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- Dark Matter
- Baryon asymmetry
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- EW vacuum instability

• Evidence/hints for physics beyond the SM
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• Theoretical problems of the SM

- Strong CP
- EW naturalness 
- Cosmological constant
- Landau poles
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- Neutrino oscillations
- Dark Matter
- Baryon asymmetry
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- EW vacuum instability
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4Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics,
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We survey a few minimal scalar extensions of the standard electroweak model that provide a simple
setup for massive neutrinos in connection with an invisible axion. The presence of a chiral U(1)
à la Peccei-Quinn drives the pattern of Majorana neutrino masses while providing a dynamical
solution to the strong CP problem and an axion as a dark matter candidate. We paradigmatically
apply such a renormalizable framework to type-II seesaw and to two viable models for neutrino
oscillations where the neutrino masses arise at one and two loops, respectively. We comment on
the naturalness of the e↵ective setups as well as on their implications for vacuum stability and
electroweak baryogenesis.
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The first LHC run has led to the discovery of a scalar
particle that looks much like the Higgs boson of the
SU(2)L ⌦U(1)Y electroweak standard model (SM). The
raising limits on exotic physics scales set a challenge to
the popular issue of naturalness [1], a paradigm that has
guided much of the beyond the SM modelling in the last
decades. This notwithstanding, neutrino oscillations and
dark matter call for physics beyond the standard sce-
nario. Baryon asymmetry calls for it as well while elec-
troweak vacuum stability may not be an issue in min-
imally extended scenarios [2]. We aim at discussing a
class of minimal extensions of the SM that account for
the aforementioned open issues. To this end we choose
to maintain the fermionic SM content as it stands and
consider only extensions of the scalar sector. Advantages
of this choice will be clear in the following. According
to that, the only tree-level realization of the dimension-
5 Weinberg operator (LLHH)/M for Majorana neutrino
masses is via the mediation of an SU(2)L scalar triplet of
hypercharge one. This is commonly known as the type-II
seesaw [3–7], Fig. 1a.

At the radiative level an elegant and simple realiza-
tion of the same was provided long ago by Zee [8]; the
Weinberg operator is there obtained at one loop from
the dimension-7 e↵ective operator (LLLecH)/M3 [9–11]
when L and ec are connected by the H Yukawa cou-
pling (giving rise to a chiral suppression), as shown in
Fig. 1b. The model requires one additional weak doublet
and a weak scalar singlet of hypercharge one. In order to
avoid Higgs mediated flavor changing neutral currents a
Z2 symmetry is called for [12]. Such a model, however, is
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Sezione di Genova, Via Dodecaneso 33, 16159 Genova, Italy
3Faculty of Nuclear Sciences and Physical Engineering,

Czech Technical University in Prague, Brehová 7, 115 19 Praha 1, Czech Republic
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4Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics,

Charles University in Prague, V Holešovičkách 2, 180 00 Praha 8, Czech Republic
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• Theoretical problems of the SM

- Strong CP
- EW naturalness 
- Cosmological constant
- Landau poles
- …

- Neutrino oscillations
- Dark Matter
- Baryon asymmetry

- Gravity
- …

- EW vacuum instability
A simple scalar extension of the SM 
may account for all these issues

Axion + neutrino mass models

• Evidence/hints for physics beyond the SM
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• Realizations of the Weinberg operator in scalar extensions of the SM

[Schechter, Valle (1980), 
Cheng, Li (1980), 
Lazarides, Shafi, Wetterich (1981), 
Mohapatra, Senjanovic (1981)]
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FIG. 1. Sample diagrams leading to the �L = 2 Weinberg operator at the tree level (a), one loop (b) and two loops (c) in the
type-II seesaw, Zee and Zee-Babu models, respectively.

TeV scale and lead to testable signals at the available
energy and foreseen intensity facilities. There is one in-
herent large scale involved that is linked to the presence
of a spontaneously broken Peccei-Quinn (PQ) symme-
try [22, 23] and the related axion [24, 25]. As we shall
discuss, it is noteworthy that the presence of such a large
scale (above 109 GeV) does not endanger the radiative
stability of the setup. While the anomalous U(1)PQ gives
an elegant solution to the so-called strong CP problem
in QCD [26–30], the axion provides a viable dark mat-
ter candidate (see [31] for a recent review). We find it
appealing and intriguing that a simple renormalizable
framework can be conceived where the origin of neutrino
masses and the solution of the strong CP problem are
fundamentally related and where the requirement of nat-
uralness and stability of the scalar sector is tightly linked
to the light neutrino scale.

The idea of connecting massive neutrinos with the
presence of a spontaneously broken U(1)PQ comes a long
way [32–48]. Considering only scalar extensions of the
SM a simple setup based on the Zee model for radiative
neutrino masses was discussed in [39, 40]. The model fea-
tures a Dine, Fischler, Srednicki, and Zhitnitsky (DFSZ)1

invisible axion [51, 52], with a tiny coupling to neutrinos.
The need for two di↵erent Higgs doublets and the role
of the related Z2 symmetry are there a free benefit of
the minimal implementation of the anomalous PQ sym-
metry. Two additional neutral and two singly charged
scalars remain naturally light (TeV scale). In spite of
the presence of the large PQ scale the model is shown to
exhibit a radiatively stable hierarchy. In all analogy with
the Zee model, a simple Majorana neutrino mass matrix
with vanishing diagonal entries arises at one-loop, whose
structure is determined by three parameters. As already
mentioned such a structure is shown to exhibit nearly bi-
maximal mixing and it is ruled out by oscillation data.

In this paper we show how this setup can work in

1 No extension of the matter sector is needed at variance with
the class of invisible axion models proposed by Kim, Shifman,
Vainshtein and Zakharov [49, 50] (KSVZ) that feature a vector-
like quark.

general. We discuss three explicit viable schemes: the
paradigmatic low-scale type-II seesaw (TII), the one-loop
BJ model and the two-loop ZB model. In the extended
BJ model a lepton-family-dependent PQ symmetry plays
the role of the original Z4 symmetry. In all cases one
obtains a DFSZ invisible axion with a tiny coupling to
neutrinos. In the BJ case the axion exhibits flavour vi-
olating couplings to the leptons of the same size of the
diagonal ones. Such flavour violating couplings are not
directly constrained by astrophysical processes and fu-
ture laboratory tests of LFV might even provide com-
petitive bounds on the PQ scale [53]. In addition to a
heavy neutral scalar (mainly) singlet the physical scalar
spectrum exhibits in the three models two singly-charged
and two additional neutral states. In the case of TII and
ZB a doubly charged scalar is present as well with a dis-
tinctive role in LFV phenomenology.

Stability of the scalar sector demands tiny interactions
between the PQ heavy state and the remaining scalars.
Due to an enhanced symmetry in the vanishing inter-
action limit, the smallness of the relevant couplings is
preserved at higher orders. Remarkably, such a setup
allows for naturally light neutrinos together with a rich
scalar spectrum at the TeV scale . The possible presence
of an exotic TeV-scale scalar sector is not yet excluded
by collider searches and it is among the priorities in the
coming years.

A fringe benefit of such an extension of the standard
scalar sector is to improve the electroweak vacuum sta-
bility. On the other hand, the sizable interactions among
the “light” scalar states open a possibility for the realiza-
tion of a first-order electroweak phase transition. This is
one of the requirements for electroweak baryogenesis [54].
However, no new sources of CP violation arise from the
minimal scalar sectors featured in the considered setups.
We shall comment on the possibility of addressing baryo-
genesis within such a framework.

In the next three sections we detail the extended TII,
BJ and ZB setups and discuss their generic features and
shortcomings in Sect. V.

[Zee (1980), Wolfenstein (1980),
Babu, Julio (2014)]

[Zee (1986), Babu (1988)]
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à la Peccei-Quinn drives the pattern of Majorana neutrino masses while providing a dynamical
solution to the strong CP problem and an axion as a dark matter candidate. We paradigmatically
apply such a renormalizable framework to type-II seesaw and to two viable models for neutrino
oscillations where the neutrino masses arise at one and two loops, respectively. We comment on
the naturalness of the e↵ective setups as well as on their implications for vacuum stability and
electroweak baryogenesis.

PACS numbers: 12.60.Fr,14.60.Pq,14.80.Va

I. INTRODUCTION

(``HH)/⇤ (1)

(```ecH)/⇤3 (2)

(```ec`ec)/⇤5 (3)

✓Gµ⌫G̃µ⌫ (D = 4) (4)

⇤2
NP H†H (D = 2) (5)

⇤4
NP

p
g (D = 0) (6)

The first LHC run has led to the discovery of a scalar
particle that looks much like the Higgs boson of the
SU(2)L ⌦U(1)Y electroweak standard model (SM). The
raising limits on exotic physics scales set a challenge to

⇤ stefano.bertolini@sissa.it
† luca.di.luzio@ge.infn.it
‡ helena.kolesova@fjfi.cvut.cz
§ malinsky@ipnp.troja.m↵.cuni.cz

the popular issue of naturalness [1], a paradigm that has
guided much of the beyond the SM modelling in the last
decades. This notwithstanding, neutrino oscillations and
dark matter call for physics beyond the standard sce-
nario. Baryon asymmetry calls for it as well while elec-
troweak vacuum stability may not be an issue in min-
imally extended scenarios [2]. We aim at discussing a
class of minimal extensions of the SM that account for
the aforementioned open issues. To this end we choose
to maintain the fermionic SM content as it stands and
consider only extensions of the scalar sector. Advantages
of this choice will be clear in the following. According
to that, the only tree-level realization of the dimension-
5 Weinberg operator (LLHH)/M for Majorana neutrino
masses is via the mediation of an SU(2)L scalar triplet of
hypercharge one. This is commonly known as the type-II
seesaw [3–7], Fig. 1a.

At the radiative level an elegant and simple realiza-
tion of the same was provided long ago by Zee [8]; the
Weinberg operator is there obtained at one loop from
the dimension-7 e↵ective operator (LLLecH)/M3 [9–11]
when L and ec are connected by the H Yukawa cou-
pling (giving rise to a chiral suppression), as shown in
Fig. 1b. The model requires one additional weak doublet
and a weak scalar singlet of hypercharge one. In order to
avoid Higgs mediated flavor changing neutral currents a
Z2 symmetry is called for [12]. Such a model, however, is
not consistent with the neutrino oscillation data [13–15].
Recently, Babu and Julio (BJ) [16] presented a variant of
the Zee model with a Z4 discrete family symmetry that
restores consistency with the observed neutrino mixing
pattern. The model yields an inverted neutrino mass hi-
erarchy and is highly predictive for neutrinoless double
beta decay and lepton flavor violation (LFV).

At two loops, a popular realization of the Weinberg
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à la Peccei-Quinn drives the pattern of Majorana neutrino masses while providing a dynamical
solution to the strong CP problem and an axion as a dark matter candidate. We paradigmatically
apply such a renormalizable framework to type-II seesaw and to two viable models for neutrino
oscillations where the neutrino masses arise at one and two loops, respectively. We comment on
the naturalness of the e↵ective setups as well as on their implications for vacuum stability and
electroweak baryogenesis.

PACS numbers: 12.60.Fr,14.60.Pq,14.80.Va

I. INTRODUCTION

a(x) ! a(x) + �↵ vPQ (1)

La⌫⌫ =
3� x2

2(x2 + 1)

m⌫

fa
a⌫i�5⌫ (2)

x = tan� ⌘ vu/vd (3)

✓̄ . 10�11 (4)

⇤ ⇡ 100 GeV (5)

⇤ ⇡ 10�3 eV (6)

(``HH)/⇤ (7)

⇤ stefano.bertolini@sissa.it
† luca.di.luzio@ge.infn.it
‡ helena.kolesova@fjfi.cvut.cz
§ malinsky@ipnp.troja.m↵.cuni.cz

(```ecH)/⇤3 (8)

(```ec`ec)/⇤5 (9)

✓̄Gµ⌫G̃µ⌫ (D = 4) (10)

⇤2 H†H (D = 2) (11)

⇤4pg (D = 0) (12)

The first LHC run has led to the discovery of a scalar
particle that looks much like the Higgs boson of the
SU(2)L ⌦U(1)Y electroweak standard model (SM). The
raising limits on exotic physics scales set a challenge to
the popular issue of naturalness [1], a paradigm that has
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decades. This notwithstanding, neutrino oscillations and
dark matter call for physics beyond the standard sce-
nario. Baryon asymmetry calls for it as well while elec-
troweak vacuum stability may not be an issue in min-
imally extended scenarios [2]. We aim at discussing a
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the aforementioned open issues. To this end we choose
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The first LHC run has led to the discovery of a scalar
particle that looks much like the Higgs boson of the
SU(2)L ⌦U(1)Y electroweak standard model (SM). The
raising limits on exotic physics scales set a challenge to
the popular issue of naturalness [? ], a paradigm that
has guided much of the beyond the SM modelling in the
last decades. This notwithstanding, neutrino oscillations
and dark matter call for physics beyond the standard
scenario. Baryon asymmetry calls for it as well while
electroweak vacuum stability may not be an issue in min-
imally extended scenarios [? ]. We aim at discussing a
class of minimal extensions of the SM that account for
the aforementioned open issues. To this end we choose

[Peccei, Quinn (1977), 
Weinberg (1978), Wilczek (1978)]

- axion: PGB of U(1)PQ 

• Spontaneously broken chiral (anomalous) global U(1)PQ 
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à la Peccei-Quinn drives the pattern of Majorana neutrino masses while providing a dynamical
solution to the strong CP problem and an axion as a dark matter candidate. We paradigmatically
apply such a renormalizable framework to type-II seesaw and to two viable models for neutrino
oscillations where the neutrino masses arise at one and two loops, respectively. We comment on
the naturalness of the e↵ective setups as well as on their implications for vacuum stability and
electroweak baryogenesis.

PACS numbers: 12.60.Fr,14.60.Pq,14.80.Va

I. INTRODUCTION

a(x) ! a(x) + �↵ vPQ (1)

Leff = LSM+✓̄
g2

32⇡2
Gµ⌫

a G̃a
µ⌫+⇠

a

vPQ

g2

32⇡2
Gµ⌫

a G̃a
µ⌫�

1

2
@µa@µa+L(@µa, )
(2)

La⌫⌫ =
3� x2

2(x2 + 1)

m⌫

fa
a⌫i�5⌫ (3)

x = tan� ⌘ vu/vd (4)

✓̄ . 10�11 (5)

⇤ ⇡ 100 GeV (6)

⇤ ⇡ 10�3 eV (7)

⇤ stefano.bertolini@sissa.it
† luca.di.luzio@ge.infn.it
‡ helena.kolesova@fjfi.cvut.cz
§ malinsky@ipnp.troja.m↵.cuni.cz

(``HH)/⇤ (8)

(```ecH)/⇤3 (9)

(```ec`ec)/⇤5 (10)

✓̄Gµ⌫G̃µ⌫ (D = 4) (11)

⇤2 H†H (D = 2) (12)

⇤4pg (D = 0) (13)

The first LHC run has led to the discovery of a scalar
particle that looks much like the Higgs boson of the
SU(2)L ⌦U(1)Y electroweak standard model (SM). The
raising limits on exotic physics scales set a challenge to
the popular issue of naturalness [? ], a paradigm that
has guided much of the beyond the SM modelling in the
last decades. This notwithstanding, neutrino oscillations
and dark matter call for physics beyond the standard
scenario. Baryon asymmetry calls for it as well while
electroweak vacuum stability may not be an issue in min-
imally extended scenarios [? ]. We aim at discussing a
class of minimal extensions of the SM that account for
the aforementioned open issues. To this end we choose

- explicit breaking due to the anomaly 

- it generates an effective potential for the axion

[Peccei, Quinn (1977), 
Weinberg (1978), Wilczek (1978)]

2

V� & 109 GeV (10)

��5 / �5(. . .) (11)

��6 / �6(. . .) (12)

��13 / �13(. . .) + �23(. . .) + ��3(. . .) + 8�25 + 3�26 (13)

��23 / �13(. . .) + �23(. . .) + ��3(. . .) + 8�25 + 3�26 (14)

���3 / �13(. . .) + �23(. . .) + ��3(. . .) + 2�26 (15)

@µT
µ⌫
/� = @µT

µ⌫
� = 0 (16)

S =

Z
d4xL/�(x) +

Z
d4x0L�(x

0) (17)

All � 6= 0 =) [U(1)PQ (18)

�6 = 0 =) [U(1)PQ ⌦ U(1)L (19)

�5 = 0 =) [U(1)PQ ⌦ [U(1)L (20)

�5,�6 = 0 =) [U(1)PQ ⌦ U(1)L ⌦ [U(1)� (21)

�5,�6,�i3 = 0 =) [U(1)PQ ⌦ U(1)L ⌦ [U(1)� ⌦ G�
P

(22)

h�i ⌘ V� � vu,d (23)

Hu ⇠ H⇤

d =) A = 0 (24)

A / XuR
+XdR

�XuL
�XdL

(25)

� Lquarks
Y = Yu qLuRHu + Yd qLdRHd + h.c. (26)

✓̄ = �⇠ hai
vPQ

(27)

Veff / 1� cos

✓
✓̄ + ⇠

hai
vPQ

◆
(28)

a(x) ! a(x) + �↵ vPQ (29)

Leff = LSM+✓̄
g2

32⇡2
Gµ⌫

a G̃a
µ⌫+⇠

a

vPQ

g2

32⇡2
Gµ⌫

a G̃a
µ⌫�

1

2
@µa@µa+L(@µa, )
(30)

La⌫⌫ =
3� x2

2(x2 + 1)

m⌫

fa
a⌫i�5⌫ (31)

x = tan� ⌘ vu/vd (32)

- axion: PGB of U(1)PQ 

• Spontaneously broken chiral (anomalous) global U(1)PQ 



Peccei Quinn (PQ) mechanism

 L. Di Luzio (Genova U.) - Massive neutrinos and invisible axion minimally connected   03/10

• The   -term is dynamically cancelled at the minimum 
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The first LHC run has led to the discovery of a scalar
particle that looks much like the Higgs boson of the
SU(2)L ⌦U(1)Y electroweak standard model (SM). The
raising limits on exotic physics scales set a challenge to
the popular issue of naturalness [1], a paradigm that has
guided much of the beyond the SM modelling in the last
decades. This notwithstanding, neutrino oscillations and
dark matter call for physics beyond the standard sce-
nario. Baryon asymmetry calls for it as well while elec-
troweak vacuum stability may not be an issue in min-
imally extended scenarios [2]. We aim at discussing a
class of minimal extensions of the SM that account for
the aforementioned open issues. To this end we choose
to maintain the fermionic SM content as it stands and
consider only extensions of the scalar sector. Advantages
of this choice will be clear in the following. According
to that, the only tree-level realization of the dimension-
5 Weinberg operator (LLHH)/M for Majorana neutrino
masses is via the mediation of an SU(2)L scalar triplet of
hypercharge one. This is commonly known as the type-II
seesaw [3–7], Fig. 1a.

