq. (2.4) suggests that the non-trivial hierarchies of the SM fermion masses could
follow from hierarchical mixing parameters ⇥ai , as anticipated above. Taking as a phenomenological
input ⇥a1 < ⇥a3 < ⇥a3, and keeping only the leading terms in the expansion, the Yukawa matrices can
be straightforwardly diagonalized by unitary matrices:

(Lu)ij ⇥ (Ld)ij ⇥ min

�
⇥qi
⇥qj
,
⇥qj
⇥qi

⇥
, (Ru,d)ij ⇥ min

⇤
⇥u,di

⇥u,dj

,
⇥u,dj

⇥u,di

⌅
. (2.5)

The resulting quark masses, renormalized at the scale m⇥, read mu,d
i = yu,di v, with:

(L†
uYuRu)ij = g⇥⇥

u
i ⇥

q
i �ij � yui �ij , (L†

dYdRd)ij = g⇥⇥
d
i ⇥

q
i �ij � ydi �ij , (2.6)

and v(mZ) ⇤ 174 GeV.
Furthermore, noticing that VCKM = L†

dLu ⇥ Lu,d we see that the present framework can
naturally explain the hierarchical structure of the mixing matrix provided that:

⇥q1
⇥q2

⇥ ⇤
⇥q2
⇥q3

⇥ ⇤2 ⇥q1
⇥q3

⇥ ⇤3, (2.7)

where ⇤ ⇤ 0.22 is the Cabibbo angle. In the following we assume that the approximate equalities
in (2.7) hold. With these identifications the mixing parameters of the left-handed quarks are
completely determined up to an overall normalization factor, whereas the ⇥u,di ’s are constrained
by (2.6):

⇥u,di

⇥u,dj

=
yu,di

yu,dj

⇥qj
⇥qi
. (2.8)

We are thus left with two free parameters that can be ⇥q3 and ⇥u3 or equivalently one of the two
and g⇥.

The above discussion generalizes to the lepton sector, with the important di⇥erence that the
neutrinos are much lighter than the charged leptons. As a consequence, it is plausible that the
neutrino masses come from a di⇥erent source, and there is more arbitrariness in the determination
of the ⇥ai ’s.

In fact there is overwhelming experimental evidence indicating that the mixing matrix VPMNS =
L†
eL� is non-hierarchical. Because this latter feature generically occurs whenever L� is anarchic,

and whatever the structure of the charged lepton matrix is, we argue that in order to accommo-
date current data in the lepton sector it su⇧ces to generate hierarchical Yukawa couplings for the
charged leptons:

(Ye)ij ⇥ g⇥⇥
↵
i⇥

e
j , (2.9)

3

⇥ai to reproduce the SM masses and would thus lead to larger e⇥ects in flavor-violating processes,
e.g. in meson-meson mixing. We will emphasize in section 3 that in order to avoid danger-
ous tree-level Higgs corrections to �F = 2 processes it helps to realize the Higgs as a pseudo
Nambu-Goldstone boson (NGB) of the strong sector.

The NDA Lagrangian (2.2) predicts the following structure for the SM Yukawa matrices of the
up and down quarks:

(Yu)ij ⇥ g⇥⇥
q
i ⇥

u
j , (Yd)ij ⇥ g⇥⇥

q
i ⇥

d
j . (2.4)

(We use ⇥ throughout the text to indicate that the equalities hold up to unknown O(1) matrices
in flavor space.) Eq. (2.4) suggests that the non-trivial hierarchies of the SM fermion masses could
follow from hierarchical mixing parameters ⇥ai , as anticipated above. Taking as a phenomenological
input ⇥a1 < ⇥a3 < ⇥a3, and keeping only the leading terms in the expansion, the Yukawa matrices can
be straightforwardly diagonalized by unitary matrices:

(Lu)ij ⇥ (Ld)ij ⇥ min

�
⇥qi
⇥qj
,
⇥qj
⇥qi

⇥
, (Ru,d)ij ⇥ min

⇤
⇥u,di
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,
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⌅
. (2.5)

The resulting quark masses, renormalized at the scale m⇥, read mu,d
i = yu,di v, with:

(L†
uYuRu)ij = g⇥⇥

u
i ⇥

q
i �ij � yui �ij , (L†

dYdRd)ij = g⇥⇥
d
i ⇥

q
i �ij � ydi �ij , (2.6)

and v(mZ) ⇤ 174 GeV.
Furthermore, noticing that VCKM = L†

dLu ⇥ Lu,d we see that the present framework can
naturally explain the hierarchical structure of the mixing matrix provided that:

⇥q1
⇥q2

⇥ ⇤
⇥q2
⇥q3

⇥ ⇤2 ⇥q1
⇥q3

⇥ ⇤3, (2.7)

where ⇤ ⇤ 0.22 is the Cabibbo angle. In the following we assume that the approximate equalities
in (2.7) hold. With these identifications the mixing parameters of the left-handed quarks are
completely determined up to an overall normalization factor, whereas the ⇥u,di ’s are constrained
by (2.6):

⇥u,di

⇥u,dj

=
yu,di

yu,dj

⇥qj
⇥qi
. (2.8)

We are thus left with two free parameters that can be ⇥q3 and ⇥u3 or equivalently one of the two
and g⇥.

The above discussion generalizes to the lepton sector, with the important di⇥erence that the
neutrinos are much lighter than the charged leptons. As a consequence, it is plausible that the
neutrino masses come from a di⇥erent source, and there is more arbitrariness in the determination
of the ⇥ai ’s.

In fact there is overwhelming experimental evidence indicating that the mixing matrix VPMNS =
L†
eL� is non-hierarchical. Because this latter feature generically occurs whenever L� is anarchic,

and whatever the structure of the charged lepton matrix is, we argue that in order to accommo-
date current data in the lepton sector it su⇧ces to generate hierarchical Yukawa couplings for the
charged leptons:

(Ye)ij ⇥ g⇥⇥
↵
i⇥

e
j , (2.9)
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• And diagonalized by   

⇥ai to reproduce the SM masses and would thus lead to larger e⇥ects in flavor-violating processes,
e.g. in meson-meson mixing. We will emphasize in section 3 that in order to avoid danger-
ous tree-level Higgs corrections to �F = 2 processes it helps to realize the Higgs as a pseudo
Nambu-Goldstone boson (NGB) of the strong sector.

The NDA Lagrangian (2.2) predicts the following structure for the SM Yukawa matrices of the
up and down quarks:

(Yu)ij ⇥ g⇥⇥
q
i ⇥

u
j , (Yd)ij ⇥ g⇥⇥

q
i ⇥

d
j . (2.4)

(We use ⇥ throughout the text to indicate that the equalities hold up to unknown O(1) matrices
in flavor space.) Eq. (2.4) suggests that the non-trivial hierarchies of the SM fermion masses could
follow from hierarchical mixing parameters ⇥ai , as anticipated above. Taking as a phenomenological
input ⇥a1 < ⇥a3 < ⇥a3, and keeping only the leading terms in the expansion, the Yukawa matrices can
be straightforwardly diagonalized by unitary matrices:

(Lu)ij ⇥ (Ld)ij ⇥ min

�
⇥qi
⇥qj
,
⇥qj
⇥qi

⇥
, (Ru,d)ij ⇥ min

⇤
⇥u,di

⇥u,dj

,
⇥u,dj

⇥u,di

⌅
. (2.5)

The resulting quark masses, renormalized at the scale m⇥, read mu,d
i = yu,di v, with:

(L†
uYuRu)ij = g⇥⇥

u
i ⇥

q
i �ij � yui �ij , (L†

dYdRd)ij = g⇥⇥
d
i ⇥

q
i �ij � ydi �ij , (2.6)

and v(mZ) ⇤ 174 GeV.
Furthermore, noticing that VCKM = L†

dLu ⇥ Lu,d we see that the present framework can
naturally explain the hierarchical structure of the mixing matrix provided that:

⇥q1
⇥q2

⇥ ⇤
⇥q2
⇥q3

⇥ ⇤2 ⇥q1
⇥q3

⇥ ⇤3, (2.7)

where ⇤ ⇤ 0.22 is the Cabibbo angle. In the following we assume that the approximate equalities
in (2.7) hold. With these identifications the mixing parameters of the left-handed quarks are
completely determined up to an overall normalization factor, whereas the ⇥u,di ’s are constrained
by (2.6):

⇥u,di

⇥u,dj

=
yu,di

yu,dj

⇥qj
⇥qi
. (2.8)

We are thus left with two free parameters that can be ⇥q3 and ⇥u3 or equivalently one of the two
and g⇥.

