News of \mathcal{B} ->V form factors from \mathcal{LCSR}

Roman Zwicky Edinburgh University

7-10 April 2015 (Portoroz)

Particle Phenomenology From the Early Universe to High Energy Colliders

structure

- I. form factors
 - error correlations
 - use of equation of motion
 - background effects
- II. phenomenological discussion
 - $B_s \rightarrow \phi$ vs $B \rightarrow K^*$ tension
 - $IV_{ub}I$ from $B \rightarrow (\rho, \omega)Iv$
 - short comment charm resonances in B->K(*)II

 $\langle K^*(p,\eta) | \bar{s}iq_{\nu} \sigma^{\mu\nu} (1\pm\gamma_5) b | \bar{B}(p_B) \rangle = P_1^{\mu} T_1(q^2) \pm P_2^{\mu} T_2(q^2) \pm P_3^{\mu} T_3(q^2)$ $\langle K^*(p,\eta) | \bar{s} \gamma^{\mu} (1\mp\gamma_5) b | \bar{B}(p_B) \rangle = P_1^{\mu} \mathcal{V}_1(q^2) \pm P_2^{\mu} \mathcal{V}_2(q^2) \pm P_3^{\mu} \mathcal{V}_3(q^2) \pm P_P^{\mu} \mathcal{V}_P(q^2)$

• 4 directions:

$$\begin{split} P_P^{\mu} &= i(\eta^* \cdot q)q^{\mu} \;, \\ P_2^{\mu} &= i\{(m_B^2 - m_{K^*}^2)\eta^{*\mu} - (\eta^* \cdot q)(p + p_B)^{\mu}\} \;, \end{split}$$

$$P_{1}^{\mu} = 2\epsilon^{\mu}_{\ \alpha\beta\gamma} \eta^{*\alpha} p^{\beta} q^{\gamma} ,$$

$$P_{3}^{\mu} = i(\eta^{*} \cdot q) \{q^{\mu} - \frac{q^{2}}{m_{B}^{2} - m_{K^{*}}^{2}} (p + p_{B})^{\mu} \}$$

in terms of traditional notation:

 $\mathcal{V}_P(q^2) = \frac{-2m_{K^*}}{q^2} A_0(q^2) , \quad \mathcal{V}_1(q^2) = \frac{-V(q^2)}{m_B + m_{K^*}} , \quad \mathcal{V}_2(q^2) = \frac{-A_1(q^2)}{m_B - m_{K^*}} ,$ $\mathcal{V}_3(q^2) = \left(\frac{m_B + m_{K^*}}{q^2} A_1(q^2) - \frac{m_B - m_{K^*}}{q^2} A_2(q^2)\right) \equiv \frac{2m_{K^*}}{q^2} A_3(q^2) .$

algebraically: $T_1(0) = T_2(0)$ regularity: $A_0(0) = A_3(0)$

Π

I.A results & error correlations

computation based on Ball & RZ'04 + O(ms)-tree + updated hadronic input

Bharucha, Straub, RZ 1503.05534

Error correlation of form factors

 idea: use input-uncertainty matrix to generate pseudo-data O(100pts) for all 7 form factors

> ⇒ fit-ansatz with (α₀,α₁,..)-parameters provide full correlation-matrix "easy-to-implement"

from Horgan, Liu, Meinel, Wingate'13

note: lattice with correlated errors as well

Combined LCSR & lattice plots

⊥-helicity

I-helicity

0-helicity

I.B the use of the equation of motion (EOM)

Grinstein Pirjol'04 study correction to Isgur-Wise relation Hambrock, Hiller, Schacht, RZ '13 first application LCSR Bharucha, Straub, RZ '15 more systematic exploitation

- constrains vector-to-tensor form factor for fixed helicity
- importance for B->K*II since zero of helicity amplitude largely determined by form factors

 $H_{\perp}^{B \to V \ell \ell} \sim ..C_7^{\text{eff}} T_1(q^2) + ..C_9^{\text{eff}} V(q^2) + \text{long} \text{ distance}$

In particular $P'_5 \sim \operatorname{Re}[H_0H_{\perp}]$ for instance

EOM in QFT \Leftrightarrow relations between correlation functions

the following equation valid on <K*I...IB>:

$$i\partial^{\nu}(\bar{s}i\sigma_{\mu\nu}(\gamma_{5})b) = -(m_{s} \pm m_{b})\bar{s}\gamma_{\mu}(\gamma_{5})b + i\partial_{\mu}(\bar{s}(\gamma_{5})b) - 2\bar{s}i\overset{\leftarrow}{D}_{\mu}(\gamma_{5})b,$$