• Spontaneously broken chiral (anomalous) global U(1)PQ [Peccei, Quinn (1977), 
Weinberg (1978), Wilczek (1978)]
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The first LHC run has led to the discovery of a scalar
particle that looks much like the Higgs boson of the
SU(2)L ⌦U(1)Y electroweak standard model (SM). The
raising limits on exotic physics scales set a challenge to
the popular issue of naturalness [? ], a paradigm that
has guided much of the beyond the SM modelling in the
last decades. This notwithstanding, neutrino oscillations
and dark matter call for physics beyond the standard
scenario. Baryon asymmetry calls for it as well while
electroweak vacuum stability may not be an issue in min-
imally extended scenarios [? ]. We aim at discussing a
class of minimal extensions of the SM that account for
the aforementioned open issues. To this end we choose

- explicit breaking due to the anomaly 

- it generates an effective potential for the axion
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- axion: PGB of U(1)PQ 
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Sezione di Genova, Via Dodecaneso 33, 16159 Genova, Italy
3Faculty of Nuclear Sciences and Physical Engineering,

Czech Technical University in Prague, Brehová 7, 115 19 Praha 1, Czech Republic
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- two Higgs doublets in order for U(1)PQ to be anomalous (Weinberg-Wilczek axion) 

• Requires:

4

tuningstobeimposedontothescalarpotential[17]sothatallthesymmetrybreakingstepsareperformed
atthedesiredscales.

OnthetechnicalsideoneshouldidentifyalltheHiggsmultipletsneededbythebreakingpatternunder
considerationandkeepthemaccordingtothegaugesymmetrydowntothescaleoftheirVEVs.This
typicallypullsdownalargenumberofscalarsinscenarioswhere126HprovidestheB−Lbreakdown.

Ontheotherhand,onemusttakeintoaccountthattheroleof126Histwofold:inadditiontotriggering
theG1breakingitplaysarelevantroleintheYukawasector(Eq.(1))whereitprovidesthenecessary
breakingofthedownquark-chargedleptonmassdegeneracy.Forthistoworkoneneedsareasonably
largeadmixtureofthe126Hcomponentintheeffectiveelectroweakdoublets.Since(2,2,1)10canmixwith
(2,2,15)126onlybelowthePati-Salambreakingscale,bothfieldsmustbepresentatthePati-Salamlevel
(otherwisethescalardoubletmassmatrixdoesnotprovidelargeenoughcomponentsofboththesemultiplets
inthelightHiggsfields).

Notethatthesameargumentappliesalsotothe2L1R4Cintermediatestagewhenonemustretainthe
doubletcomponentof126H,namely(2,+

1
2,15)126,inorderforittoeventuallyadmixwith(2,+

1
2,1)10in

thelightHiggssector.Ontheotherhand,atthe2L2R1X3cand2L1R1X3cstages,the(minimal)survivalof
onlyonecombinationoftheφ10andφ126scalardoublets(seeTableII)iscompatiblewiththeYukawasector
constraintsbecausethedegeneracybetweenthequarkandleptonspectrahasalreadybeensmeared-outby
thePati-Salambreakdown.

Insummary,potentiallyrealisticrenormalizableYukawatexturesinsettingswithwell-separatedSO(10)
andPati-SalambreakingscalescallforanadditionalfinetuningintheHiggssector.Inthescenarioswith
126H,the10Hbidoublet(2,2,1)10,includedinRefs[6–9],mustbepairedatthe2L2R4Cscalewithanextra
(2,2,15)126scalarbidoublet(or(2,+

1
2,1)10with(2,+

1
2,15)126atthe2L1R4Cstage).Thiscanaffectthe

runningofthegaugecouplingsinchainsI,II,III,V,VI,VII,X,XIandXII.

Forthesakeofcomparisonwithpreviousstudies[6–9]weshallnotincludetheφ126multipletsinthefirst
partoftheanalysis.Rather,weshallcommentontheirrelevanceforgaugeunificationinSect.IVC.

III.TWO-LOOPGAUGERENORMALIZATIONGROUPEQUATIONS

Inthissectionwereport,inordertofixaconsistentnotation,thetwo-looprenormalizationgroupequations
(RGEs)forthegaugecouplings.WeconsideragaugegroupoftheformU(1)1⊗...⊗U(1)N⊗G1⊗...⊗GN

′,
whereGiaresimplegroups.

A.Thenon-abeliansector

Letusfocusfirstonthenon-abeliansectorcorrespondingtoG1⊗...⊗GN
′anddeferthefulltreatment

oftheeffectsduetotheextraU(1)factorstosectionIIIB.Definingt=log(µ/µ0)wewrite

dgp

dt
=gpβp(2)

wherep=1,...,N
′

isthegaugegrouplabel.Neglectingforthetimebeingtheabeliancomponents,the
β-functionsfortheG1×...×GN

′gaugecouplingsreadattwo-looplevel[18–21]:
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• Simplest implementation of the PQ mechanism for scalar extensions of the SM
[Dine, Fischler, Srednicki (1981), Zhitnitsky (1980)]

- two Higgs doublets in order for U(1)PQ to be anomalous (Weinberg-Wilczek axion) 

• Requires:

- a SM singlet which spontaneously break U(1)PQ at energies ≫ EW scale (invisible axion)
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Fig. 3. Summary of astrophysical
and cosmological axion limits as dis-
cussed in the text. The black sensitiv-
ity bars indicate the search ranges of
the CAST solar axion search and the
ADMX search for galactic dark matter
axions. Light-grey exclusion bars are
very model dependent

The requirement that the neutrino signal of SN 1987A was not excessively
shortened by axion losses pushes the limits down to ma ! 10 meV. However,
this limit involves many uncertainties that are difficult to quantify so that
it is somewhat schematic. The CAST search for solar axions [46] covers new
territory in the parameter plane of ma and gaγγ , but a signal would represent
a conflict with the SN 1987A limit. While this limit certainly suggests that
axions more plausibly have masses relevant for cold dark matter, a single
argument, measurement or observation is never conclusive.

In the DFSZ model, the limits from white-dwarf cooling based on the
axion-electron interaction and those from SN 1987A from the axion-nucleon
interaction are quite similar. Therefore, axion emission could still play an
important role as an energy-loss channel of both SNe and white dwarfs and
for other evolved stars, e.g. asymptotic giant stars.

In summary, axions provide a show-case example for the fascinating inter-
play between astrophysics, cosmology and particle physics to solve some of
the deepest mysteries at the interface between inner space and outer space.

[Raffelt (2006)]



Axionization of neutrino mass models

 L. Di Luzio (Genova U.) - Massive neutrinos and invisible axion minimally connected   05/10

• The idea of connecting axions and neutrinos comes a long way (mostly Type-I seesaw)
[For a (likely incomplete) list of refs.: Mohapatra, Senjanovic (1983), Shafi, Stecker (1984), Langacker, Peccei, Yanagida 
(1986), Shin (1987), He, Volkas (1988), Geng, Ng (1989), Berezhiani, Khlopov (1991), Bertolini, Santamaria (1991), 
Arason, Ramond, Wright (1991), Ma (2001), Dias, Pleitez (2006), Ma (2012), Chen, Tsai (2013), Park (2014), Dias, 
Machado, Nishi, Ringwald, Vaudrevange (2014), Salvio (2015)]
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• The idea of connecting axions and neutrinos comes a long way (mostly Type-I seesaw)

• Promote the trilinear mass parameters in the scalar potential to PQ spurions  
2
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∆

FIG. 1. Sample diagrams leading to the �L = 2 Weinberg operator at the tree level (a), one loop (b) and two loops (c) in the
type-II seesaw, Zee and Zee-Babu models, respectively.

TeV scale and lead to testable signals at the available
energy and foreseen intensity facilities. There is one in-
herent large scale involved that is linked to the presence
of a spontaneously broken Peccei-Quinn (PQ) symme-
try [22, 23] and the related axion [24, 25]. As we shall
discuss, it is noteworthy that the presence of such a large
scale (above 109 GeV) does not endanger the radiative
stability of the setup. While the anomalous U(1)PQ gives
an elegant solution to the so-called strong CP problem
in QCD [26–30], the axion provides a viable dark mat-
ter candidate (see [31] for a recent review). We find it
appealing and intriguing that a simple renormalizable
framework can be conceived where the origin of neutrino
masses and the solution of the strong CP problem are
fundamentally related and where the requirement of nat-
uralness and stability of the scalar sector is tightly linked
to the light neutrino scale.

The idea of connecting massive neutrinos with the
presence of a spontaneously broken U(1)PQ comes a long
way [32–48]. Considering only scalar extensions of the
SM a simple setup based on the Zee model for radiative
neutrino masses was discussed in [39, 40]. The model fea-
tures a Dine, Fischler, Srednicki, and Zhitnitsky (DFSZ)1

invisible axion [51, 52], with a tiny coupling to neutrinos.
The need for two di↵erent Higgs doublets and the role
of the related Z2 symmetry are there a free benefit of
the minimal implementation of the anomalous PQ sym-
metry. Two additional neutral and two singly charged
scalars remain naturally light (TeV scale). In spite of
the presence of the large PQ scale the model is shown to
exhibit a radiatively stable hierarchy. In all analogy with
the Zee model, a simple Majorana neutrino mass matrix
with vanishing diagonal entries arises at one-loop, whose
structure is determined by three parameters. As already
mentioned such a structure is shown to exhibit nearly bi-
maximal mixing and it is ruled out by oscillation data.

In this paper we show how this setup can work in

1 No extension of the matter sector is needed at variance with
the class of invisible axion models proposed by Kim, Shifman,
Vainshtein and Zakharov [49, 50] (KSVZ) that feature a vector-
like quark.

general. We discuss three explicit viable schemes: the
paradigmatic low-scale type-II seesaw (TII), the one-loop
BJ model and the two-loop ZB model. In the extended
BJ model a lepton-family-dependent PQ symmetry plays
the role of the original Z4 symmetry. In all cases one
obtains a DFSZ invisible axion with a tiny coupling to
neutrinos. In the BJ case the axion exhibits flavour vi-
olating couplings to the leptons of the same size of the
diagonal ones. Such flavour violating couplings are not
directly constrained by astrophysical processes and fu-
ture laboratory tests of LFV might even provide com-
petitive bounds on the PQ scale [53]. In addition to a
heavy neutral scalar (mainly) singlet the physical scalar
spectrum exhibits in the three models two singly-charged
and two additional neutral states. In the case of TII and
ZB a doubly charged scalar is present as well with a dis-
tinctive role in LFV phenomenology.

Stability of the scalar sector demands tiny interactions
between the PQ heavy state and the remaining scalars.
Due to an enhanced symmetry in the vanishing inter-
action limit, the smallness of the relevant couplings is
preserved at higher orders. Remarkably, such a setup
allows for naturally light neutrinos together with a rich
scalar spectrum at the TeV scale . The possible presence
of an exotic TeV-scale scalar sector is not yet excluded
by collider searches and it is among the priorities in the
coming years.

A fringe benefit of such an extension of the standard
scalar sector is to improve the electroweak vacuum sta-
bility. On the other hand, the sizable interactions among
the “light” scalar states open a possibility for the realiza-
tion of a first-order electroweak phase transition. This is
one of the requirements for electroweak baryogenesis [54].
However, no new sources of CP violation arise from the
minimal scalar sectors featured in the considered setups.
We shall comment on the possibility of addressing baryo-
genesis within such a framework.

In the next three sections we detail the extended TII,
BJ and ZB setups and discuss their generic features and
shortcomings in Sect. V.

Axionization of neutrino mass models
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(1986), Shin (1987), He, Volkas (1988), Geng, Ng (1989), Berezhiani, Khlopov (1991), Bertolini, Santamaria (1991), 
Arason, Ramond, Wright (1991), Ma (2001), Dias, Pleitez (2006), Ma (2012), Chen, Tsai (2013), Park (2014), Dias, 
Machado, Nishi, Ringwald, Vaudrevange (2014), Salvio (2015)]
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B. PQ charges

The invariants in Eq. (10) and Eq. (12) enforce the
following constraints on the PQ charges:

�X` +Xe �Xd = 0 , (13)

2X` +X� = 0 , (14)

2X� �Xu �Xd = 0 , (15)

X� +Xu �X� �Xd = 0 . (16)

Solving in terms of Xu and Xd we get:

X` = �3Xu

4
+

Xd

4
, Xe = �3Xu

4
+

5Xd

4
,

X� =
3Xu

2
� Xd

2
, X� =

Xu

2
+

Xd

2
. (17)

Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation

Xuv
2
u = Xdv

2
d , (18)

where vu = hHui and vd = hHdi. Adding this condition
to Eq. (17), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
by the condition

X� = 1 . (19)

By defining x ⌘ vu/vd the remaining charges in Eq. (17)
read

Xu =
2

x2 + 1
, Xd =

2x2

x2 + 1
, X` =

x2 � 3

2(x2 + 1)
,

Xe =
5x2 � 3

2(x2 + 1)
, X� =

3� x2

x2 + 1
. (20)

C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
configuration

Hu =

 
vu + h0

u+i⌘0
u

p

2

h�

u

!
, (21)

Hd =

 
h+
d

vd +
h0
d+i⌘0

d
p

2

!
, (22)

� =

 
�+
p

2
�++

v� + �0+i⌘0
�

p

2
� �+

p

2

!
, (23)

� = V� +
�0 + i⌘0�p

2
, (24)

with vu, vd, v� and V� denoting the relevant (real) vac-
uum expectation values (VEVs). 2

2 While it is assumed that there exists a region of the scalar po-
tential parameters for which the absolute minimum preserves the

νL νL

∆

<H >d
0<H >u

0

<σ>

FIG. 2. The tree-level “hug” diagram responsible for the
Majorana neutrino mass in the PQ extended type-II seesaw
model.

The scalar spectrum of the model is detailed in Ap-
pendix A and the main features are discussed in Sect. V.
Here we just anticipate that the model features a DFSZ
invisible axion, with a tiny coupling to neutrinos, and its
SM singlet companion with a PQ scale mass. By invoking
a technically natural ultraweak limit (see the discussion
in Sect. VA) such a heavy scalar is su�ciently decou-
pled from all the other physical scalar states that are
requested to live at the TeV scale thus preserving the ra-
diative stability of the light scalar spectrum. At the weak
scale the model allows for a SM-like Higgs boson; this,
together with a brief account of the relevant phenomeno-
logical constraints, shall be discussed in Sect. VC.

D. Neutrino masses

In the TII model, the neutrino masses are generated
through the tree-level diagram in Fig. 2.