The above discussion generalizes to the lepton sector, with the important di⇥erence that the
neutrinos are much lighter than the charged leptons. As a consequence, it is plausible that the
neutrino masses come from a di⇥erent source, and there is more arbitrariness in the determination
of the ⇥ai ’s.

In fact there is overwhelming experimental evidence indicating that the mixing matrix VPMNS =
L†
eL� is non-hierarchical. Because this latter feature generically occurs whenever L� is anarchic,

and whatever the structure of the charged lepton matrix is, we argue that in order to accommo-
date current data in the lepton sector it su⇧ces to generate hierarchical Yukawa couplings for the
charged leptons:

(Ye)ij ⇥ g⇥⇥
↵
i⇥

e
j , (2.9)

3

⇥ai to reproduce the SM masses and would thus lead to larger e⇥ects in flavor-violating processes,
e.g. in meson-meson mixing. We will emphasize in section 3 that in order to avoid danger-
ous tree-level Higgs corrections to �F = 2 processes it helps to realize the Higgs as a pseudo
Nambu-Goldstone boson (NGB) of the strong sector.

The NDA Lagrangian (2.2) predicts the following structure for the SM Yukawa matrices of the
up and down quarks:

(Yu)ij ⇥ g⇥⇥
q
i ⇥

u
j , (Yd)ij ⇥ g⇥⇥

q
i ⇥

d
j . (2.4)

(We use ⇥ throughout the text to indicate that the equalities hold up to unknown O(1) matrices
in flavor space.) Eq. (2.4) suggests that the non-trivial hierarchies of the SM fermion masses could
follow from hierarchical mixing parameters ⇥ai , as anticipated above. Taking as a phenomenological
input ⇥a1 < ⇥a3 < ⇥a3, and keeping only the leading terms in the expansion, the Yukawa matrices can
be straightforwardly diagonalized by unitary matrices:

(Lu)ij ⇥ (Ld)ij ⇥ min

�
⇥qi
⇥qj
,
⇥qj
⇥qi

⇥
, (Ru,d)ij ⇥ min

⇤
⇥u,di

⇥u,dj

,
⇥u,dj

⇥u,di

⌅
. (2.5)

The resulting quark masses, renormalized at the scale m⇥, read mu,d
i = yu,di v, with:

(L†
uYuRu)ij = g⇥⇥

u
i ⇥

q
i �ij � yui �ij , (L†

dYdRd)ij = g⇥⇥
d
i ⇥

q
i �ij � ydi �ij , (2.6)

and v(mZ) ⇤ 174 GeV.
Furthermore, noticing that VCKM = L†

dLu ⇥ Lu,d we see that the present framework can
naturally explain the hierarchical structure of the mixing matrix provided that:

⇥q1
⇥q2

⇥ ⇤
⇥q2
⇥q3

⇥ ⇤2 ⇥q1
⇥q3

⇥ ⇤3, (2.7)

where ⇤ ⇤ 0.22 is the Cabibbo angle. In the following we assume that the approximate equalities
in (2.7) hold. With these identifications the mixing parameters of the left-handed quarks are
completely determined up to an overall normalization factor, whereas the ⇥u,di ’s are constrained
by (2.6):

⇥u,di

⇥u,dj

=
yu,di

yu,dj

⇥qj
⇥qi
. (2.8)

We are thus left with two free parameters that can be ⇥q3 and ⇥u3 or equivalently one of the two
and g⇥.

The above discussion generalizes to the lepton sector, with the important di⇥erence that the
neutrinos are much lighter than the charged leptons. As a consequence, it is plausible that the
neutrino masses come from a di⇥erent source, and there is more arbitrariness in the determination
of the ⇥ai ’s.

In fact there is overwhelming experimental evidence indicating that the mixing matrix VPMNS =
L†
eL� is non-hierarchical. Because this latter feature generically occurs whenever L� is anarchic,

and whatever the structure of the charged lepton matrix is, we argue that in order to accommo-
date current data in the lepton sector it su⇧ces to generate hierarchical Yukawa couplings for the
charged leptons:

(Ye)ij ⇥ g⇥⇥
↵
i⇥

e
j , (2.9)

3

• Link with the CKM

⇥ai to reproduce the SM masses and would thus lead to larger e⇥ects in flavor-violating processes,
e.g. in meson-meson mixing. We will emphasize in section 3 that in order to avoid danger-
ous tree-level Higgs corrections to �F = 2 processes it helps to realize the Higgs as a pseudo
Nambu-Goldstone boson (NGB) of the strong sector.