• leads to 4 equation of motion

$$T_{1}(q^{2}) + (m_{b} + m_{s})\mathcal{V}_{1}(q^{2}) + \mathcal{D}_{1}(q^{2}) = 0,$$

$$T_{2}(q^{2}) + (m_{b} - m_{s})\mathcal{V}_{2}(q^{2}) + \mathcal{D}_{2}(q^{2}) = 0,$$

$$T_{3}(q^{2}) + (m_{b} - m_{s})\mathcal{V}_{3}(q^{2}) + \mathcal{D}_{3}(q^{2}) = 0,$$

$$(m_{b} - m_{s})\mathcal{V}_{P}(q^{2}) + \left(\mathcal{D}_{P}(q^{2}) - \frac{q^{2}}{m_{b} + m_{s}}\mathcal{V}_{P}(q^{2})\right) = 0.$$

where *D_i*'s are form factors of derivative operator:

 $\langle K^*(p,\eta) | \bar{s}(2i\overset{\leftarrow}{D})^{\mu}(1\pm\gamma_5)b | \bar{B}(p_B) \rangle = P_1^{\mu} \mathcal{D}_1(q^2) \pm P_2^{\mu} \mathcal{D}_2(q^2) \pm P_3^{\mu} \mathcal{D}_3(q^2) \pm P_P^{\mu} \mathcal{D}_P(q^2)$

- Any form factor determination has to obey EOM ⇒ consistency check
 - LCSR checked EOM at tree-level including O(m_s)-corrections works upon use of EOM of vector meson distribution amplitudes
 - lattice (future computations)
 - Recall $F_i = F_i\{m_b, \alpha_s, f^{\parallel}, f^{\perp}, ..\} | \{s_0, M_{\text{Borel}}\}] (q^2)$ One way to obey EOM set: $s_0[T_1] = s_0[V_1] = s_0[D_1]$
 - eliminates the major source of uncertainty T_1/V -ratio [rest O(1%)]
 - of course this has to be questioned

... yet:
$$T_1(q^2) + (m_b + m_s)\mathcal{V}_1(q^2) + \mathcal{D}_1(q^2) = 0$$

 $0.294 \quad -0.272 \quad -0.022$
 $s_0^{T_1} \simeq 35 \,\text{GeV}^2 \quad s_0^V = s_0^{T_1} \pm 1 \,\text{GeV}^2 \quad s_0^{\mathcal{D}_1} = s_0^{T_1} \begin{pmatrix} \pm 15 \\ -6.5 \end{pmatrix} \,\text{GeV}^2$
 $\pm \frac{55}{-63}\%$ -shift in \mathcal{D}_1

• Hence if D_1 is considered form factor then $|s_0^{T_1} - s_0^V| < 1 \,\mathrm{GeV}^2$ \swarrow checked that **twist** and α_s -expansion is controlled (\Rightarrow more than a numerical accident)

۲

٠

similar to large energy Charles et al '98 limit and SCET investigations Beneke Feldmann '00, Bauer et al'01

similarity: both use equation of motion difference: LCSR EOM in QCD — SCET EOM effective theory $1/m_b$

 \Rightarrow ratios equal up to 1/m_b to "SCET-ratios" in Beneke Feldmann '00

I.C background effects (decaying vector meson)

background effects

question background is present in theory and experiment (important consistent treatment)

• $B \rightarrow \rho(\rightarrow \pi\pi) Iv = signal ... \pi\pi$ in P-wave

•

- subtract S-wave experiment (no extra error for theory)
 what about resonant versus non-resonant ππ in P-wave?
- hard to disentangle in theory (in practice) and experiment
- main point: argue it might not be necessary

treat $\tau \rightarrow (\mathbf{m})_{P-w}$ lv same way in extraction of f_{ρ} as in $B \rightarrow \rho (\rightarrow \mathbf{m})$ lv

