News of $\mathfrak{B}^{->} \mathcal{V}$ form factors from $\mathcal{L C S}$

CP^{3} Origins
Cosmology \& Particle Physics

Roman Zwicky
Edinburgh University
7-10 April 2015 (Portoroz)
Particle Phenomenology From the Early Universe to High Energy Colliders

structure

I. form factors

- error correlations
- use of equation of motion
- background effects
II. phenomenological discussion
- $B_{s} \rightarrow \phi$ vs $B \rightarrow K^{*}$ tension
- IVubl from B $\rightarrow(\rho, \omega) / v$
- short comment charm resonances in B->K(*)|I

Definition of form factors

- tensor \& vector form factors

$$
\begin{aligned}
& \left\langle K^{*}(p, \eta)\right| \bar{s} i q_{\nu} \sigma^{\mu \nu}\left(1 \pm \gamma_{5}\right) b\left|\bar{B}\left(p_{B}\right)\right\rangle=P_{1}^{\mu} T_{1}\left(q^{2}\right) \pm P_{2}^{\mu} T_{2}\left(q^{2}\right) \pm P_{3}^{\mu} T_{3}\left(q^{2}\right) \\
& \left\langle K^{*}(p, \eta)\right| \bar{s} \gamma^{\mu}\left(1 \mp \gamma_{5}\right) b\left|\bar{B}\left(p_{B}\right)\right\rangle=P_{1}^{\mu} \mathcal{V}_{1}\left(q^{2}\right) \pm P_{2}^{\mu} \mathcal{V}_{2}\left(q^{2}\right) \pm P_{3}^{\mu} \mathcal{V}_{3}\left(q^{2}\right) \pm P_{P}^{\mu} \mathcal{V}_{P}\left(q^{2}\right)
\end{aligned}
$$

- 4 directions:
$P_{P}^{\mu}=i\left(\eta^{*} \cdot q\right) q^{\mu}$,

$$
P_{1}^{\mu}=2 \epsilon_{\alpha \beta \gamma}^{\mu} \eta^{* \alpha} p^{\beta} q^{\gamma},
$$

$P_{2}^{\mu}=i\left\{\left(m_{B}^{2}-m_{K^{*}}^{2}\right) \eta^{* \mu}-\left(\eta^{*} \cdot q\right)\left(p+p_{B}\right)^{\mu}\right\}$,

$$
P_{3}^{\mu}=i\left(\eta^{*} \cdot q\right)\left\{q^{\mu}-\frac{q^{2}}{m_{B}^{2}-m_{K^{*}}^{2}}\left(p+p_{B}\right)^{\mu}\right\}
$$

- in terms of traditional notation:

$$
\begin{aligned}
& \mathcal{V}_{P}\left(q^{2}\right)=\frac{-2 m_{K^{*}}}{q^{2}} A_{0}\left(q^{2}\right), \quad \mathcal{V}_{1}\left(q^{2}\right)=\frac{-V\left(q^{2}\right)}{m_{B}+m_{K^{*}}}, \quad \mathcal{V}_{2}\left(q^{2}\right)=\frac{-A_{1}\left(q^{2}\right)}{m_{B}-m_{K^{*}}} \\
& \mathcal{V}_{3}\left(q^{2}\right)=\left(\frac{m_{B}+m_{K^{*}}}{q^{2}} A_{1}\left(q^{2}\right)-\frac{m_{B}-m_{K^{*}}}{q^{2}} A_{2}\left(q^{2}\right)\right) \equiv \frac{2 m_{K^{*}}}{q^{2}} A_{3}\left(q^{2}\right)
\end{aligned}
$$

algebraically:
$T_{1}(0)=T_{2}(0)$
regularity:
$A_{0}(0)=A_{3}(0)$

Form factors \& LCSR use appropriate correlation function 「

- sum rule on one line:

$$
\frac{V\left(q^{2}\right)}{p_{B}^{2}-m_{B}^{2}}+\int_{\text {threshold }} \frac{d s}{\pi} \frac{\operatorname{Im} \Gamma^{V}\left(s, q^{2}\right)}{\left(s-p_{B}^{2}-i 0\right)}=\left.\Gamma^{V}\left(p_{B}^{2}, q^{2}\right)\right|_{\mathrm{LCOPE}}
$$

input \Rightarrow correlation between form factors I.A
sum rule parameters some help equation of motion I.B

I.A results \& error correlations

computation based on Ball \& RZ'04 + O(ms)-tree + updated hadronic input
Bharucha, Straub, RZ 1503.05534