Their expression is conveniently obtained by comput-
ing the (induced) VEV of the triplet. Let us hence con-
sider the projection of the scalar potential along the neu-
tral VEV components of Eqs. (21)–(24)

hVTIIi =
�
µ2
� + ��3V

2
� + ��1v

2
u + (��2 + �8)v

2
d

�
v2�

+ 2�6V�vuvdv� +O �v4�
�
+ v�-indep. terms . (25)

Given the phenomenological hierarchy V� � vu,d � v�,
the stationary condition with respect to v� is well ap-
proximated by

2M2
�v� + 2�6V�vuvd ⇡ 0 , (26)

where we defined the e↵ective mass parameter

M2
� = µ2

� + ��3V
2
� + ��1v

2
u + (��2 + �8)v

2
d . (27)

electric charge, it can be shown (see Sect. VD) that the potential
of Eq. (12) does not lead to spontaneous CP violation.

6

B. PQ charges

The devised U(1)PQ invariance of the Lagrangian leads
to the following constraints on the PQ charges:

�X`2,3 +Xe �Xd = 0 , (34)

�X`1 +Xe +Xu = 0 , (35)

2X`2,3 +Xh = 0 , (36)

2X� �Xu �Xd = 0 , (37)

X� �Xh +Xu �Xd = 0 . (38)

Solving these in terms of Xu and Xd one obtains:

X`1 =
Xu

4
+

5Xd

4
, X`2,3 = �3Xu

4
+

Xd

4
,

Xe = �3Xu

4
+

5Xd

4
, Xh =

3Xu

2
� Xd

2
,

X� =
Xu

2
+

Xd

2
. (39)

As before, cf. Sect. II B, we require the orthogonality of
the hypercharge and axion currents and fix the overall
normalization of the charges by the condition X� = 1,
which yields

X`1 =
5x2 + 1

2(x2 + 1)
, X`23 =

x2 � 3

2(x2 + 1)
,

Xe =
5x2 � 3

2(x2 + 1)
, Xh =

3� x2

x2 + 1
. (40)

The Xu and Xd charges are identical to those of the TII
model and, as such, they are given in Eq. (20).

C. Neutrino masses

The radiatively induced neutrino mass matrix is found
to be [16]

MBJ
⌫ = 

⇣
f̂Mdiag

` Ŷ T + Ŷ Mdiag
` f̂T

⌘
, (41)

where Mdiag
` is the diagonal charged-lepton mass matrix

and f̂ and Ŷ are the Yukawa coupling matrices trans-
formed into the mass basis of the fields running in the
loop (cf. Fig. 3). The main di↵erence with respect to the
Z2-assisted Zee model [8, 12], is that Ŷ is non-diagonal,
so that the antisymmetric texture of f̂ is not transmit-
ted into the neutrino mass matrix. This allows for non-
vanishing diagonal entries at the leading order, a key fea-
ture for the consistency of the BJ model with the neu-
trino oscillation data. The overall factor  involves the
loop function and is given by [16]

 =
sin 2�

16⇡2
log

✓
M2

1

M2
2

◆
, (42)

<H   >u/d
0

H d/u
-

<σ>

h-

νL νLeL eR

<H >a
0

FIG. 3. Sample one-loop diagram responsible for the Majo-
rana neutrino mass in the PQ extended Babu-Julio model.
Due to the family dependence of the PQ charges both Higgs
doublets couple to the first leptonic family.

where M1,2 are the masses of the physical charged scalar
states and � denotes the mixing angle between h� and
H� obeying (cf. [39])

sin 2� =
2�6V�

p
v2u + v2d

M2
1 �M2

2

. (43)

Interestingly, the structure of the neutrino mass matrix in
Eq. (41) is very constrained. Albeit with non-vanishing
diagonal entries the mass matrix turns out to be trace-
less and real so that all the neutrino oscillation data can
be described in terms of four real parameters [16]. This
leads to several predictions: the neutrino mass hierarchy
is predicted to be inverted, the Dirac CP-violating phase
is fixed to �CP = ⇡ and, moreover, there is a relation
among the three mixing angles, namely |U⌧1| = |U⌧2|, al-
lowing one of them to be expressed in terms of the other
two. The consequences for neutrinoless double beta de-
cay and LFV processes have been systematically worked
out in Ref. [16].

As in the TII case, the smallness of neutrino masses
can have di↵erent sources. If the charged scalar states
are not far from the electroweak scale, as suggested by
the naturalness arguments, the suppression must come
from the scalar potential coupling �6 and/or the Yukawa
matrices Ŷ and f̂ . Remarkably, the smallness of the cou-
pling �6 is a necessary condition for a technically natural
spectrum (see Sect. VA), while the Yukawa couplings
Ŷ and f̂ are sharply constrained by neutrino oscillation
data and LFV processes [16].

IV. PQ EXTENDED ZEE-BABU MODEL

The last case we are going to consider is the PQ ex-
tension of the ZB model. The field content and the PQ
charges are collected for convenience in Table III.
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<σ>

νL νLeL eR

h-h-
k--

eR eL

<H >d
0<H >d

0

FIG. 4. Two-loop diagram responsible for the neutrino Ma-
jorana mass in the PQ extended Zee-Babu model.

is antisymmetric, det f = 0 (for three generations) and,
hence, detMZB

⌫ = 0.

As in the previous cases (TII and BJ), the smallness of
neutrino masses can be due to di↵erent factors. Taking
into account the strong bounds on the Yukawa couplings
f and g coming from the LFV processes (see Sect. VC), it
turns out that the assumption �7 . 4⇡⇥O( v

V�
), tailored

to keep the non-singlet scalars at the electroweak scale,
ensures also the correct absolute neutrino mass scale [20].

Finally, we briefly comment on the case �6 6= 0. In
such a setting there is an extra one-loop contribution to
the neutrino masses, similar to the one in Fig. 3 (the rel-
evant expression can be found in Eqs. (25)-(26) of [39]).
As already mentioned, the original Zee model is excluded
by neutrino data and, in order to obtain a viable neutrino
texture, the size of such a one-loop diagram must be com-
parable with the two-loop expression in Eq. (61), thus in-
troducing a fine-tuning in the couplings. Let us also note
that �6 6= 0 introduces a tree-level mixing between the
charged SU(2)L-doublet and singlet scalars that a↵ects
Eq. (62). At variance with the ZB model, the lightest
neutrino is no longer massless. In this study, we will not
pursue the analysis of this hybrid model any further.

V. DISCUSSION

The three setups presented in the previous sections
share a number of common features which we shall briefly
summarize here. In particular, all three models contain
a DFSZ invisible axion with a tiny coupling to neutri-
nos [39, 40]. It is noticeable that, at variance with the
TII and ZB extended models, the axion in the BJ case
exhibits flavour violating couplings to the leptons of the

same order of the flavour-diagonal ones:

La`` = �X`2,3

@µa

fa

⇥
(eiL�

µeiL) + (⌫iL�
µ⌫iL)

⇤

�Xe
@µa

fa

⇥
(eiR�

µeiR)
⇤

� (X`1 �X`2,3)
@µa

fa

h
(eiL�

µ(Ue†
L )i1(Ue

L)
1jejL)

i

+ (⌫iL�
µ(U⌫†

L )i1(U⌫
L)

1j⌫jL)
i
, (64)

that, up to a total derivative, can be written as

La`` = i
a

fa

⇥�
Xe �X`2,3

�
me

i ei�5e
i �X`2,3m

⌫
i ⌫i�5⌫

i
⇤

� i
�
X`1 �X`2,3

� a

fa


(Ue†

L )i1(Ue
L)

1j ei
✓
me

j �me
i

2

+
me

j +me
i

2
�5

◆
ej

+ (U⌫†
L )i1(U⌫

L)
1j ⌫i

✓
m⌫

j �m⌫
i

2
+

m⌫
j +m⌫

i

2
�5

◆
⌫j
�
.

(65)

where a denotes the axion field and fa =
p
2V�. The

mass eigenstates eiL, ⌫
i
L (i = 1, 2, 3) are connected to the

interaction basis e↵L, ⌫↵L (↵ = 1, 2, 3) via the relations
e↵L = (Ue

L)
↵ieiL and ⌫↵L = (U⌫

L)
↵i⌫iL. The equations of

motion for Weyl fermions with a Majorana mass term
are used and the axion neutrino couplings are written
in terms of the Majorana mass eigenstates [58]. Present
laboratory and astrophysical limits on flavor violating in-
teractions do not seem to imply any constraints on the
PQ scale stronger than those obtained from the diago-
nal interactions [53]. On the other hand, the presence
of lepton flavor violating interactions of the axion in the
extended BJ model deserves further detailed scrutiny.

The DFSZ invisible axion framework su↵ers from the
domain wall problem (the non-perturbative instanton po-
tential breaks the U(1)PQ explicitly to a ZNq discrete
symmetry where Nq is the number of quark flavors). The
standard cosmological solution is then the assumption of
a low reheating temperature (see [59] for a comprehensive
discussion).

A. Naturalness

An interesting feature of all the models considered in
this study is the fact that the hierarchy between the elec-
troweak and the PQ scales can be made technically nat-
ural and stable against radiative corrections. Let us con-
sider, for definiteness, the case of the PQ extended TII
model. At the tree level, the hierarchy between the PQ
and the electroweak scale can be obtained without fine-
tuning among the scalar potential parameters of Eq. (12)
by requiring the ultraweak limit

�i3,�5 ⇠ O
✓
v2

V 2
�

◆
and �6 ⇠ O

✓
v�
V�

◆
, (66)

• PQ symmetry breaking triggers both neutrino masses and axion dynamics

• Promote the trilinear mass parameters in the scalar potential to PQ spurions  

• The idea of connecting axions and neutrinos comes a long way (mostly Type-I seesaw)

Axionization of neutrino mass models

[Bertolini, DL, Kolesova, Malinsky (2014)]
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• Paradigmatic example: Type-II seesaw
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preserved at higher orders. Remarkably, such a setup
allows for naturally light neutrinos together with a rich
scalar spectrum at the TeV scale . The possible presence
of an exotic TeV-scale scalar sector is not yet excluded
by collider searches and it is among the priorities in the
coming years.

A fringe benefit of such an extension of the standard
scalar sector is to improve the electroweak vacuum sta-
bility. On the other hand, the sizable interactions among
the “light” scalar states open a possibility for the realiza-
tion of a first-order electroweak phase transition. This is
one of the requirements for electroweak baryogenesis [54].
However, no new sources of CP violation arise from the
minimal scalar sectors featured in the considered setups.
We shall comment on the possibility of addressing baryo-
genesis within such a framework.

In the next three sections we detail the extended TII,
BJ and ZB setups and discuss their generic features and
shortcomings in Sect. V.

II. PQ EXTENDED TYPE-II SEESAW

On top of the usual SM field content, the scalar sec-
tor of the PQ extended Type-II seesaw model features
two Higgs doublets, an isospin triplet with hypercharge
one and a SM singlet (cf. Table I). The PQ charge as-
signments are displayed in Table I, where the presence
of Yukawa interactions for quarks is already taken into
account. Recall that the PQ current is axial, thus pro-
portional to the di↵erence between the charges of the
left- and right-handed (colored) fermions. Hence, with-
out loss of generality, we can always set Xq = 0. In this
way, the color anomaly of the PQ current is proportional
to Xu +Xd (see, e.g., [55]).

Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

qL
1
2 3 2 + 1

6 0

uR
1
2 3 1 + 2

3 Xu

dR
1
2 3 1 � 1

3 Xd

`L
1
2 1 2 � 1

2 X`

eR
1
2 1 1 �1 Xe

Hu 0 1 2 � 1
2 �Xu

Hd 0 1 2 + 1
2 �Xd

� 0 1 3 +1 X�

� 0 1 1 0 X�

TABLE I. Field content and charge assignment of the PQ
extended Type-II seesaw model.

A. Lagrangian

The only two sectors which are sensitive to the assign-
ment of the PQ charges are the Yukawa Lagrangian and

the scalar potential that we discuss in turn. The former
reads

� LTII
Y = Yu qLuRHu + Yd qLdRHd + Ye `LeRHd

+ 1
2Y� `TLCi⌧2�`L + h.c. , (10)

where the flavour contractions are understood (e.g. Y T
� =

Y�), C is the charge conjugation matrix in the spinor
space, and

� ⌘ ~⌧ · ~�p
2

=

 
�+
p

2
�++

�0 ��+
p

2

!
. (11)

In Eq. (11), ~⌧ = (⌧1, ⌧2, ⌧3) are the Pauli matrices and
~� = (�1,�2,�3) are the SU(2)L components of the
scalar triplet. The electric charge eigenstates are ob-
tained by the action of Q = T3 + Y on Eq. (11).

The scalar potential can be written as [39, 56]

VTII = �µ2
1 |Hu|2 + �1 |Hu|4 � µ2

2 |Hd|2 + �2 |Hd|4

+ �12 |Hu|2 |Hd|2 + �4

��H†

uHd

��2

� µ2
3 |�|2 + �3 |�|4 + �13 |�|2 |Hu|2 + �23 |�|2 |Hd|2

+Tr(�†�)
h
µ2
� + ��1 |Hu|2 + ��2 |Hd|2

+ ��3 |�|2 + ��4Tr(�
†�)

i

+ �7H
†

u��†Hu + �8H
†

d��†Hd + �9Tr(�
†�)2

+
⇣
�5�

2H̃†

uHd + �6�H
†

u�
†Hd + h.c.

⌘
, (12)

where we employed the notation H̃u = i⌧2H
⇤

u. Notice
that terms like H̃†

uHdTr(�†�) or H̃†

u��†Hd are not al-
lowed since the QCD anomaly of the PQ current requires
Xu + Xd 6= 0. Moreover, H†

u,d

�
�†�+��†

�
Hu,d =

|Hu,d|2Tr(�†�), so that only two invariants out of three
are linearly independent.

The terms �5 �
2H̃†

uHd and �6 �H
†

u�
†Hd are needed

in order to assign a non-vanishing PQ charge to the sin-
glet � and to generate neutrino masses. Notice that
the simultaneous presence of �5, �6 and Y� is needed
to explicitly break lepton number. If any of the cou-
plings is missing, either lepton number is exact and neu-
trinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (12) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.

4

VTII = �µ2
1 |Hu|2 + �1 |Hu|4 � µ2

2 |Hd|2 + �2 |Hd|4 + �12 |Hu|2 |Hd|2 + �4

��H†

uHd

��2

� µ2
3 |�|2 + �3 |�|4 + �13 |�|2 |Hu|2 + �23 |�|2 |Hd|2

+Tr(�†�)
h
µ2
� + ��1 |Hu|2 + ��2 |Hd|2 + ��3 |�|2 + ��4Tr(�

†�)
i

+ �7H
†

u��†Hu + �8H
†

d��†Hd + �9Tr(�
†�)2 +

⇣
�5�

2H̃†

uHd + �6�H
†

u�
†Hd + h.c.

⌘
, (14)

VTII = moduli terms +
⇣
�5�

2H̃†

uHd + �6�H
†

u�
†Hd + h.c.

⌘
, (15)

where we employed the notation H̃u = i⌧2H
⇤

u. Notice
that terms like H̃†

uHdTr(�†�) or H̃†

u��†Hd are not al-
lowed since the QCD anomaly of the PQ current requires
Xu + Xd 6= 0. Moreover, H†

u,d

�
�†�+��†

�
Hu,d =

|Hu,d|2Tr(�†�), so that only two invariants out of three
are linearly independent.

The terms
�5 �

2H̃†

uHd

and
�6 �H

†

u�
†Hd

are needed in order to assign a non-vanishing PQ
charge to the singlet � and to generate neutrino masses.
Notice that the simultaneous presence of �5, �6 and Y�

is needed to explicitly break lepton number. If any of the
couplings is missing, either lepton number is exact and
neutrinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (15) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.

B. PQ charges

The invariants in Eq. (11) and Eq. (15) enforce the
following constraints on the PQ charges:

�X` +Xe �Xd = 0 , (16)

2X` +X� = 0 , (17)

2X� �Xu �Xd = 0 , (18)

X� +Xu �X� �Xd = 0 . (19)

Solving in terms of Xu and Xd we get:

X` = �3Xu

4
+

Xd

4
, Xe = �3Xu

4
+

5Xd

4
,

X� =
3Xu

2
� Xd

2
, X� =

Xu

2
+

Xd

2
. (20)

Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation

Xuv
2
u = Xdv

2
d , (21)

where vu = hHui and vd = hHdi. Adding this condition
to Eq. (20), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
by the condition

X� = 1 . (22)

By defining x ⌘ vu/vd the remaining charges in Eq. (20)
read

Xu =
2

x2 + 1
, Xd =

2x2

x2 + 1
, X` =

x2 � 3

2(x2 + 1)
,

Xe =
5x2 � 3

2(x2 + 1)
, X� =

3� x2

x2 + 1
. (23)

C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum

3

preserved at higher orders. Remarkably, such a setup
allows for naturally light neutrinos together with a rich
scalar spectrum at the TeV scale . The possible presence
of an exotic TeV-scale scalar sector is not yet excluded
by collider searches and it is among the priorities in the
coming years.