ρ vs $\pi\pi$ -distribution amplitude

- using 2-pion DA (def e.g. Polyakov'98) to describe B(→ππ)Iv requires determination of the 2-pion DA
- for 0th Gegenbauer moment of vector 2-pion DA = pion form factor

$$F_{i}^{B \to \pi\pi}(q^{2}) = \begin{cases} \rho - \mathrm{DA} : & \frac{\langle \pi\pi | \rho \rangle}{m_{\pi\pi}^{2} - m_{\rho}^{2} + im_{\rho}\Gamma_{\rho}} \underbrace{\langle \rho | V_{\mu} | 0 \rangle}_{\sim f_{\rho}^{\parallel}} f_{B}^{\mu}(q^{2}) + \dots \\ & \pi\pi - \mathrm{DA} : & \underbrace{\langle \pi\pi | V_{\mu} | 0 \rangle}_{\sim F^{\pi \to \pi}(m_{\pi\pi}^{2})} f_{B}^{\mu}(q^{2}) + \dots \\ & & \overset{\wedge}{} \frac{f_{\rho}^{\parallel} m_{\rho} g_{\rho\pi\pi}}{m_{\pi\pi}^{2} - m_{\rho}^{2} - im_{\rho}\Gamma_{\rho}} \underbrace{\operatorname{other}}_{repeats and repeats on the source of the source of$$

skip no time

- yet higher moments or tensor 2-pion DA no experimental info available
- p-DA uncertainties in (other) parameters take care of background effects in error budget

around ρ-meson peak do not see pragmatic advantage in near future of using 2-pion DA

II. phenomenological discussion

II.A $B_s \rightarrow \phi$ vs $B \rightarrow K^*$ tension II.B $|V_{ub}|$ from $B \rightarrow (\rho, \omega) |v|$

new predictions picture same: "we're off by factor of 2" **shape ok** — is there a **problem** with **form factor normalisation?** look at ratio $B_s \rightarrow \phi/B \rightarrow K^*$ where normalisation effects cancel ... $B_s \rightarrow \varphi$ vs $B \rightarrow K^*$ tension

• at q²=0 to photons

$$R_{K^*\phi}^{(\gamma)} \equiv \frac{\text{BR}(B^0 \to K^{*0}\gamma)}{\text{BR}(B_s \to \phi\gamma)} \qquad \begin{array}{ll} \text{Lyon, RZ '13} & \text{LHCb '12 1202.6267} \\ 0.78(18) & 1.23(32) \end{array}$$

• statistically not significant but persists at higher q²

$$R_{K^*\phi}[q_1, q_2] \equiv \frac{d \mathrm{BR}(B^0 \to K^{*0}\ell^+\ell^-)/dq^2|_{[q_1, q_2]}}{d \mathrm{BR}(B_s \to \phi \ell^+\ell^-)/dq^2|_{[q_1, q_2]}}$$

origin of differences?

- lifetimes (effect small)
- weak annihilation taken from Lyon, RZ '13
- form factors determined mainly determined by decay constants ...

calls for test of form factors?

$|V_{ub}|$ from $B \rightarrow (\rho, \omega) I \nu$

involves vector form factors

⇒ no sign of (serious) normalisation problems as questioned by $B_s \rightarrow \varphi \mu \mu$

note: B-factory IV_{ub}I-values (could raise) if S-wave subtracted using ang-analysis

II.C comment charm resonances in $B \rightarrow K^{(*)}II$

 $BF(B \to K\ell\ell)$

LHCb PRL 111 (2013)

pronounced $J^{PC} = 1 - charm$ resonance structure

 Using a fit to BES-II data e⁺e⁻→hadrons able to check status of "naive" factorisation at high q² in B→KII

naive fac. by factor ~(-2.5) fits the data well

 Led us to speculate P₅'-anomaly in B→K (*)II might be related to charm (since charm pronounced)

1) pronounced to J/ Ψ 2) accommodated by photon penguin C₁₀ not nec.

- effect same sign as in naive fac. in "-" versus "0" helicity
- <u>my comment</u>: that's what
 B→ J/Ψ K* experimental
 angular analysis predicts
 for J/Ψ,Ψ(2S)-contributions

conclusions and summary

- wether global ΔC_9 short-distance \simeq -1 remains is tricky question needs more data
- then R_K-anomaly (2.6σ) came along and there charm should play no role and this points towards true short-distance new physics talks by Crivellin, Hiller, Altmannshofer, Nardecchia, Vicente
- equation of motion & correlated errors for form factors help to predict angular observables like P₅' with higher precision

thanks for your attention