The NDA Lagrangian (2.2) predicts the following structure for the SM Yukawa matrices of the
up and down quarks:

(Yu)ij ⇥ g⇥⇥
q
i ⇥

u
j , (Yd)ij ⇥ g⇥⇥

q
i ⇥

d
j . (2.4)

(We use ⇥ throughout the text to indicate that the equalities hold up to unknown O(1) matrices
in flavor space.) Eq. (2.4) suggests that the non-trivial hierarchies of the SM fermion masses could
follow from hierarchical mixing parameters ⇥ai , as anticipated above. Taking as a phenomenological
input ⇥a1 < ⇥a3 < ⇥a3, and keeping only the leading terms in the expansion, the Yukawa matrices can
be straightforwardly diagonalized by unitary matrices:

(Lu)ij ⇥ (Ld)ij ⇥ min

�
⇥qi
⇥qj
,
⇥qj
⇥qi

⇥
, (Ru,d)ij ⇥ min

⇤
⇥u,di

⇥u,dj

,
⇥u,dj

⇥u,di

⌅
. (2.5)

The resulting quark masses, renormalized at the scale m⇥, read mu,d
i = yu,di v, with:

(L†
uYuRu)ij = g⇥⇥

u
i ⇥

q
i �ij � yui �ij , (L†

dYdRd)ij = g⇥⇥
d
i ⇥

q
i �ij � ydi �ij , (2.6)

and v(mZ) ⇤ 174 GeV.
Furthermore, noticing that VCKM = L†

dLu ⇥ Lu,d we see that the present framework can
naturally explain the hierarchical structure of the mixing matrix provided that:

⇥q1
⇥q2

⇥ ⇤
⇥q2
⇥q3

⇥ ⇤2 ⇥q1
⇥q3

⇥ ⇤3, (2.7)

where ⇤ ⇤ 0.22 is the Cabibbo angle. In the following we assume that the approximate equalities
in (2.7) hold. With these identifications the mixing parameters of the left-handed quarks are
completely determined up to an overall normalization factor, whereas the ⇥u,di ’s are constrained
by (2.6):

⇥u,di

⇥u,dj

=
yu,di

yu,dj

⇥qj
⇥qi
. (2.8)

We are thus left with two free parameters that can be ⇥q3 and ⇥u3 or equivalently one of the two
and g⇥.

The above discussion generalizes to the lepton sector, with the important di⇥erence that the
neutrinos are much lighter than the charged leptons. As a consequence, it is plausible that the
neutrino masses come from a di⇥erent source, and there is more arbitrariness in the determination
of the ⇥ai ’s.

In fact there is overwhelming experimental evidence indicating that the mixing matrix VPMNS =
L†
eL� is non-hierarchical. Because this latter feature generically occurs whenever L� is anarchic,

and whatever the structure of the charged lepton matrix is, we argue that in order to accommo-
date current data in the lepton sector it su⇧ces to generate hierarchical Yukawa couplings for the
charged leptons:

(Ye)ij ⇥ g⇥⇥
↵
i⇥

e
j , (2.9)

3

• Everything is fixed up to 2 parameters g⇢, ✏
q
i , ✏

u
i , ✏d

i

⇥ai to reproduce the SM masses and would thus lead to larger e⇥ects in flavor-violating processes,
e.g. in meson-meson mixing. We will emphasize in section 3 that in order to avoid danger-
ous tree-level Higgs corrections to �F = 2 processes it helps to realize the Higgs as a pseudo
Nambu-Goldstone boson (NGB) of the strong sector.

The NDA Lagrangian (2.2) predicts the following structure for the SM Yukawa matrices of the
up and down quarks:

(Yu)ij ⇥ g⇥⇥
q
i ⇥

u
j , (Yd)ij ⇥ g⇥⇥
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d
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(We use ⇥ throughout the text to indicate that the equalities hold up to unknown O(1) matrices
in flavor space.) Eq. (2.4) suggests that the non-trivial hierarchies of the SM fermion masses could
follow from hierarchical mixing parameters ⇥ai , as anticipated above. Taking as a phenomenological
input ⇥a1 < ⇥a3 < ⇥a3, and keeping only the leading terms in the expansion, the Yukawa matrices can
be straightforwardly diagonalized by unitary matrices:
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⌅
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The resulting quark masses, renormalized at the scale m⇥, read mu,d
i = yu,di v, with:

(L†
uYuRu)ij = g⇥⇥

u
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q
i �ij � yui �ij , (L†

dYdRd)ij = g⇥⇥
d
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q
i �ij � ydi �ij , (2.6)

and v(mZ) ⇤ 174 GeV.
Furthermore, noticing that VCKM = L†

dLu ⇥ Lu,d we see that the present framework can
naturally explain the hierarchical structure of the mixing matrix provided that:

⇥q1
⇥q2

⇥ ⇤
⇥q2
⇥q3

⇥ ⇤2 ⇥q1
⇥q3

⇥ ⇤3, (2.7)

where ⇤ ⇤ 0.22 is the Cabibbo angle. In the following we assume that the approximate equalities
in (2.7) hold. With these identifications the mixing parameters of the left-handed quarks are
completely determined up to an overall normalization factor, whereas the ⇥u,di ’s are constrained
by (2.6):

⇥u,di

⇥u,dj

=
yu,di

yu,dj

⇥qj
⇥qi
. (2.8)

We are thus left with two free parameters that can be ⇥q3 and ⇥u3 or equivalently one of the two
and g⇥.

The above discussion generalizes to the lepton sector, with the important di⇥erence that the
neutrinos are much lighter than the charged leptons. As a consequence, it is plausible that the
neutrino masses come from a di⇥erent source, and there is more arbitrariness in the determination
of the ⇥ai ’s.

In fact there is overwhelming experimental evidence indicating that the mixing matrix VPMNS =
L†
eL� is non-hierarchical. Because this latter feature generically occurs whenever L� is anarchic,

and whatever the structure of the charged lepton matrix is, we argue that in order to accommo-
date current data in the lepton sector it su⇧ces to generate hierarchical Yukawa couplings for the
charged leptons:

(Ye)ij ⇥ g⇥⇥
↵
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e
j , (2.9)
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i , VCKM

1 + 3 + 3 + 3 = 10
3 + 3 + 2 = 8

in what follows(g⇢, ✏
q
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Quark sector
Operator �F = 2 Re(c)� (4⌅/g⇧)2 Im(c)� (4⌅/g⇧)2 Observables

(s̄L�µdL)2 6� 102
⇤

�u3
�q3

⌅2

2
⇤

�u3
�q3

⌅2

�mK ; ⇥K [44][45]

(s̄RdL)2 500 2 ”
(s̄R dL)(s̄LdR) 2� 102 0.6 ”

(c̄L�µuL)2 4� 102
⇤

�u3
�q3

⌅2

70
⇤

�u3
�q3

⌅2

�mD; |q/p|,⌃D [44][45]

(c̄L uR)2 30 6 ”
(c̄R uL)(c̄LuR) 3� 102 50 ”

(b̄L�µdL)2 5
⇤

�u3
�q3

⌅2

2
⇤

�u3
�q3

⌅2

�mBd
; S⌃KS [44][45]

(b̄R dL)2 80 30 ”
(b̄R dL)(b̄LdR) 3� 102 80 ”

(b̄L�µsL)2 6
⇤

�u3
�q3

⌅2

�mBs [44][45]

(b̄R sL)2 1� 102 ”
(b̄R sL)(b̄LsR) 3� 102 ”

Operator �F = 1 Re(c) Im(c) Observables

sR⇧µ⇤eFµ⇤bL 1 B ⇤ Xs [46]
sL⇧µ⇤eFµ⇤bR 2 9 ”
sR⇧µ⇤gsGµ⇤dL - 0.4 K ⇤ 2⌅; ⇥⇥/⇥ [47]
sL⇧µ⇤gsGµ⇤dR - 0.4 ”

s̄L�µbL H†i
⇥⇤
D µH 30

� g�
4⌅

⇥2
(⇥u3)

2 Bs ⇤ µ+µ� [48]

s̄L�µbL H†i
⇥⇤
D µH 6

� g�
4⌅

⇥2
(⇥u3)

2 10
� g�
4⌅

⇥2
(⇥u3)

2 B ⇤ Xs +� [46]

Operator �F = 0 Re(c) Im(c) Observables

d⇧µ⇤eFµ⇤dL,R - 3� 10�2 neutron EDM [49][50]
u⇧µ⇤eFµ⇤uL,R - 0.3 ”
d⇧µ⇤gsGµ⇤dL,R - 4� 10�2 ”
u⇧µ⇤gsGµ⇤uL,R - 0.2 ”

b̄L�µbL H†i
⇥⇤
D µH 5

� g�
4⌅

⇥2
(⇥u3)