A fringe benefit of such an extension of the standard
scalar sector is to improve the electroweak vacuum sta-
bility. On the other hand, the sizable interactions among
the “light” scalar states open a possibility for the realiza-
tion of a first-order electroweak phase transition. This is
one of the requirements for electroweak baryogenesis [54].
However, no new sources of CP violation arise from the
minimal scalar sectors featured in the considered setups.
We shall comment on the possibility of addressing baryo-
genesis within such a framework.

In the next three sections we detail the extended TII,
BJ and ZB setups and discuss their generic features and
shortcomings in Sect. V.

II. PQ EXTENDED TYPE-II SEESAW

On top of the usual SM field content, the scalar sec-
tor of the PQ extended Type-II seesaw model features
two Higgs doublets, an isospin triplet with hypercharge
one and a SM singlet (cf. Table I). The PQ charge as-
signments are displayed in Table I, where the presence
of Yukawa interactions for quarks is already taken into

account. Recall that the PQ current is axial, thus pro-
portional to the di↵erence between the charges of the
left- and right-handed (colored) fermions. Hence, with-
out loss of generality, we can always set Xq = 0. In this
way, the color anomaly of the PQ current is proportional
to Xu +Xd (see, e.g., [55]).

Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

qL
1
2 3 2 + 1

6 0

uR
1
2 3 1 + 2

3 Xu

dR
1
2 3 1 � 1

3 Xd

`L
1
2 1 2 � 1

2 X`

eR
1
2 1 1 �1 Xe

Hu 0 1 2 � 1
2 �Xu

Hd 0 1 2 + 1
2 �Xd

� 0 1 3 +1 X�

� 0 1 1 0 X�

TABLE I. Field content and charge assignment of the PQ
extended Type-II seesaw model.

A. Lagrangian

The only two sectors which are sensitive to the assign-
ment of the PQ charges are the Yukawa Lagrangian and
the scalar potential that we discuss in turn. The former
reads

� LTII
Y = Yu qLuRHu + Yd qLdRHd + Ye `LeRHd +

1
2Y� `TLCi⌧2�`L + h.c. (10)

�LTII
Y = Yu qLuRHu + Yd qLdRHd + Ye `LeRHd

+ 1
2Y� `TLCi⌧2�`L + h.c. (11)

where the flavour contractions are understood (e.g. Y T
� =

Y�), C is the charge conjugation matrix in the spinor
space, and

� ⌘ ~⌧ · ~�p
2

=

 
�+
p

2
�++

�0 ��+
p

2

!
. (12)

In Eq. (12), ~⌧ = (⌧1, ⌧2, ⌧3) are the Pauli matrices and
~� = (�1,�2,�3) are the SU(2)L components of the

scalar triplet. The electric charge eigenstates are ob-
tained by the action of Q = T3 + Y on Eq. (12).

The scalar potential can be written as [39, 56]

VTII = �µ2
1 |Hu|2 + �1 |Hu|4 � µ2

2 |Hd|2 + �2 |Hd|4

+ �12 |Hu|2 |Hd|2 + �4

��H†

uHd

��2

� µ2
3 |�|2 + �3 |�|4 + �13 |�|2 |Hu|2 + �23 |�|2 |Hd|2

+Tr(�†�)
h
µ2
� + ��1 |Hu|2 + ��2 |Hd|2

+ ��3 |�|2 + ��4Tr(�
†�)

i

+ �7H
†

u��†Hu + �8H
†

d��†Hd + �9Tr(�
†�)2

+
⇣
�5�

2H̃†

uHd + �6�H
†

u�
†Hd + h.c.

⌘
, (13)



PQ extended type-II seesaw

 L. Di Luzio (Genova U.) - Massive neutrinos and invisible axion minimally connected   06/10

• Paradigmatic example: Type-II seesaw

3

preserved at higher orders. Remarkably, such a setup
allows for naturally light neutrinos together with a rich
scalar spectrum at the TeV scale . The possible presence
of an exotic TeV-scale scalar sector is not yet excluded
by collider searches and it is among the priorities in the
coming years.

A fringe benefit of such an extension of the standard
scalar sector is to improve the electroweak vacuum sta-
bility. On the other hand, the sizable interactions among
the “light” scalar states open a possibility for the realiza-
tion of a first-order electroweak phase transition. This is
one of the requirements for electroweak baryogenesis [54].
However, no new sources of CP violation arise from the
minimal scalar sectors featured in the considered setups.
We shall comment on the possibility of addressing baryo-
genesis within such a framework.

In the next three sections we detail the extended TII,
BJ and ZB setups and discuss their generic features and
shortcomings in Sect. V.

II. PQ EXTENDED TYPE-II SEESAW

On top of the usual SM field content, the scalar sec-
tor of the PQ extended Type-II seesaw model features
two Higgs doublets, an isospin triplet with hypercharge
one and a SM singlet (cf. Table I). The PQ charge as-
signments are displayed in Table I, where the presence
of Yukawa interactions for quarks is already taken into
account. Recall that the PQ current is axial, thus pro-
portional to the di↵erence between the charges of the
left- and right-handed (colored) fermions. Hence, with-
out loss of generality, we can always set Xq = 0. In this
way, the color anomaly of the PQ current is proportional
to Xu +Xd (see, e.g., [55]).

Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

qL
1
2 3 2 + 1

6 0

uR
1
2 3 1 + 2

3 Xu

dR
1
2 3 1 � 1

3 Xd

`L
1
2 1 2 � 1

2 X`

eR
1
2 1 1 �1 Xe

Hu 0 1 2 � 1
2 �Xu

Hd 0 1 2 + 1
2 �Xd

� 0 1 3 +1 X�

� 0 1 1 0 X�

TABLE I. Field content and charge assignment of the PQ
extended Type-II seesaw model.

A. Lagrangian

The only two sectors which are sensitive to the assign-
ment of the PQ charges are the Yukawa Lagrangian and

the scalar potential that we discuss in turn. The former
reads

� LTII
Y = Yu qLuRHu + Yd qLdRHd + Ye `LeRHd

+ 1
2Y� `TLCi⌧2�`L + h.c. , (10)

where the flavour contractions are understood (e.g. Y T
� =

Y�), C is the charge conjugation matrix in the spinor
space, and

� ⌘ ~⌧ · ~�p
2

=

 
�+
p

2
�++

�0 ��+
p

2

!
. (11)

In Eq. (11), ~⌧ = (⌧1, ⌧2, ⌧3) are the Pauli matrices and
~� = (�1,�2,�3) are the SU(2)L components of the
scalar triplet. The electric charge eigenstates are ob-
tained by the action of Q = T3 + Y on Eq. (11).

The scalar potential can be written as [39, 56]

VTII = �µ2
1 |Hu|2 + �1 |Hu|4 � µ2

2 |Hd|2 + �2 |Hd|4

+ �12 |Hu|2 |Hd|2 + �4

��H†

uHd

��2

� µ2
3 |�|2 + �3 |�|4 + �13 |�|2 |Hu|2 + �23 |�|2 |Hd|2

+Tr(�†�)
h
µ2
� + ��1 |Hu|2 + ��2 |Hd|2

+ ��3 |�|2 + ��4Tr(�
†�)

i
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†

u��†Hu + �8H
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+
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uHd + �6�H
†
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⌘
, (12)

where we employed the notation H̃u = i⌧2H
⇤

u. Notice
that terms like H̃†

uHdTr(�†�) or H̃†

u��†Hd are not al-
lowed since the QCD anomaly of the PQ current requires
Xu + Xd 6= 0. Moreover, H†

u,d

�
�†�+��†

�
Hu,d =

|Hu,d|2Tr(�†�), so that only two invariants out of three
are linearly independent.

The terms �5 �
2H̃†

uHd and �6 �H
†

u�
†Hd are needed

in order to assign a non-vanishing PQ charge to the sin-
glet � and to generate neutrino masses. Notice that
the simultaneous presence of �5, �6 and Y� is needed
to explicitly break lepton number. If any of the cou-
plings is missing, either lepton number is exact and neu-
trinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (12) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.

• We require the couplings

-                  to assign a non-vanishing PQ charge to sigma 
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2 |Hd|2 + �2 |Hd|4 + �12 |Hu|2 |Hd|2 + �4

��H†

uHd

��2

� µ2
3 |�|2 + �3 |�|4 + �13 |�|2 |Hu|2 + �23 |�|2 |Hd|2

+Tr(�†�)
h
µ2
� + ��1 |Hu|2 + ��2 |Hd|2 + ��3 |�|2 + ��4Tr(�

†�)
i

+ �7H
†

u��†Hu + �8H
†

d��†Hd + �9Tr(�
†�)2 +

⇣
�5�

2H̃†

uHd + �6�H
†

u�
†Hd + h.c.

⌘
, (14)

where we employed the notation H̃u = i⌧2H
⇤

u. Notice
that terms like H̃†

uHdTr(�†�) or H̃†

u��†Hd are not al-
lowed since the QCD anomaly of the PQ current requires
Xu + Xd 6= 0. Moreover, H†

u,d

�
�†�+��†

�
Hu,d =

|Hu,d|2Tr(�†�), so that only two invariants out of three
are linearly independent.

The terms
�5 �

2H̃†

uHd

and
�6 �H

†

u�
†Hd

are needed in order to assign a non-vanishing PQ
charge to the singlet � and to generate neutrino masses.
Notice that the simultaneous presence of �5, �6 and Y�

is needed to explicitly break lepton number. If any of the
couplings is missing, either lepton number is exact and
neutrinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (14) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.

B. PQ charges

The invariants in Eq. (11) and Eq. (14) enforce the
following constraints on the PQ charges:

�X` +Xe �Xd = 0 , (15)

2X` +X� = 0 , (16)

2X� �Xu �Xd = 0 , (17)

X� +Xu �X� �Xd = 0 . (18)

Solving in terms of Xu and Xd we get:

X` = �3Xu

4
+

Xd

4
, Xe = �3Xu

4
+

5Xd

4
,

X� =
3Xu

2
� Xd

2
, X� =

Xu

2
+

Xd

2
. (19)

Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation

Xuv
2
u = Xdv

2
d , (20)

where vu = hHui and vd = hHdi. Adding this condition
to Eq. (19), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
by the condition

X� = 1 . (21)

By defining x ⌘ vu/vd the remaining charges in Eq. (19)
read

Xu =
2

x2 + 1
, Xd =

2x2

x2 + 1
, X` =

x2 � 3

2(x2 + 1)
,

Xe =
5x2 � 3

2(x2 + 1)
, X� =

3� x2

x2 + 1
. (22)

C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
configuration

Hu =

 
vu + h0

u+i⌘0
u

p

2

h�

u

!
, (23)

Hd =

 
h+
d

vd +
h0
d+i⌘0

d
p

2

!
, (24)

� =

 
�+
p

2
�++

v� + �0+i⌘0
�

p

2
� �+

p

2

!
, (25)

� = V� +
�0 + i⌘0�p

2
, (26)

with vu, vd, v� and V� denoting the relevant (real) vac-
uum expectation values (VEVs). 2

2 While it is assumed that there exists a region of the scalar po-
tential parameters for which the absolute minimum preserves the
electric charge, it can be shown (see Sect. VD) that the potential
of Eq. (14) does not lead to spontaneous CP violation.
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where we employed the notation H̃u = i⌧2H
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u. Notice
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are linearly independent.
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and
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are needed in order to assign a non-vanishing PQ
charge to the singlet � and to generate neutrino masses.
Notice that the simultaneous presence of �5, �6 and Y�

is needed to explicitly break lepton number. If any of the
couplings is missing, either lepton number is exact and
neutrinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (14) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.

B. PQ charges

The invariants in Eq. (11) and Eq. (14) enforce the
following constraints on the PQ charges:

�X` +Xe �Xd = 0 , (15)

2X` +X� = 0 , (16)

2X� �Xu �Xd = 0 , (17)

X� +Xu �X� �Xd = 0 . (18)

Solving in terms of Xu and Xd we get:
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+
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Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation

Xuv
2
u = Xdv

2
d , (20)

where vu = hHui and vd = hHdi. Adding this condition
to Eq. (19), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
by the condition

X� = 1 . (21)

By defining x ⌘ vu/vd the remaining charges in Eq. (19)
read

Xu =
2

x2 + 1
, Xd =

2x2

x2 + 1
, X` =
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2(x2 + 1)
,

Xe =
5x2 � 3
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C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
configuration

Hu =
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with vu, vd, v� and V� denoting the relevant (real) vac-
uum expectation values (VEVs). 2

2 While it is assumed that there exists a region of the scalar po-
tential parameters for which the absolute minimum preserves the
electric charge, it can be shown (see Sect. VD) that the potential
of Eq. (14) does not lead to spontaneous CP violation.
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preserved at higher orders. Remarkably, such a setup
allows for naturally light neutrinos together with a rich
scalar spectrum at the TeV scale . The possible presence
of an exotic TeV-scale scalar sector is not yet excluded
by collider searches and it is among the priorities in the
coming years.

A fringe benefit of such an extension of the standard
scalar sector is to improve the electroweak vacuum sta-
bility. On the other hand, the sizable interactions among
the “light” scalar states open a possibility for the realiza-
tion of a first-order electroweak phase transition. This is
one of the requirements for electroweak baryogenesis [54].
However, no new sources of CP violation arise from the
minimal scalar sectors featured in the considered setups.
We shall comment on the possibility of addressing baryo-
genesis within such a framework.

In the next three sections we detail the extended TII,
BJ and ZB setups and discuss their generic features and
shortcomings in Sect. V.

II. PQ EXTENDED TYPE-II SEESAW

On top of the usual SM field content, the scalar sec-
tor of the PQ extended Type-II seesaw model features
two Higgs doublets, an isospin triplet with hypercharge
one and a SM singlet (cf. Table I). The PQ charge as-
signments are displayed in Table I, where the presence
of Yukawa interactions for quarks is already taken into

account. Recall that the PQ current is axial, thus pro-
portional to the di↵erence between the charges of the
left- and right-handed (colored) fermions. Hence, with-
out loss of generality, we can always set Xq = 0. In this
way, the color anomaly of the PQ current is proportional
to Xu +Xd (see, e.g., [55]).

Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

qL
1
2 3 2 + 1

6 0

uR
1
2 3 1 + 2

3 Xu

dR
1
2 3 1 � 1

3 Xd

`L
1
2 1 2 � 1

2 X`

eR
1
2 1 1 �1 Xe

Hu 0 1 2 � 1
2 �Xu

Hd 0 1 2 + 1
2 �Xd

� 0 1 3 +1 X�

� 0 1 1 0 X�

TABLE I. Field content and charge assignment of the PQ
extended Type-II seesaw model.

A. Lagrangian

The only two sectors which are sensitive to the assign-
ment of the PQ charges are the Yukawa Lagrangian and
the scalar potential that we discuss in turn. The former
reads

� LTII
Y = Yu qLuRHu + Yd qLdRHd + Ye `LeRHd +

1
2Y� `TLCi⌧2�`L + h.c. , (10)

� LTII
Y = Yu qLuRHu + Yd qLdRHd + Ye `LeRHd

+ 1
2Y� `TLCi⌧2�`L + h.c. , (11)

where the flavour contractions are understood (e.g. Y T
� =

Y�), C is the charge conjugation matrix in the spinor
space, and

� ⌘ ~⌧ · ~�p
2
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2

!
. (12)

In Eq. (12), ~⌧ = (⌧1, ⌧2, ⌧3) are the Pauli matrices and
~� = (�1,�2,�3) are the SU(2)L components of the

scalar triplet. The electric charge eigenstates are ob-
tained by the action of Q = T3 + Y on Eq. (12).

The scalar potential can be written as [39, 56]
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, (13)
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, (14)

VTII = moduli terms +
⇣
�5�

2H̃†

uHd + �6�H
†

u�
†Hd + h.c.

⌘
, (15)

where we employed the notation H̃u = i⌧2H
⇤

u. Notice
that terms like H̃†

uHdTr(�†�) or H̃†

u��†Hd are not al-
lowed since the QCD anomaly of the PQ current requires
Xu + Xd 6= 0. Moreover, H†

u,d

�
�†�+��†

�
Hu,d =

|Hu,d|2Tr(�†�), so that only two invariants out of three
are linearly independent.

The terms
�5 �

2H̃†

uHd

and
�6 �H

†

u�
†Hd

are needed in order to assign a non-vanishing PQ
charge to the singlet � and to generate neutrino masses.
Notice that the simultaneous presence of �5, �6 and Y�

is needed to explicitly break lepton number. If any of the
couplings is missing, either lepton number is exact and
neutrinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (15) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.