Error correlation of form factors

- idea: use input-uncertainty matrix to generate pseudo-data O(100pts) for all 7 form factors
\Rightarrow fit-ansatz with $\left(a_{0}, a_{1}, ..\right)$-parameters provide full correlation-matrix "easy-to-implement"
- we use:

$$
F_{i}\left(q^{2}\right)=\frac{1}{1-q^{2} / m_{R, i}^{2}} \sum_{k} \alpha_{k}^{i}\left[z\left(q^{2}\right)-z(0)\right]^{k},
$$

LCSR: $0<q^{2}<14 G^{2} V^{2}$
"entire range" combined with lattice

Combined LCSR \& lattice plots

\perp-helicity

"-helicity
0-helicity

I.B the use of the equation of motion (EOM)

Grinstein Pirjol'04 study correction to Isgur-Wise relation
Hambrock, Hiller, Schacht, RZ'13 first application LCSR
Bharucha, Straub, RZ '15 more systematic exploitation

- constrains vector-to-tensor form factor for fixed helicity
- importance for B->K*ll since zero of helicity amplitude largely determined by form factors

$$
H_{\perp}^{B \rightarrow V \ell \ell} \sim . . C_{7}^{\mathrm{eff}} T_{1}\left(q^{2}\right)+. . C_{9}^{\mathrm{eff}} V\left(q^{2}\right)+\text { long distance }
$$

In particular $P_{5}^{\prime} \sim \operatorname{Re}\left[H_{0} H_{\perp}\right]$ for instance

EOM in QFT \Leftrightarrow relations between correlation functions

- the following equation valid on $\left\langle K^{*}\right| . .|B\rangle$:

where D_{i} 's are form factors of derivative operator:
$\left\langle K^{*}(p, \eta)\right| \bar{s}(2 i \overleftarrow{D})^{\mu}\left(1 \pm \gamma_{5}\right) b\left|\bar{B}\left(p_{B}\right)\right\rangle=P_{1}^{\mu} \mathcal{D}_{1}\left(q^{2}\right) \pm P_{2}^{\mu} \mathcal{D}_{2}\left(q^{2}\right) \pm P_{3}^{\mu} \mathcal{D}_{3}\left(q^{2}\right) \pm P_{P}^{\mu} \mathcal{D}_{P}\left(q^{2}\right)$
- Any form factor determination has to obey $\mathrm{EOM} \Rightarrow$ consistency check
- LCSR checked EOM at tree-level including O(m_{s})-corrections works upon use of EOM of vector meson distribution amplitudes
- lattice (future computations)
- Recall $\left.F_{i}=F_{i}\left\{m_{b}, \alpha_{s}, f^{\|}, f^{\perp}, ..\right\} \mid\left\{s_{0}, M_{\text {Borel }}\right\}\right]\left(q^{2}\right)$

One way to obey EOM set: $\mathrm{s}_{0}\left[\mathrm{~T}_{1}\right]=\mathrm{s}_{0}\left[\mathrm{~V}_{1}\right]=\mathrm{s}_{0}\left[\mathrm{D}_{1}\right]$

- eliminates the major source of uncertainty $\mathrm{T}_{1} / \mathrm{V}$-ratio [rest $\mathrm{O}(1 \%)$]
- of course this has to be questioned
$\begin{array}{ccc}\text { - ... yet: } & T_{1}\left(q^{2}\right)+\left(m_{b}+m_{s}\right) \mathcal{V}_{1}\left(q^{2}\right)+\mathcal{D}_{1}\left(q^{2}\right)=0 \\ 0.294 & -0.272 & -0.022\end{array}$

$$
s_{0}^{T_{1}} \simeq 35 \mathrm{GeV}^{2} \quad s_{0}^{V}=s_{0}^{T_{1}} \pm 1 \mathrm{GeV}^{2} \quad s_{0}^{\mathcal{D}_{1}}=s_{0}^{T_{1}}\left({ }_{-6.5}^{+15}\right) \mathrm{GeV}^{2}
$$

$$
{ }_{-63}^{+55} \% \text {-shift in } \mathcal{D}_{1}
$$

- Hence if D_{1} is considered form factor then $\quad\left|s_{0}^{T_{1}}-s_{0}^{V}\right|<1 \mathrm{GeV}^{2}$

\downarrow
 checked that twist and α_{s}-expansion is controlled (\Rightarrow more than a numerical accident)

- Vector-tensor form factor ratios determined up to 4-6\%

note added

similar to large energy Charles et al '98 limit and SCET investigations Beneke Feldmann '00, Bauer et al'01
similarity: both use equation of motion
difference: LCSR EOM in QCD - SCET EOM effective theory $1 / m_{b}$
\Rightarrow ratios equal up to $1 / m_{b}$ to "SCET-ratios" in Beneke Feldmann '00

I.C background effects (decaying vector meson)

background effects

question background is present in theory and experiment (important consistent treatment)

- $B \rightarrow \rho(\rightarrow \pi \pi) I v=$ signal...πn in P-wave

1) subtract S-wave experiment (no extra error for theory)
2) what about resonant versus non-resonant mim in P-wave?