2 Z ⇤ bb̄ [51]

Leptonic Operator Re(c) Im(c) Observables

e⇧µ⇤eFµ⇤eL,R - 5� 10�2 electron EDM [52]
µ⇧µ⇤eFµ⇤eL,R 4� 10�3 µ ⇤ e� [53]

ē�µµL,R H†i
⇥⇤
D µH 1.5

� g�
4⌅

⇥ �e3
�⇤3

µ(Au) ⇤ e(Au) [54]

Table 1: Upper bounds on the dimensionless coe⇥cients of the operators in the notation (3.3)–(3.5),
with � = 4�m�/g� = 10 TeV. The bound is on the coe⇥cients renormalized at 10 TeV, and we
report the strongest ones. To minimize the constraints in the lepton sector we assumed (2.12). The
experimental bounds are taken from the references in the third column. See Appendix B for details.
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• Not excluded, given the 
uncertainties 

• Close to the current 
sensitivity



Lepton sector

Operator �F = 2 Re(c)� (4⌅/g⇧)2 Im(c)� (4⌅/g⇧)2 Observables

(s̄L�µdL)2 6� 102
⇤

�u3
�q3

⌅2

2
⇤

�u3
�q3

⌅2

�mK ; ⇥K [44][45]

(s̄RdL)2 500 2 ”
(s̄R dL)(s̄LdR) 2� 102 0.6 ”

(c̄L�µuL)2 4� 102
⇤

�u3
�q3

⌅2

70
⇤

�u3
�q3

⌅2

�mD; |q/p|,⌃D [44][45]

(c̄L uR)2 30 6 ”
(c̄R uL)(c̄LuR) 3� 102 50 ”

(b̄L�µdL)2 5
⇤

�u3
�q3

⌅2

2
⇤

�u3
�q3

⌅2

�mBd
; S⌃KS [44][45]

(b̄R dL)2 80 30 ”
(b̄R dL)(b̄LdR) 3� 102 80 ”

(b̄L�µsL)2 6
⇤

�u3
�q3

⌅2

�mBs [44][45]

(b̄R sL)2 1� 102 ”
(b̄R sL)(b̄LsR) 3� 102 ”

Operator �F = 1 Re(c) Im(c) Observables

sR⇧µ⇤eFµ⇤bL 1 B ⇤ Xs [46]
sL⇧µ⇤eFµ⇤bR 2 9 ”
sR⇧µ⇤gsGµ⇤dL - 0.4 K ⇤ 2⌅; ⇥⇥/⇥ [47]
sL⇧µ⇤gsGµ⇤dR - 0.4 ”

s̄L�µbL H†i
⇥⇤
D µH 30

� g�
4⌅

⇥2
(⇥u3)

2 Bs ⇤ µ+µ� [48]

s̄L�µbL H†i
⇥⇤
D µH 6

� g�
4⌅

⇥2
(⇥u3)

2 10
� g�
4⌅

⇥2
(⇥u3)

2 B ⇤ Xs +� [46]

Operator �F = 0 Re(c) Im(c) Observables

d⇧µ⇤eFµ⇤dL,R - 3� 10�2 neutron EDM [49][50]
u⇧µ⇤eFµ⇤uL,R - 0.3 ”
d⇧µ⇤gsGµ⇤dL,R - 4� 10�2 ”
u⇧µ⇤gsGµ⇤uL,R - 0.2 ”

b̄L�µbL H†i
⇥⇤
D µH 5

� g�
4⌅

⇥2
(⇥u3)

2 Z ⇤ bb̄ [51]

Leptonic Operator Re(c) Im(c) Observables

e⇧µ⇤eFµ⇤eL,R - 5� 10�2 electron EDM [52]
µ⇧µ⇤eFµ⇤eL,R 4� 10�3 µ ⇤ e� [53]

ē�µµL,R H†i
⇥⇤
D µH 1.5

� g�
4⌅

⇥ �e3
�⇤3

µ(Au) ⇤ e(Au) [54]

Table 1: Upper bounds on the dimensionless coe⇥cients of the operators in the notation (3.3)–(3.5),
with � = 4�m�/g� = 10 TeV. The bound is on the coe⇥cients renormalized at 10 TeV, and we
report the strongest ones. To minimize the constraints in the lepton sector we assumed (2.12). The
experimental bounds are taken from the references in the third column. See Appendix B for details.
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