B. PQ charges

The invariants in Eq. (11) and Eq. (15) enforce the
following constraints on the PQ charges:

�X` +Xe �Xd = 0 , (16)

2X` +X� = 0 , (17)

2X� �Xu �Xd = 0 , (18)

X� +Xu �X� �Xd = 0 . (19)

Solving in terms of Xu and Xd we get:
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5Xd
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2
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2
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2
. (20)

Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation

Xuv
2
u = Xdv

2
d , (21)

where vu = hHui and vd = hHdi. Adding this condition
to Eq. (20), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
by the condition

X� = 1 . (22)

By defining x ⌘ vu/vd the remaining charges in Eq. (20)
read
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,
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x2 + 1
. (23)

C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
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preserved at higher orders. Remarkably, such a setup
allows for naturally light neutrinos together with a rich
scalar spectrum at the TeV scale . The possible presence
of an exotic TeV-scale scalar sector is not yet excluded
by collider searches and it is among the priorities in the
coming years.

A fringe benefit of such an extension of the standard
scalar sector is to improve the electroweak vacuum sta-
bility. On the other hand, the sizable interactions among
the “light” scalar states open a possibility for the realiza-
tion of a first-order electroweak phase transition. This is
one of the requirements for electroweak baryogenesis [54].
However, no new sources of CP violation arise from the
minimal scalar sectors featured in the considered setups.
We shall comment on the possibility of addressing baryo-
genesis within such a framework.

In the next three sections we detail the extended TII,
BJ and ZB setups and discuss their generic features and
shortcomings in Sect. V.

II. PQ EXTENDED TYPE-II SEESAW

On top of the usual SM field content, the scalar sec-
tor of the PQ extended Type-II seesaw model features
two Higgs doublets, an isospin triplet with hypercharge
one and a SM singlet (cf. Table I). The PQ charge as-
signments are displayed in Table I, where the presence
of Yukawa interactions for quarks is already taken into

account. Recall that the PQ current is axial, thus pro-
portional to the di↵erence between the charges of the
left- and right-handed (colored) fermions. Hence, with-
out loss of generality, we can always set Xq = 0. In this
way, the color anomaly of the PQ current is proportional
to Xu +Xd (see, e.g., [55]).

Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

qL
1
2 3 2 + 1

6 0

uR
1
2 3 1 + 2

3 Xu

dR
1
2 3 1 � 1

3 Xd

`L
1
2 1 2 � 1

2 X`

eR
1
2 1 1 �1 Xe

Hu 0 1 2 � 1
2 �Xu

Hd 0 1 2 + 1
2 �Xd

� 0 1 3 +1 X�

� 0 1 1 0 X�

TABLE I. Field content and charge assignment of the PQ
extended Type-II seesaw model.

A. Lagrangian

The only two sectors which are sensitive to the assign-
ment of the PQ charges are the Yukawa Lagrangian and
the scalar potential that we discuss in turn. The former
reads

� LTII
Y = Yu qLuRHu + Yd qLdRHd + Ye `LeRHd +

1
2Y� `TLCi⌧2�`L + h.c. (10)

�LTII
Y = Yu qLuRHu + Yd qLdRHd + Ye `LeRHd

+ 1
2Y� `TLCi⌧2�`L + h.c. (11)

where the flavour contractions are understood (e.g. Y T
� =

Y�), C is the charge conjugation matrix in the spinor
space, and

� ⌘ ~⌧ · ~�p
2

=

 
�+
p

2
�++

�0 ��+
p

2

!
. (12)

In Eq. (12), ~⌧ = (⌧1, ⌧2, ⌧3) are the Pauli matrices and
~� = (�1,�2,�3) are the SU(2)L components of the

scalar triplet. The electric charge eigenstates are ob-
tained by the action of Q = T3 + Y on Eq. (12).

The scalar potential can be written as [39, 56]

VTII = �µ2
1 |Hu|2 + �1 |Hu|4 � µ2

2 |Hd|2 + �2 |Hd|4

+ �12 |Hu|2 |Hd|2 + �4

��H†

uHd

��2

� µ2
3 |�|2 + �3 |�|4 + �13 |�|2 |Hu|2 + �23 |�|2 |Hd|2

+Tr(�†�)
h
µ2
� + ��1 |Hu|2 + ��2 |Hd|2

+ ��3 |�|2 + ��4Tr(�
†�)

i

+ �7H
†

u��†Hu + �8H
†

d��†Hd + �9Tr(�
†�)2

+
⇣
�5�

2H̃†

uHd + �6�H
†

u�
†Hd + h.c.

⌘
, (13)
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B. PQ charges

The invariants in Eq. (10) and Eq. (12) enforce the
following constraints on the PQ charges:

�X` +Xe �Xd = 0 , (13)

2X` +X� = 0 , (14)

2X� �Xu �Xd = 0 , (15)

X� +Xu �X� �Xd = 0 . (16)

Solving in terms of Xu and Xd we get:

X` = �3Xu

4
+

Xd

4
, Xe = �3Xu

4
+

5Xd

4
,

X� =
3Xu

2
� Xd

2
, X� =

Xu

2
+

Xd

2
. (17)

Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation

Xuv
2
u = Xdv

2
d , (18)

where vu = hHui and vd = hHdi. Adding this condition
to Eq. (17), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
by the condition

X� = 1 . (19)

By defining x ⌘ vu/vd the remaining charges in Eq. (17)
read

Xu =
2

x2 + 1
, Xd =

2x2

x2 + 1
, X` =

x2 � 3

2(x2 + 1)
,

Xe =
5x2 � 3

2(x2 + 1)
, X� =

3� x2

x2 + 1
. (20)

C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
configuration

Hu =

 
vu + h0

u+i⌘0
u

p

2

h�

u

!
, (21)

Hd =

 
h+
d

vd +
h0
d+i⌘0

d
p

2

!
, (22)

� =

 
�+
p

2
�++

v� + �0+i⌘0
�

p

2
� �+

p

2

!
, (23)

� = V� +
�0 + i⌘0�p

2
, (24)

with vu, vd, v� and V� denoting the relevant (real) vac-
uum expectation values (VEVs). 2

2 While it is assumed that there exists a region of the scalar po-
tential parameters for which the absolute minimum preserves the

νL νL

∆

<H >d
0<H >u

0

<σ>

FIG. 2. The tree-level “hug” diagram responsible for the
Majorana neutrino mass in the PQ extended type-II seesaw
model.

The scalar spectrum of the model is detailed in Ap-
pendix A and the main features are discussed in Sect. V.
Here we just anticipate that the model features a DFSZ
invisible axion, with a tiny coupling to neutrinos, and its
SM singlet companion with a PQ scale mass. By invoking
a technically natural ultraweak limit (see the discussion
in Sect. VA) such a heavy scalar is su�ciently decou-
pled from all the other physical scalar states that are
requested to live at the TeV scale thus preserving the ra-
diative stability of the light scalar spectrum. At the weak
scale the model allows for a SM-like Higgs boson; this,
together with a brief account of the relevant phenomeno-
logical constraints, shall be discussed in Sect. VC.

D. Neutrino masses

In the TII model, the neutrino masses are generated
through the tree-level diagram in Fig. 2.

Their expression is conveniently obtained by comput-
ing the (induced) VEV of the triplet. Let us hence con-
sider the projection of the scalar potential along the neu-
tral VEV components of Eqs. (21)–(24)

hVTIIi =
�
µ2
� + ��3V

2
� + ��1v

2
u + (��2 + �8)v

2
d

�
v2�

+ 2�6V�vuvdv� +O �v4�
�
+ v�-indep. terms . (25)

Given the phenomenological hierarchy V� � vu,d � v�,
the stationary condition with respect to v� is well ap-
proximated by

2M2
�v� + 2�6V�vuvd ⇡ 0 , (26)

where we defined the e↵ective mass parameter

M2
� = µ2

� + ��3V
2
� + ��1v

2
u + (��2 + �8)v

2
d . (27)

electric charge, it can be shown (see Sect. VD) that the potential
of Eq. (12) does not lead to spontaneous CP violation.
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FIG. 2. The tree-level “hug” diagram responsible for the
Majorana neutrino mass in the PQ extended type-II seesaw
model.

configuration

Hu =

 
vu + h0

u+i⌘0
u

p

2

h�

u

!
, (25)

Hd =

 
h+
d

vd +
h0
d+i⌘0

d
p

2

!
, (26)

� =

 
�+
p

2
�++

v� + �0+i⌘0
�

p

2
� �+

p

2

!
, (27)

� = V� +
�0 + i⌘0�p

2
, (28)

with vu, vd, v� and V� denoting the relevant (real) vac-
uum expectation values (VEVs). 2

The scalar spectrum of the model is detailed in Ap-
pendix A and the main features are discussed in Sect. V.
Here we just anticipate that the model features a DFSZ
invisible axion, with a tiny coupling to neutrinos, and its
SM singlet companion with a PQ scale mass. By invoking
a technically natural ultraweak limit (see the discussion
in Sect. VA) such a heavy scalar is su�ciently decou-
pled from all the other physical scalar states that are
requested to live at the TeV scale thus preserving the ra-
diative stability of the light scalar spectrum. At the weak
scale the model allows for a SM-like Higgs boson; this,
together with a brief account of the relevant phenomeno-
logical constraints, shall be discussed in Sect. VC.

D. Neutrino masses

In the TII model, the neutrino masses are generated

2 While it is assumed that there exists a region of the scalar po-
tential parameters for which the absolute minimum preserves the
electric charge, it can be shown (see Sect. VD) that the potential
of Eq. (15) does not lead to spontaneous CP violation.

through the tree-level diagram in Fig. 2.
Their expression is conveniently obtained by comput-

ing the (induced) VEV of the triplet. Let us hence con-
sider the projection of the scalar potential along the neu-
tral VEV components of Eqs. (24)–(27)

hVTIIi =
�
µ2
� + ��3V

2
� + ��1v

2
u + (��2 + �8)v

2
d

�
v2�

+ 2�6V�vuvdv� +O �v4�
�
+ v�-indep. terms . (29)

Given the phenomenological hierarchy V� � vu,d � v�,
the stationary condition with respect to v� is well ap-
proximated by

2M2
�v� + 2�6V�vuvd ⇡ 0 , (30)

where we defined the e↵ective mass parameter

M2
� = µ2

� + ��3V
2
� + ��1v

2
u + (��2 + �8)v

2
d . (31)

In the decoupling limit vu,d/V� ! 0, this coincides with
the triplet mass in the PQ-broken phase (cf. Eq. (A4)).
Hence, from Eq. (29), the induced VEV of � reads

v� ⇡ �6V�vuvd
M2

�

. (32)

Since the triplet VEV breaks the SM custodial symmetry,
it is bounded by the electroweak precision observables to
v� . 1 GeV. This, in turn, implies the following bound
on the scalar potential coupling �6:

�6 . 10�9

✓
109 GeV

V�

◆✓
M2

�

vuvd

◆
. (33)

Finally, from the Yukawa Lagrangian in Eq. (11) we ob-
tain

MTII
⌫ = Y�v� ⇡ Y��6V�vuvd

M2
�

, (34)

as diagrammatically represented by the graph in Fig. 2,
and the bound on the heaviest neutrino m⌫3 . 1 eV
translates into the constraint

�6Y� . 10�18

✓
109 GeV

V�

◆✓
M2

�

vuvd

◆
. (35)

The smallness of the absolute neutrino mass scale may
have di↵erent sources. In this paper we take the point of
view of building low-energy renormalizable setups that
are technically natural. In this respect, the lightness of
M� (in the vicinity of the electroweak scale) and the
smallness of the couplings of the SM-singlet � with the
doublet and triplet states (among which is �6) are a re-
quired prerequisite (see Sect. VA). The triplet Yukawa
coupling Y� is also constrained by tree-level LFV (see
Sect. VC).
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preserved at higher orders. Remarkably, such a setup
allows for naturally light neutrinos together with a rich
scalar spectrum at the TeV scale . The possible presence
of an exotic TeV-scale scalar sector is not yet excluded
by collider searches and it is among the priorities in the
coming years.

A fringe benefit of such an extension of the standard
scalar sector is to improve the electroweak vacuum sta-
bility. On the other hand, the sizable interactions among
the “light” scalar states open a possibility for the realiza-
tion of a first-order electroweak phase transition. This is
one of the requirements for electroweak baryogenesis [54].
However, no new sources of CP violation arise from the
minimal scalar sectors featured in the considered setups.
We shall comment on the possibility of addressing baryo-
genesis within such a framework.

In the next three sections we detail the extended TII,
BJ and ZB setups and discuss their generic features and
shortcomings in Sect. V.

II. PQ EXTENDED TYPE-II SEESAW

On top of the usual SM field content, the scalar sec-
tor of the PQ extended Type-II seesaw model features
two Higgs doublets, an isospin triplet with hypercharge
one and a SM singlet (cf. Table I). The PQ charge as-
signments are displayed in Table I, where the presence
of Yukawa interactions for quarks is already taken into
account. Recall that the PQ current is axial, thus pro-
portional to the di↵erence between the charges of the
left- and right-handed (colored) fermions. Hence, with-
out loss of generality, we can always set Xq = 0. In this
way, the color anomaly of the PQ current is proportional
to Xu +Xd (see, e.g., [55]).

Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

qL
1
2 3 2 + 1

6 0

uR
1
2 3 1 + 2

3 Xu

dR
1
2 3 1 � 1

3 Xd

`L
1
2 1 2 � 1

2 X`

eR
1
2 1 1 �1 Xe

Hu 0 1 2 � 1
2 �Xu

Hd 0 1 2 + 1
2 �Xd

� 0 1 3 +1 X�

� 0 1 1 0 X�

TABLE I. Field content and charge assignment of the PQ
extended Type-II seesaw model.

A. Lagrangian

The only two sectors which are sensitive to the assign-
ment of the PQ charges are the Yukawa Lagrangian and

the scalar potential that we discuss in turn. The former
reads

� LTII
Y = Yu qLuRHu + Yd qLdRHd + Ye `LeRHd

+ 1
2Y� `TLCi⌧2�`L + h.c. , (10)

where the flavour contractions are understood (e.g. Y T
� =

Y�), C is the charge conjugation matrix in the spinor
space, and

� ⌘ ~⌧ · ~�p
2

=

 
�+
p

2
�++

�0 ��+
p

2

!
. (11)

In Eq. (11), ~⌧ = (⌧1, ⌧2, ⌧3) are the Pauli matrices and
~� = (�1,�2,�3) are the SU(2)L components of the
scalar triplet. The electric charge eigenstates are ob-
tained by the action of Q = T3 + Y on Eq. (11).

The scalar potential can be written as [39, 56]

VTII = �µ2
1 |Hu|2 + �1 |Hu|4 � µ2

2 |Hd|2 + �2 |Hd|4

+ �12 |Hu|2 |Hd|2 + �4

��H†

uHd

��2

� µ2
3 |�|2 + �3 |�|4 + �13 |�|2 |Hu|2 + �23 |�|2 |Hd|2

+Tr(�†�)
h
µ2
� + ��1 |Hu|2 + ��2 |Hd|2

+ ��3 |�|2 + ��4Tr(�
†�)

i

+ �7H
†

u��†Hu + �8H
†

d��†Hd + �9Tr(�
†�)2

+
⇣
�5�

2H̃†

uHd + �6�H
†

u�
†Hd + h.c.

⌘
, (12)

where we employed the notation H̃u = i⌧2H
⇤

u. Notice
that terms like H̃†

uHdTr(�†�) or H̃†

u��†Hd are not al-
lowed since the QCD anomaly of the PQ current requires
Xu + Xd 6= 0. Moreover, H†

u,d

�
�†�+��†

�
Hu,d =

|Hu,d|2Tr(�†�), so that only two invariants out of three
are linearly independent.

The terms �5 �
2H̃†

uHd and �6 �H
†

u�
†Hd are needed

in order to assign a non-vanishing PQ charge to the sin-
glet � and to generate neutrino masses. Notice that
the simultaneous presence of �5, �6 and Y� is needed
to explicitly break lepton number. If any of the cou-
plings is missing, either lepton number is exact and neu-
trinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (12) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.
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VTII = �µ2
1 |Hu|2 + �1 |Hu|4 � µ2

2 |Hd|2 + �2 |Hd|4 + �12 |Hu|2 |Hd|2 + �4

��H†

uHd

��2

� µ2
3 |�|2 + �3 |�|4 + �13 |�|2 |Hu|2 + �23 |�|2 |Hd|2

+Tr(�†�)
h
µ2
� + ��1 |Hu|2 + ��2 |Hd|2 + ��3 |�|2 + ��4Tr(�

†�)
i

+ �7H
†

u��†Hu + �8H
†

d��†Hd + �9Tr(�
†�)2 +

⇣
�5�

2H̃†

uHd + �6�H
†

u�
†Hd + h.c.