- hard to disentangle in theory (in practice) and experiment main point: argue it might not be necessary
treat $\tau \rightarrow(\pi m)_{P-w} / v$ same way in extraction of f_{ρ} as in $B \rightarrow \rho(\rightarrow \pi m) / v$

ρ vs $\pi \pi$-distribution amplitude

- using 2-pion DA (def e.g. Polyakov'98) to describe $B(\rightarrow \pi \pi)$ Iv requires determination of the 2-pion DA
- for $0^{\text {th }}$ Gegenbauer moment of vector 2-pion $D A=$ pion form factor
- yet higher moments or tensor 2-pion DA no experimental info available
- ρ-DA uncertainties in (other) parameters take care of background effects in error budget
around ρ-meson peak do not see pragmatic advantage in near future of using 2-pion DA

II. phenomenological discussion

II. $A B_{s} \rightarrow \phi$ vs $B \rightarrow K^{*}$ tension
 II.B | $\mathrm{V}_{\mathrm{ub}} \mid$ from $B \rightarrow(\rho, \omega)$ IV

LHCb used

- new predictions picture same: "we're off by factor of 2" shape ok - is there a problem with form factor normalisation? look at ratio $B_{s} \rightarrow \phi / B \rightarrow K^{*}$ where normalisation effects cancel \ldots

$B_{s} \rightarrow \phi$ vs $B \rightarrow K^{*}$ tension

- at $q^{2}=0$ to photons

$$
R_{K^{*} \phi}^{(\gamma)} \equiv \frac{\mathrm{BR}\left(B^{0} \rightarrow K^{* 0} \gamma\right)}{\operatorname{BR}\left(B_{s} \rightarrow \phi \gamma\right)} \quad \begin{array}{ccc}
\text { Lyon, RZ'13 } & \text { LHCb'12 } 1202.6267 \tag{18}\\
0.78(18) & 1.23(32)
\end{array}
$$

- statistically not significant but persists at higher q 2
calls for test of form factors?

$\left|V_{u b}\right|$ from $B \rightarrow(\rho, \omega) I v$

\Rightarrow no sign of (serious) normalisation problems as questioned by $B_{s} \rightarrow \phi \mu \mu$
note: B-factory $\mathrm{IV}_{\text {ubl }} \mathrm{I}$-values (could raise) if S-wave subtracted using ang-analysis

II.C comment charm resonances in $\mathbf{B} \rightarrow \mathbf{K}{ }^{(*)}$ II

LHCb PRL 111 (2013)
pronounced ${ }^{\mathrm{JPC}}=1$ - charm resonance structure

- Using a fit to BES-II data $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons able to check status of "naive" factorisation at high q^{2} in $B \rightarrow K I I$

hight of resonances in naive fac. by factor $\sim(-2.5)$ fits the data well

- Led us to speculate P_{5} '-anomaly in $\mathrm{B} \rightarrow \mathrm{K}{ }^{(*)} \|$ might be related to charm (since charm pronounced)

1) pronounced to $J / \Psi 2$) accommodated by photon penguin C_{10} not nec.

Straub's talk Moriond'15 (proceedings \& Wolfgang's talk) .

- effect same sign as in naive fac. in "-" versus "0" helicity
- my comment: that's what $B \rightarrow J / \Psi K^{*}$ experimental angular analysis predicts for $J / \Psi, \Psi(2 S)$-contributions

conclusions and summary

- wether global $\Delta \mathrm{C}_{9}$ short-distance $\simeq-1$ remains is tricky question - needs more data
- then $\mathbf{R}_{\mathbf{K}}$-anomaly (2.6б) came along and there charm should play no role and this points towards true short-distance new physics talks by Crivellin, Hiller, Altmannshofer, Nardecchia, Vicente
- equation of motion \& correlated errors for form factors help to predict angular observables like $\mathrm{P}_{5}{ }^{\prime}$ with higher precision

```
thanks for your attention
```