⌘
, (14)

VTII = moduli terms +
⇣
�5�

2H̃†

uHd + �6�H
†

u�
†Hd + h.c.

⌘
, (15)

where we employed the notation H̃u = i⌧2H
⇤

u. Notice
that terms like H̃†

uHdTr(�†�) or H̃†

u��†Hd are not al-
lowed since the QCD anomaly of the PQ current requires
Xu + Xd 6= 0. Moreover, H†

u,d

�
�†�+��†

�
Hu,d =

|Hu,d|2Tr(�†�), so that only two invariants out of three
are linearly independent.

The terms
�5 �

2H̃†

uHd

and
�6 �H

†

u�
†Hd

are needed in order to assign a non-vanishing PQ
charge to the singlet � and to generate neutrino masses.
Notice that the simultaneous presence of �5, �6 and Y�

is needed to explicitly break lepton number. If any of the
couplings is missing, either lepton number is exact and
neutrinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (15) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.

B. PQ charges

The invariants in Eq. (11) and Eq. (15) enforce the
following constraints on the PQ charges:

�X` +Xe �Xd = 0 , (16)

2X` +X� = 0 , (17)

2X� �Xu �Xd = 0 , (18)

X� +Xu �X� �Xd = 0 . (19)

Solving in terms of Xu and Xd we get:

X` = �3Xu

4
+

Xd

4
, Xe = �3Xu

4
+

5Xd

4
,

X� =
3Xu

2
� Xd

2
, X� =

Xu

2
+

Xd

2
. (20)

Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation

Xuv
2
u = Xdv

2
d , (21)

where vu = hHui and vd = hHdi. Adding this condition
to Eq. (20), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
by the condition

X� = 1 . (22)

By defining x ⌘ vu/vd the remaining charges in Eq. (20)
read

Xu =
2

x2 + 1
, Xd =

2x2

x2 + 1
, X` =

x2 � 3

2(x2 + 1)
,

Xe =
5x2 � 3

2(x2 + 1)
, X� =

3� x2

x2 + 1
. (23)

C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
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preserved at higher orders. Remarkably, such a setup
allows for naturally light neutrinos together with a rich
scalar spectrum at the TeV scale . The possible presence
of an exotic TeV-scale scalar sector is not yet excluded
by collider searches and it is among the priorities in the
coming years.

A fringe benefit of such an extension of the standard
scalar sector is to improve the electroweak vacuum sta-
bility. On the other hand, the sizable interactions among
the “light” scalar states open a possibility for the realiza-
tion of a first-order electroweak phase transition. This is
one of the requirements for electroweak baryogenesis [54].
However, no new sources of CP violation arise from the
minimal scalar sectors featured in the considered setups.
We shall comment on the possibility of addressing baryo-
genesis within such a framework.

In the next three sections we detail the extended TII,
BJ and ZB setups and discuss their generic features and
shortcomings in Sect. V.

II. PQ EXTENDED TYPE-II SEESAW

On top of the usual SM field content, the scalar sec-
tor of the PQ extended Type-II seesaw model features
two Higgs doublets, an isospin triplet with hypercharge
one and a SM singlet (cf. Table I). The PQ charge as-
signments are displayed in Table I, where the presence
of Yukawa interactions for quarks is already taken into

account. Recall that the PQ current is axial, thus pro-
portional to the di↵erence between the charges of the
left- and right-handed (colored) fermions. Hence, with-
out loss of generality, we can always set Xq = 0. In this
way, the color anomaly of the PQ current is proportional
to Xu +Xd (see, e.g., [55]).

Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

qL
1
2 3 2 + 1

6 0

uR
1
2 3 1 + 2

3 Xu

dR
1
2 3 1 � 1

3 Xd

`L
1
2 1 2 � 1

2 X`

eR
1
2 1 1 �1 Xe

Hu 0 1 2 � 1
2 �Xu

Hd 0 1 2 + 1
2 �Xd

� 0 1 3 +1 X�

� 0 1 1 0 X�

TABLE I. Field content and charge assignment of the PQ
extended Type-II seesaw model.

A. Lagrangian

The only two sectors which are sensitive to the assign-
ment of the PQ charges are the Yukawa Lagrangian and
the scalar potential that we discuss in turn. The former
reads

� LTII
Y = Yu qLuRHu + Yd qLdRHd + Ye `LeRHd +

1
2Y� `TLCi⌧2�`L + h.c. (10)

�LTII
Y = Yu qLuRHu + Yd qLdRHd + Ye `LeRHd

+ 1
2Y� `TLCi⌧2�`L + h.c. (11)

where the flavour contractions are understood (e.g. Y T
� =

Y�), C is the charge conjugation matrix in the spinor
space, and

� ⌘ ~⌧ · ~�p
2

=

 
�+
p

2
�++

�0 ��+
p

2

!
. (12)

In Eq. (12), ~⌧ = (⌧1, ⌧2, ⌧3) are the Pauli matrices and
~� = (�1,�2,�3) are the SU(2)L components of the

scalar triplet. The electric charge eigenstates are ob-
tained by the action of Q = T3 + Y on Eq. (12).

The scalar potential can be written as [39, 56]

VTII = �µ2
1 |Hu|2 + �1 |Hu|4 � µ2

2 |Hd|2 + �2 |Hd|4

+ �12 |Hu|2 |Hd|2 + �4

��H†

uHd

��2

� µ2
3 |�|2 + �3 |�|4 + �13 |�|2 |Hu|2 + �23 |�|2 |Hd|2

+Tr(�†�)
h
µ2
� + ��1 |Hu|2 + ��2 |Hd|2

+ ��3 |�|2 + ��4Tr(�
†�)

i

+ �7H
†

u��†Hu + �8H
†

d��†Hd + �9Tr(�
†�)2

+
⇣
�5�

2H̃†

uHd + �6�H
†

u�
†Hd + h.c.

⌘
, (13)

• PQ charges fixed up to a normalization (           and                         )
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VTII = �µ2
1 |Hu|2 + �1 |Hu|4 � µ2

2 |Hd|2 + �2 |Hd|4 + �12 |Hu|2 |Hd|2 + �4

��H†

uHd

��2

� µ2
3 |�|2 + �3 |�|4 + �13 |�|2 |Hu|2 + �23 |�|2 |Hd|2

+Tr(�†�)
h
µ2
� + ��1 |Hu|2 + ��2 |Hd|2 + ��3 |�|2 + ��4Tr(�

†�)
i

+ �7H
†

u��†Hu + �8H
†

d��†Hd + �9Tr(�
†�)2 +

⇣
�5�

2H̃†

uHd + �6�H
†

u�
†Hd + h.c.

⌘
, (14)

VTII = moduli terms +
⇣
�5�

2H̃†

uHd + �6�H
†

u�
†Hd + h.c.

⌘
, (15)

where we employed the notation H̃u = i⌧2H
⇤

u. Notice
that terms like H̃†

uHdTr(�†�) or H̃†

u��†Hd are not al-
lowed since the QCD anomaly of the PQ current requires
Xu + Xd 6= 0. Moreover, H†

u,d

�
�†�+��†

�
Hu,d =

|Hu,d|2Tr(�†�), so that only two invariants out of three
are linearly independent.
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C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
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The first LHC run has led to the discovery of a scalar
particle that looks much like the Higgs boson of the
SU(2)L ⌦U(1)Y electroweak standard model (SM). The
raising limits on exotic physics scales set a challenge to
the popular issue of naturalness [1], a paradigm that has
guided much of the beyond the SM modelling in the last
decades. This notwithstanding, neutrino oscillations and
dark matter call for physics beyond the standard sce-
nario. Baryon asymmetry calls for it as well while elec-
troweak vacuum stability may not be an issue in min-
imally extended scenarios [2]. We aim at discussing a
class of minimal extensions of the SM that account for
the aforementioned open issues. To this end we choose
to maintain the fermionic SM content as it stands and
consider only extensions of the scalar sector. Advantages
of this choice will be clear in the following. According
to that, the only tree-level realization of the dimension-
5 Weinberg operator (LLHH)/M for Majorana neutrino
masses is via the mediation of an SU(2)L scalar triplet of
hypercharge one. This is commonly known as the type-II
seesaw [3–7], Fig. 1a.

At the radiative level an elegant and simple realiza-
tion of the same was provided long ago by Zee [8]; the
Weinberg operator is there obtained at one loop from
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charge to the singlet � and to generate neutrino masses.
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is needed to explicitly break lepton number. If any of the
couplings is missing, either lepton number is exact and
neutrinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (15) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.
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Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation
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where vu = hHui and vd = hHdi. Adding this condition
to Eq. (20), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
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C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
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preserved at higher orders. Remarkably, such a setup
allows for naturally light neutrinos together with a rich
scalar spectrum at the TeV scale . The possible presence
of an exotic TeV-scale scalar sector is not yet excluded
by collider searches and it is among the priorities in the
coming years.

A fringe benefit of such an extension of the standard
scalar sector is to improve the electroweak vacuum sta-
bility. On the other hand, the sizable interactions among
the “light” scalar states open a possibility for the realiza-
tion of a first-order electroweak phase transition. This is
one of the requirements for electroweak baryogenesis [54].
However, no new sources of CP violation arise from the
minimal scalar sectors featured in the considered setups.
We shall comment on the possibility of addressing baryo-
genesis within such a framework.

In the next three sections we detail the extended TII,
BJ and ZB setups and discuss their generic features and
shortcomings in Sect. V.

II. PQ EXTENDED TYPE-II SEESAW

On top of the usual SM field content, the scalar sec-
tor of the PQ extended Type-II seesaw model features
two Higgs doublets, an isospin triplet with hypercharge
one and a SM singlet (cf. Table I). The PQ charge as-
signments are displayed in Table I, where the presence
of Yukawa interactions for quarks is already taken into
account. Recall that the PQ current is axial, thus pro-
portional to the di↵erence between the charges of the
left- and right-handed (colored) fermions. Hence, with-
out loss of generality, we can always set Xq = 0. In this
way, the color anomaly of the PQ current is proportional
to Xu +Xd (see, e.g., [55]).

Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

qL
1
2 3 2 + 1

6 0

uR
1
2 3 1 + 2

3 Xu

dR
1
2 3 1 � 1

3 Xd

`L
1
2 1 2 � 1

2 X`

eR
1
2 1 1 �1 Xe

Hu 0 1 2 � 1
2 �Xu

Hd 0 1 2 + 1
2 �Xd

� 0 1 3 +1 X�

� 0 1 1 0 X�

TABLE I. Field content and charge assignment of the PQ
extended Type-II seesaw model.

A. Lagrangian

The only two sectors which are sensitive to the assign-
ment of the PQ charges are the Yukawa Lagrangian and

the scalar potential that we discuss in turn. The former
reads

� LTII
Y = Yu qLuRHu + Yd qLdRHd + Ye `LeRHd

+ 1
2Y� `TLCi⌧2�`L + h.c. , (10)

where the flavour contractions are understood (e.g. Y T
� =

Y�), C is the charge conjugation matrix in the spinor
space, and

� ⌘ ~⌧ · ~�p
2

=

 
�+
p

2
�++

�0 ��+
p

2

!
. (11)

In Eq. (11), ~⌧ = (⌧1, ⌧2, ⌧3) are the Pauli matrices and
~� = (�1,�2,�3) are the SU(2)L components of the
scalar triplet. The electric charge eigenstates are ob-
tained by the action of Q = T3 + Y on Eq. (11).

The scalar potential can be written as [39, 56]

VTII = �µ2
1 |Hu|2 + �1 |Hu|4 � µ2

2 |Hd|2 + �2 |Hd|4

+ �12 |Hu|2 |Hd|2 + �4

��H†

uHd

��2

� µ2
3 |�|2 + �3 |�|4 + �13 |�|2 |Hu|2 + �23 |�|2 |Hd|2

+Tr(�†�)
h
µ2
� + ��1 |Hu|2 + ��2 |Hd|2

+ ��3 |�|2 + ��4Tr(�
†�)

i

+ �7H
†

u��†Hu + �8H
†

d��†Hd + �9Tr(�
†�)2

+
⇣
�5�

2H̃†

uHd + �6�H
†

u�
†Hd + h.c.

⌘
, (12)

where we employed the notation H̃u = i⌧2H
⇤

u. Notice
that terms like H̃†

uHdTr(�†�) or H̃†

u��†Hd are not al-
lowed since the QCD anomaly of the PQ current requires
Xu + Xd 6= 0. Moreover, H†

u,d

�
�†�+��†

�
Hu,d =

|Hu,d|2Tr(�†�), so that only two invariants out of three
are linearly independent.

The terms �5 �
2H̃†

uHd and �6 �H
†

u�
†Hd are needed

in order to assign a non-vanishing PQ charge to the sin-
glet � and to generate neutrino masses. Notice that
the simultaneous presence of �5, �6 and Y� is needed
to explicitly break lepton number. If any of the cou-
plings is missing, either lepton number is exact and neu-
trinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (12) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.
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VTII = moduli terms +
⇣
�5�

2H̃†

uHd + �6�H
†

u�
†Hd + h.c.

⌘
, (15)

where we employed the notation H̃u = i⌧2H
⇤

u. Notice
that terms like H̃†

uHdTr(�†�) or H̃†

u��†Hd are not al-
lowed since the QCD anomaly of the PQ current requires
Xu + Xd 6= 0. Moreover, H†

u,d

�
�†�+��†

�
Hu,d =

|Hu,d|2Tr(�†�), so that only two invariants out of three
are linearly independent.

The terms
�5 �

2H̃†

uHd

and
�6 �H

†

u�
†Hd

are needed in order to assign a non-vanishing PQ
charge to the singlet � and to generate neutrino masses.
Notice that the simultaneous presence of �5, �6 and Y�

is needed to explicitly break lepton number. If any of the
couplings is missing, either lepton number is exact and
neutrinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (15) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.

B. PQ charges

The invariants in Eq. (11) and Eq. (15) enforce the
following constraints on the PQ charges:

�X` +Xe �Xd = 0 , (16)

2X` +X� = 0 , (17)

2X� �Xu �Xd = 0 , (18)

X� +Xu �X� �Xd = 0 . (19)

Solving in terms of Xu and Xd we get:

X` = �3Xu

4
+

Xd

4
, Xe = �3Xu

4
+

5Xd

4
,

X� =
3Xu

2
� Xd

2
, X� =

Xu

2
+

Xd

2
. (20)

Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation

Xuv
2
u = Xdv

2
d , (21)

where vu = hHui and vd = hHdi. Adding this condition
to Eq. (20), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
by the condition

X� = 1 . (22)

By defining x ⌘ vu/vd the remaining charges in Eq. (20)
read

Xu =
2

x2 + 1
, Xd =

2x2

x2 + 1
, X` =

x2 � 3

2(x2 + 1)
,

Xe =
5x2 � 3

2(x2 + 1)
, X� =

3� x2

x2 + 1
. (23)

C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
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preserved at higher orders. Remarkably, such a setup
allows for naturally light neutrinos together with a rich
scalar spectrum at the TeV scale . The possible presence
of an exotic TeV-scale scalar sector is not yet excluded
by collider searches and it is among the priorities in the
coming years.

A fringe benefit of such an extension of the standard
scalar sector is to improve the electroweak vacuum sta-
bility. On the other hand, the sizable interactions among
the “light” scalar states open a possibility for the realiza-
tion of a first-order electroweak phase transition. This is
one of the requirements for electroweak baryogenesis [54].
However, no new sources of CP violation arise from the
minimal scalar sectors featured in the considered setups.
We shall comment on the possibility of addressing baryo-
genesis within such a framework.

In the next three sections we detail the extended TII,
BJ and ZB setups and discuss their generic features and
shortcomings in Sect. V.

II. PQ EXTENDED TYPE-II SEESAW

On top of the usual SM field content, the scalar sec-
tor of the PQ extended Type-II seesaw model features
two Higgs doublets, an isospin triplet with hypercharge
one and a SM singlet (cf. Table I). The PQ charge as-
signments are displayed in Table I, where the presence
of Yukawa interactions for quarks is already taken into

account. Recall that the PQ current is axial, thus pro-
portional to the di↵erence between the charges of the
left- and right-handed (colored) fermions. Hence, with-
out loss of generality, we can always set Xq = 0. In this
way, the color anomaly of the PQ current is proportional
to Xu +Xd (see, e.g., [55]).

Field Spin SU(3)C SU(2)L U(1)Y U(1)PQ

qL
1
2 3 2 + 1

6 0

uR
1
2 3 1 + 2

3 Xu

dR
1
2 3 1 � 1

3 Xd

`L
1
2 1 2 � 1

2 X`

eR
1
2 1 1 �1 Xe

Hu 0 1 2 � 1
2 �Xu

Hd 0 1 2 + 1
2 �Xd

� 0 1 3 +1 X�

� 0 1 1 0 X�

TABLE I. Field content and charge assignment of the PQ
extended Type-II seesaw model.

A. Lagrangian

The only two sectors which are sensitive to the assign-
ment of the PQ charges are the Yukawa Lagrangian and
the scalar potential that we discuss in turn. The former
reads

� LTII
Y = Yu qLuRHu + Yd qLdRHd + Ye `LeRHd +

1
2Y� `TLCi⌧2�`L + h.c. (10)

�LTII
Y = Yu qLuRHu + Yd qLdRHd + Ye `LeRHd

+ 1
2Y� `TLCi⌧2�`L + h.c. (11)

where the flavour contractions are understood (e.g. Y T
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Y�), C is the charge conjugation matrix in the spinor
space, and
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In Eq. (12), ~⌧ = (⌧1, ⌧2, ⌧3) are the Pauli matrices and
~� = (�1,�2,�3) are the SU(2)L components of the

scalar triplet. The electric charge eigenstates are ob-
tained by the action of Q = T3 + Y on Eq. (12).

The scalar potential can be written as [39, 56]
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†Hd + h.c.
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, (13)

• PQ charges fixed up to a normalization (           and                         )
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VTII = moduli terms +
⇣
�5�

2H̃†

uHd + �6�H
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†Hd + h.c.

⌘
, (15)

where we employed the notation H̃u = i⌧2H
⇤

u. Notice
that terms like H̃†

uHdTr(�†�) or H̃†

u��†Hd are not al-
lowed since the QCD anomaly of the PQ current requires
Xu + Xd 6= 0. Moreover, H†

u,d

�
�†�+��†

�
Hu,d =

|Hu,d|2Tr(�†�), so that only two invariants out of three
are linearly independent.

The terms
�5 �

2H̃†

uHd

and
�6 �H

†

u�
†Hd

are needed in order to assign a non-vanishing PQ
charge to the singlet � and to generate neutrino masses.
Notice that the simultaneous presence of �5, �6 and Y�

is needed to explicitly break lepton number. If any of the
couplings is missing, either lepton number is exact and
neutrinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (15) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.

B. PQ charges

The invariants in Eq. (11) and Eq. (15) enforce the
following constraints on the PQ charges:

�X` +Xe �Xd = 0 , (16)

2X` +X� = 0 , (17)

2X� �Xu �Xd = 0 , (18)

X� +Xu �X� �Xd = 0 . (19)

Solving in terms of Xu and Xd we get:

X` = �3Xu
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4
, Xe = �3Xu

4
+

5Xd

4
,

X� =
3Xu

2
� Xd

2
, X� =
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2
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Xd

2
. (20)

Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation

Xuv
2
u = Xdv

2
d , (21)

where vu = hHui and vd = hHdi. Adding this condition
to Eq. (20), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
by the condition

X� = 1 . (22)

By defining x ⌘ vu/vd the remaining charges in Eq. (20)
read
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, Xd =

2x2

x2 + 1
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x2 � 3

2(x2 + 1)
,
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. (23)

C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
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are needed in order to assign a non-vanishing PQ
charge to the singlet � and to generate neutrino masses.
Notice that the simultaneous presence of �5, �6 and Y�

is needed to explicitly break lepton number. If any of the
couplings is missing, either lepton number is exact and
neutrinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (15) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.

B. PQ charges

The invariants in Eq. (11) and Eq. (15) enforce the
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C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
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is needed to explicitly break lepton number. If any of the
couplings is missing, either lepton number is exact and
neutrinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (15) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.
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The invariants in Eq. (11) and Eq. (15) enforce the
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C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
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lowed since the QCD anomaly of the PQ current requires
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are linearly independent.
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and
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are needed in order to assign a non-vanishing PQ
charge to the singlet � and to generate neutrino masses.
Notice that the simultaneous presence of �5, �6 and Y�

is needed to explicitly break lepton number. If any of the
couplings is missing, either lepton number is exact and
neutrinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (15) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.

B. PQ charges

The invariants in Eq. (11) and Eq. (15) enforce the
following constraints on the PQ charges:
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Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation
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where vu = hHui and vd = hHdi. Adding this condition
to Eq. (20), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
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read

Xu =
2

x2 + 1
, Xd =

2x2

x2 + 1
, X` =

x2 � 3

2(x2 + 1)
,

Xe =
5x2 � 3

2(x2 + 1)
, X� =

3� x2

x2 + 1
. (23)

C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
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teractions, which characterizes the three models here dis-
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Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.
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The invariants in Eq. (11) and Eq. (15) enforce the
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C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
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The first LHC run has led to the discovery of a scalar
particle that looks much like the Higgs boson of the
SU(2)L ⌦U(1)Y electroweak standard model (SM). The
raising limits on exotic physics scales set a challenge to
the popular issue of naturalness [1], a paradigm that has
guided much of the beyond the SM modelling in the last
decades. This notwithstanding, neutrino oscillations and
dark matter call for physics beyond the standard sce-
nario. Baryon asymmetry calls for it as well while elec-
troweak vacuum stability may not be an issue in min-
imally extended scenarios [2]. We aim at discussing a
class of minimal extensions of the SM that account for
the aforementioned open issues. To this end we choose
to maintain the fermionic SM content as it stands and
consider only extensions of the scalar sector. Advantages
of this choice will be clear in the following. According
to that, the only tree-level realization of the dimension-
5 Weinberg operator (LLHH)/M for Majorana neutrino
masses is via the mediation of an SU(2)L scalar triplet of
hypercharge one. This is commonly known as the type-II
seesaw [3–7], Fig. 1a.

At the radiative level an elegant and simple realiza-
tion of the same was provided long ago by Zee [8]; the
Weinberg operator is there obtained at one loop from

4
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1 |Hu|2 + �1 |Hu|4 � µ2
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where we employed the notation H̃u = i⌧2H
⇤

u. Notice
that terms like H̃†

uHdTr(�†�) or H̃†

u��†Hd are not al-
lowed since the QCD anomaly of the PQ current requires
Xu + Xd 6= 0. Moreover, H†

u,d

�
�†�+��†

�
Hu,d =

|Hu,d|2Tr(�†�), so that only two invariants out of three
are linearly independent.

The terms
�5 �

2H̃†

uHd

and
�6 �H

†

u�
†Hd

are needed in order to assign a non-vanishing PQ
charge to the singlet � and to generate neutrino masses.
Notice that the simultaneous presence of �5, �6 and Y�

is needed to explicitly break lepton number. If any of the
couplings is missing, either lepton number is exact and
neutrinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (15) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.

B. PQ charges

The invariants in Eq. (11) and Eq. (15) enforce the
following constraints on the PQ charges:

�X` +Xe �Xd = 0 , (16)

2X` +X� = 0 , (17)

2X� �Xu �Xd = 0 , (18)

X� +Xu �X� �Xd = 0 . (19)

Solving in terms of Xu and Xd we get:
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4
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4
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4
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5Xd

4
,
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2
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2
, X� =

Xu

2
+

Xd

2
. (20)

Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation

Xuv
2
u = Xdv

2
d , (21)

where vu = hHui and vd = hHdi. Adding this condition
to Eq. (20), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
by the condition

X� = 1 . (22)

By defining x ⌘ vu/vd the remaining charges in Eq. (20)
read

Xu =
2

x2 + 1
, Xd =

2x2

x2 + 1
, X` =

x2 � 3

2(x2 + 1)
,

Xe =
5x2 � 3

2(x2 + 1)
, X� =

3� x2

x2 + 1
. (23)

C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum

• With respect to DFSZ, an extra (tiny) coupling of the axion to neutrinos

Massive neutrinos and invisible axion minimally connected

Stefano Bertolini,1, ⇤ Luca Di Luzio,2, † Helena Kolešová,3, 4, 5, ‡ and Michal Malinský4, §
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5SISSA/ISAS, Via Bonomea 265, 34136 Trieste, Italy

We survey a few minimal scalar extensions of the standard electroweak model that provide a simple
setup for massive neutrinos in connection with an invisible axion. The presence of a chiral U(1)
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The first LHC run has led to the discovery of a scalar
particle that looks much like the Higgs boson of the
SU(2)L ⌦U(1)Y electroweak standard model (SM). The
raising limits on exotic physics scales set a challenge to
the popular issue of naturalness [1], a paradigm that has
guided much of the beyond the SM modelling in the last
decades. This notwithstanding, neutrino oscillations and
dark matter call for physics beyond the standard sce-
nario. Baryon asymmetry calls for it as well while elec-
troweak vacuum stability may not be an issue in min-
imally extended scenarios [2]. We aim at discussing a
class of minimal extensions of the SM that account for
the aforementioned open issues. To this end we choose
to maintain the fermionic SM content as it stands and
consider only extensions of the scalar sector. Advantages
of this choice will be clear in the following. According
to that, the only tree-level realization of the dimension-
5 Weinberg operator (LLHH)/M for Majorana neutrino
masses is via the mediation of an SU(2)L scalar triplet of
hypercharge one. This is commonly known as the type-II
seesaw [3–7], Fig. 1a.

[Bertolini, Santamaria (1991)]
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• Emerging symmetries in corners of parameter space
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where we employed the notation H̃u = i⌧2H
⇤

u. Notice
that terms like H̃†

uHdTr(�†�) or H̃†

u��†Hd are not al-
lowed since the QCD anomaly of the PQ current requires
Xu + Xd 6= 0. Moreover, H†
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|Hu,d|2Tr(�†�), so that only two invariants out of three
are linearly independent.

The terms �5 �
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uHd and �6 �H
†

u�
†Hd are needed

in order to assign a non-vanishing PQ charge to the sin-
glet � and to generate neutrino masses. Notice that
the simultaneous presence of �5, �6 and Y� is needed
to explicitly break lepton number. If any of the cou-
plings is missing, either lepton number is exact and neu-
trinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (13) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.

B. PQ charges

The invariants in Eq. (10) and Eq. (13) enforce the
following constraints on the PQ charges:
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2X` +X� = 0 , (15)
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Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation
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d , (19)

where vu = hHui and vd = hHdi. Adding this condition
to Eq. (18), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
by the condition

X� = 1 . (20)

By defining x ⌘ vu/vd the remaining charges in Eq. (18)
read
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C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
configuration
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2
, (25)

with vu, vd, v� and V� denoting the relevant (real) vac-
uum expectation values (VEVs). 2

The scalar spectrum of the model is detailed in Ap-
pendix A and the main features are discussed in Sect. V.
Here we just anticipate that the model features a DFSZ
invisible axion, with a tiny coupling to neutrinos, and its
SM singlet companion with a PQ scale mass. By invoking

2 While it is assumed that there exists a region of the scalar po-
tential parameters for which the absolute minimum preserves the
electric charge, it can be shown (see Sect. VD) that the potential
of Eq. (13) does not lead to spontaneous CP violation.

A closer look at the scalar potential

-                                             (“hat” stands for spontaneously broken)
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where we employed the notation H̃u = i⌧2H
⇤

u. Notice
that terms like H̃†

uHdTr(�†�) or H̃†

u��†Hd are not al-
lowed since the QCD anomaly of the PQ current requires
Xu + Xd 6= 0. Moreover, H†
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�
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Hu,d =

|Hu,d|2Tr(�†�), so that only two invariants out of three
are linearly independent.

The terms �5 �
2H̃†

uHd and �6 �H
†

u�
†Hd are needed

in order to assign a non-vanishing PQ charge to the sin-
glet � and to generate neutrino masses. Notice that
the simultaneous presence of �5, �6 and Y� is needed
to explicitly break lepton number. If any of the cou-
plings is missing, either lepton number is exact and neu-
trinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (13) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.

B. PQ charges

The invariants in Eq. (10) and Eq. (13) enforce the
following constraints on the PQ charges:
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2
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Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation

Xuv
2
u = Xdv

2
d , (19)

where vu = hHui and vd = hHdi. Adding this condition
to Eq. (18), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
by the condition

X� = 1 . (20)

By defining x ⌘ vu/vd the remaining charges in Eq. (18)
read
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C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
configuration
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� = V� +
�0 + i⌘0�p

2
, (25)

with vu, vd, v� and V� denoting the relevant (real) vac-
uum expectation values (VEVs). 2

The scalar spectrum of the model is detailed in Ap-
pendix A and the main features are discussed in Sect. V.
Here we just anticipate that the model features a DFSZ
invisible axion, with a tiny coupling to neutrinos, and its
SM singlet companion with a PQ scale mass. By invoking

2 While it is assumed that there exists a region of the scalar po-
tential parameters for which the absolute minimum preserves the
electric charge, it can be shown (see Sect. VD) that the potential
of Eq. (13) does not lead to spontaneous CP violation.

A closer look at the scalar potential

-

-                                                        (massless neutrino)
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where we employed the notation H̃u = i⌧2H
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u. Notice
that terms like H̃†
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lowed since the QCD anomaly of the PQ current requires
Xu + Xd 6= 0. Moreover, H†
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are linearly independent.

The terms �5 �
2H̃†
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†

u�
†Hd are needed

in order to assign a non-vanishing PQ charge to the sin-
glet � and to generate neutrino masses. Notice that
the simultaneous presence of �5, �6 and Y� is needed
to explicitly break lepton number. If any of the cou-
plings is missing, either lepton number is exact and neu-
trinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (13) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.
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The invariants in Eq. (10) and Eq. (13) enforce the
following constraints on the PQ charges:

�X` +Xe �Xd = 0 , (14)

2X` +X� = 0 , (15)
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Solving in terms of Xu and Xd we get:

X` = �3Xu

4
+

Xd

4
, Xe = �3Xu

4
+

5Xd

4
,

X� =
3Xu

2
� Xd

2
, X� =

Xu

2
+

Xd

2
. (18)

Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation

Xuv
2
u = Xdv

2
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where vu = hHui and vd = hHdi. Adding this condition
to Eq. (18), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
by the condition

X� = 1 . (20)

By defining x ⌘ vu/vd the remaining charges in Eq. (18)
read
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C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
configuration
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with vu, vd, v� and V� denoting the relevant (real) vac-
uum expectation values (VEVs). 2

The scalar spectrum of the model is detailed in Ap-
pendix A and the main features are discussed in Sect. V.
Here we just anticipate that the model features a DFSZ
invisible axion, with a tiny coupling to neutrinos, and its
SM singlet companion with a PQ scale mass. By invoking

2 While it is assumed that there exists a region of the scalar po-
tential parameters for which the absolute minimum preserves the
electric charge, it can be shown (see Sect. VD) that the potential
of Eq. (13) does not lead to spontaneous CP violation.
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assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.

B. PQ charges

The invariants in Eq. (10) and Eq. (13) enforce the
following constraints on the PQ charges:

�X` +Xe �Xd = 0 , (14)

2X` +X� = 0 , (15)

2X� �Xu �Xd = 0 , (16)

X� +Xu �X� �Xd = 0 . (17)

Solving in terms of Xu and Xd we get:
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4
+
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4
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4
+

5Xd

4
,

X� =
3Xu

2
� Xd

2
, X� =

Xu

2
+

Xd

2
. (18)

Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation

Xuv
2
u = Xdv

2
d , (19)

where vu = hHui and vd = hHdi. Adding this condition
to Eq. (18), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
by the condition

X� = 1 . (20)

By defining x ⌘ vu/vd the remaining charges in Eq. (18)
read

Xu =
2

x2 + 1
, Xd =

2x2

x2 + 1
, X` =

x2 � 3

2(x2 + 1)
,

Xe =
5x2 � 3

2(x2 + 1)
, X� =

3� x2
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C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
configuration

Hu =
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u
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2

h�
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!
, (22)
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d
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!
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�

p

2
� �+

p

2

!
, (24)

� = V� +
�0 + i⌘0�p

2
, (25)

with vu, vd, v� and V� denoting the relevant (real) vac-
uum expectation values (VEVs). 2

The scalar spectrum of the model is detailed in Ap-
pendix A and the main features are discussed in Sect. V.
Here we just anticipate that the model features a DFSZ
invisible axion, with a tiny coupling to neutrinos, and its
SM singlet companion with a PQ scale mass. By invoking

2 While it is assumed that there exists a region of the scalar po-
tential parameters for which the absolute minimum preserves the
electric charge, it can be shown (see Sect. VD) that the potential
of Eq. (13) does not lead to spontaneous CP violation.

A closer look at the scalar potential
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à la Peccei-Quinn drives the pattern of Majorana neutrino masses while providing a dynamical
solution to the strong CP problem and an axion as a dark matter candidate. We paradigmatically
apply such a renormalizable framework to type-II seesaw and to two viable models for neutrino
oscillations where the neutrino masses arise at one and two loops, respectively. We comment on
the naturalness of the e↵ective setups as well as on their implications for vacuum stability and
electroweak baryogenesis.

PACS numbers: 12.60.Fr,14.60.Pq,14.80.Va

I. INTRODUCTION

All � 6= 0 =) [U(1)PQ (1)

�6 = 0 =) U(1)PQ ⌦ U(1)L (2)

�5 = 0 =) U(1)PQ ⌦ U(1)0L (3)

h�i ⌘ V� � vu,d (4)

Hu ⇠ H⇤

d =) A = 0 (5)

A / XuR +XdR �XuL �XdL (6)

� Lquarks
Y = Yu qLuRHu + Yd qLdRHd + h.c. (7)

✓̄ = �⇠ hai
vPQ

(8)

Veff ⇠ cos

✓
✓̄ + ⇠

hai
vPQ

◆
(9)

a(x) ! a(x) + �↵ vPQ (10)

⇤ stefano.bertolini@sissa.it
† luca.di.luzio@ge.infn.it
‡ helena.kolesova@fjfi.cvut.cz
§ malinsky@ipnp.troja.m↵.cuni.cz

Leff = LSM+✓̄
g2

32⇡2
Gµ⌫

a G̃a
µ⌫+⇠

a

vPQ

g2

32⇡2
Gµ⌫

a G̃a
µ⌫�

1

2
@µa@µa+L(@µa, )
(11)

La⌫⌫ =
3� x2

2(x2 + 1)

m⌫

fa
a⌫i�5⌫ (12)

x = tan� ⌘ vu/vd (13)

✓̄ . 10�11 (14)

Massive neutrinos and invisible axion minimally connected

Stefano Bertolini,1, ⇤ Luca Di Luzio,2, † Helena Kolešová,3, 4, 5, ‡ and Michal Malinský4, §
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à la Peccei-Quinn drives the pattern of Majorana neutrino masses while providing a dynamical
solution to the strong CP problem and an axion as a dark matter candidate. We paradigmatically
apply such a renormalizable framework to type-II seesaw and to two viable models for neutrino
oscillations where the neutrino masses arise at one and two loops, respectively. We comment on
the naturalness of the e↵ective setups as well as on their implications for vacuum stability and
electroweak baryogenesis.

PACS numbers: 12.60.Fr,14.60.Pq,14.80.Va

I. INTRODUCTION

All � 6= 0 =) [U(1)PQ (1)

�6 = 0 =) [U(1)PQ ⌦ U(1)L (2)

�5 = 0 =) U(1)PQ ⌦ U(1)0L (3)

h�i ⌘ V� � vu,d (4)

Hu ⇠ H⇤

d =) A = 0 (5)

A / XuR +XdR �XuL �XdL (6)

� Lquarks
Y = Yu qLuRHu + Yd qLdRHd + h.c. (7)

✓̄ = �⇠ hai
vPQ

(8)

Veff ⇠ cos

✓
✓̄ + ⇠

hai
vPQ

◆
(9)

a(x) ! a(x) + �↵ vPQ (10)

⇤ stefano.bertolini@sissa.it
† luca.di.luzio@ge.infn.it
‡ helena.kolesova@fjfi.cvut.cz
§ malinsky@ipnp.troja.m↵.cuni.cz

Leff = LSM+✓̄
g2

32⇡2
Gµ⌫

a G̃a
µ⌫+⇠

a

vPQ

g2

32⇡2
Gµ⌫

a G̃a
µ⌫�

1

2
@µa@µa+L(@µa, )
(11)

La⌫⌫ =
3� x2

2(x2 + 1)

m⌫

fa
a⌫i�5⌫ (12)

x = tan� ⌘ vu/vd (13)

✓̄ . 10�11 (14)

-                                                 

Massive neutrinos and invisible axion minimally connected

Stefano Bertolini,1, ⇤ Luca Di Luzio,2, † Helena Kolešová,3, 4, 5, ‡ and Michal Malinský4, §
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• Emerging symmetries in corners of parameter space

4

VTII = �µ2
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where we employed the notation H̃u = i⌧2H
⇤

u. Notice
that terms like H̃†

uHdTr(�†�) or H̃†

u��†Hd are not al-
lowed since the QCD anomaly of the PQ current requires
Xu + Xd 6= 0. Moreover, H†

u,d

�
�†�+��†

�
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|Hu,d|2Tr(�†�), so that only two invariants out of three
are linearly independent.

The terms �5 �
2H̃†

uHd and �6 �H
†

u�
†Hd are needed

in order to assign a non-vanishing PQ charge to the sin-
glet � and to generate neutrino masses. Notice that
the simultaneous presence of �5, �6 and Y� is needed
to explicitly break lepton number. If any of the cou-
plings is missing, either lepton number is exact and neu-
trinos are massless or lepton number is spontaneously
broken and the vacuum exhibits a majoron together with
a Wilczek-Weinberg axion [39]. As shown next, the po-
tential in Eq. (13) corresponds to a unique PQ charge
assignment that forbids among else the presence of tri-
linear interaction terms. The absence of cubic scalar in-
teractions, which characterizes the three models here dis-
cussed, paves the way to their embedding in a classically
scale invariant setup dynamically broken a la Coleman-
Weinberg. We shall comment on that in Sect. VI.

Finally, the couplings �5 and �6 can be set real by two
independent rephasings of the fields.
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The invariants in Eq. (10) and Eq. (13) enforce the
following constraints on the PQ charges:
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percharge and axion currents. This leads to the relation
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where vu = hHui and vd = hHdi. Adding this condition
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an overall normalization. We choose this normalization
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read

Xu =
2

x2 + 1
, Xd =

2x2

x2 + 1
, X` =

x2 � 3

2(x2 + 1)
,

Xe =
5x2 � 3

2(x2 + 1)
, X� =

3� x2

x2 + 1
. (21)

C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
configuration
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with vu, vd, v� and V� denoting the relevant (real) vac-
uum expectation values (VEVs). 2

The scalar spectrum of the model is detailed in Ap-
pendix A and the main features are discussed in Sect. V.
Here we just anticipate that the model features a DFSZ
invisible axion, with a tiny coupling to neutrinos, and its
SM singlet companion with a PQ scale mass. By invoking

2 While it is assumed that there exists a region of the scalar po-
tential parameters for which the absolute minimum preserves the
electric charge, it can be shown (see Sect. VD) that the potential
of Eq. (13) does not lead to spontaneous CP violation.

A closer look at the scalar potential
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4Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics,
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• Emerging symmetries in corners of parameter space
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Sezione di Genova, Via Dodecaneso 33, 16159 Genova, Italy
3Faculty of Nuclear Sciences and Physical Engineering,

Czech Technical University in Prague, Brehová 7, 115 19 Praha 1, Czech Republic
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- by decoupling the singlet sector, the energy-momentum tensors are independently 
conserved* 

*the argument ignores gravity
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4Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics,
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• The hierarchy b/w PQ and EW scales is automatically achieved without fine-tunings for

EW Naturalness*

10

is antisymmetric, det f = 0 (for three generations) and,
hence, detMZB

⌫ = 0.
As in the previous cases (TII and BJ), the smallness of

neutrino masses can be due to di↵erent factors. Taking
into account the strong bounds on the Yukawa couplings
f and g coming from the LFV processes (see Sect. VC), it
turns out that the assumption �7 . 4⇡⇥O( v

V�
), tailored

to keep the non-singlet scalars at the electroweak scale,
ensures also the correct absolute neutrino mass scale [20].

Finally, we briefly comment on the case �6 6= 0. In
such a setting there is an extra one-loop contribution to
the neutrino masses, similar to the one in Fig. 3 (the rel-
evant expression can be found in Eqs. (25)-(26) of [39]).
As already mentioned, the original Zee model is excluded
by neutrino data and, in order to obtain a viable neutrino
texture, the size of such a one-loop diagram must be com-
parable with the two-loop expression in Eq. (73), thus in-
troducing a fine-tuning in the couplings. Let us also note
that �6 6= 0 introduces a tree-level mixing between the
charged SU(2)L-doublet and singlet scalars that a↵ects
Eq. (74). At variance with the ZB model, the lightest
neutrino is no longer massless. In this study, we will not
pursue the analysis of this hybrid model any further.

V. DISCUSSION

The three setups presented in the previous sections
share a number of common features which we shall briefly
summarize here. In particular, all three models contain
a DFSZ invisible axion with a tiny coupling to neutri-
nos [39, 40]. It is noticeable that, at variance with the
TII and ZB extended models, the axion in the BJ case
exhibits flavour violating couplings to the leptons of the
same order of the flavour-diagonal ones:
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that, up to a total derivative, can be written as
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where a denotes the axion field and fa =
p
2V�. The

mass eigenstates eiL, ⌫
i
L (i = 1, 2, 3) are connected to the

interaction basis e↵L, ⌫↵L (↵ = 1, 2, 3) via the relations
e↵L = (Ue

L)
↵ieiL and ⌫↵L = (U⌫

L)
↵i⌫iL. The equations of

motion for Weyl fermions with a Majorana mass term
are used and the axion neutrino couplings are written
in terms of the Majorana mass eigenstates [58]. Present
laboratory and astrophysical limits on flavor violating in-
teractions do not seem to imply any constraints on the
PQ scale stronger than those obtained from the diago-
nal interactions [53]. On the other hand, the presence
of lepton flavor violating interactions of the axion in the
extended BJ model deserves further detailed scrutiny.

The DFSZ invisible axion framework su↵ers from the
domain wall problem (the non-perturbative instanton po-
tential breaks the U(1)PQ explicitly to a ZNq discrete
symmetry where Nq is the number of quark flavors). The
standard cosmological solution is then the assumption of
a low reheating temperature (see [59] for a comprehensive
discussion).

A. Naturalness

An interesting feature of all the models considered in
this study is the fact that the hierarchy between the elec-
troweak and the PQ scales can be made technically nat-
ural and stable against radiative corrections. Let us con-
sider, for definiteness, the case of the PQ extended TII
model. At the tree level, the hierarchy between the PQ
and the electroweak scale can be obtained without fine-
tuning among the scalar potential parameters of Eq. (24)
by requiring the ultraweak limit
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✓
v2

V 2
�

◆
and �6 ⇠ O

✓
v�
V�

◆
, (79)

where the last equation is set by the stationarity condi-
tion (38) and i is running over all the scalar multiplets
but the SM singlet (all non-singlet mass parameters are
taken at the weak scale). As a matter of fact, this guar-
antees that the heavy (PQ-scale) neutral singlet decou-
ples from the rest of the spectrum (see Appendix A and
Sect. IVC). It is noteworthy that the ultraweak limit
�i3,�5,�6 ⌧ 1 is associated with the emergence of an ad-
ditional Poincaré symmetry of the action [39, 60] (see [61]
for a recent discussion) which makes this limit perturba-
tively stable. It is readily verified that the renormaliza-
tion of the couplings connecting the “light” and “heavy”
sectors is as a set multiplicative (the relevant beta func-
tions exhibit a fixed point for vanishing couplings). The
hierarchy among the ultraweak couplings in Eq. (78) is
stable since �2

6 ⌧ �i3. The couplings �5 and �6 are them-
selves multiplicatively renormalized since lepton number
is restored when one of them is vanishing. The natural-
ness requirement, together with the constraints coming
from the LFV phenomenology, allows us to reproduce in
all three setups above the correct neutrino mass scale to-

*again, ignoring gravity
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where a denotes the axion field and fa =
p
2V�. The

mass eigenstates eiL, ⌫
i
L (i = 1, 2, 3) are connected to the

interaction basis e↵L, ⌫↵L (↵ = 1, 2, 3) via the relations
e↵L = (Ue

L)
↵ieiL and ⌫↵L = (U⌫

L)
↵i⌫iL. The equations of

motion for Weyl fermions with a Majorana mass term
are used and the axion neutrino couplings are written
in terms of the Majorana mass eigenstates [58]. Present
laboratory and astrophysical limits on flavor violating in-
teractions do not seem to imply any constraints on the
PQ scale stronger than those obtained from the diago-
nal interactions [53]. On the other hand, the presence
of lepton flavor violating interactions of the axion in the
extended BJ model deserves further detailed scrutiny.

The DFSZ invisible axion framework su↵ers from the
domain wall problem (the non-perturbative instanton po-
tential breaks the U(1)PQ explicitly to a ZNq discrete
symmetry where Nq is the number of quark flavors). The
standard cosmological solution is then the assumption of
a low reheating temperature (see [59] for a comprehensive
discussion).

A. Naturalness

An interesting feature of all the models considered in
this study is the fact that the hierarchy between the elec-
troweak and the PQ scales can be made technically nat-
ural and stable against radiative corrections. Let us con-
sider, for definiteness, the case of the PQ extended TII
model. At the tree level, the hierarchy between the PQ
and the electroweak scale can be obtained without fine-
tuning among the scalar potential parameters of Eq. (24)
by requiring the ultraweak limit
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, (79)

where the last equation is set by the stationarity condi-
tion (38) and i is running over all the scalar multiplets
but the SM singlet (all non-singlet mass parameters are
taken at the weak scale). As a matter of fact, this guar-
antees that the heavy (PQ-scale) neutral singlet decou-
ples from the rest of the spectrum (see Appendix A and
Sect. IVC). It is noteworthy that the ultraweak limit
�i3,�5,�6 ⌧ 1 is associated with the emergence of an ad-
ditional Poincaré symmetry of the action [39, 60] (see [61]
for a recent discussion) which makes this limit perturba-
tively stable. It is readily verified that the renormaliza-
tion of the couplings connecting the “light” and “heavy”
sectors is as a set multiplicative (the relevant beta func-
tions exhibit a fixed point for vanishing couplings). The
hierarchy among the ultraweak couplings in Eq. (78) is
stable since �2

6 ⌧ �i3. The couplings �5 and �6 are them-
selves multiplicatively renormalized since lepton number
is restored when one of them is vanishing. The natural-
ness requirement, together with the constraints coming
from the LFV phenomenology, allows us to reproduce in
all three setups above the correct neutrino mass scale to-
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As in the previous cases (TII and BJ), the smallness of

neutrino masses can be due to di↵erent factors. Taking
into account the strong bounds on the Yukawa couplings
f and g coming from the LFV processes (see Sect. VC), it
turns out that the assumption �7 . 4⇡⇥O( v

V�
), tailored

to keep the non-singlet scalars at the electroweak scale,
ensures also the correct absolute neutrino mass scale [20].

Finally, we briefly comment on the case �6 6= 0. In
such a setting there is an extra one-loop contribution to
the neutrino masses, similar to the one in Fig. 3 (the rel-
evant expression can be found in Eqs. (25)-(26) of [39]).
As already mentioned, the original Zee model is excluded
by neutrino data and, in order to obtain a viable neutrino
texture, the size of such a one-loop diagram must be com-
parable with the two-loop expression in Eq. (73), thus in-
troducing a fine-tuning in the couplings. Let us also note
that �6 6= 0 introduces a tree-level mixing between the
charged SU(2)L-doublet and singlet scalars that a↵ects
Eq. (74). At variance with the ZB model, the lightest
neutrino is no longer massless. In this study, we will not
pursue the analysis of this hybrid model any further.

V. DISCUSSION

The three setups presented in the previous sections
share a number of common features which we shall briefly
summarize here. In particular, all three models contain
a DFSZ invisible axion with a tiny coupling to neutri-
nos [39, 40]. It is noticeable that, at variance with the
TII and ZB extended models, the axion in the BJ case
exhibits flavour violating couplings to the leptons of the
same order of the flavour-diagonal ones:

La`` = �X`2,3

@µa

fa

⇥
(eiL�

µeiL) + (⌫iL�
µ⌫iL)

⇤

�Xe
@µa

fa

⇥
(eiR�

µeiR)
⇤

� (X`1 �X`2,3)
@µa

fa

h
(eiL�

µ(Ue†
L )i1(Ue

L)
1jejL)

i

+ (⌫iL�
µ(U⌫†

L )i1(U⌫
L)

1j⌫jL)
i
, (77)

that, up to a total derivative, can be written as

La`` = i
a

fa

⇥�
Xe �X`2,3

�
me

i ei�5e
i �X`2,3m

⌫
i ⌫i�5⌫

i
⇤

� i
�
X`1 �X`2,3

� a

fa


(Ue†

L )i1(Ue
L)

1j ei
✓
me

j �me
i

2

+
me

j +me
i

2
�5

◆
ej

+ (U⌫†
L )i1(U⌫

L)
1j ⌫i

✓
m⌫

j �m⌫
i

2
+

m⌫
j +m⌫

i

2
�5

◆
⌫j
�
.

(78)

where a denotes the axion field and fa =
p
2V�. The

mass eigenstates eiL, ⌫
i
L (i = 1, 2, 3) are connected to the

interaction basis e↵L, ⌫↵L (↵ = 1, 2, 3) via the relations
e↵L = (Ue

L)
↵ieiL and ⌫↵L = (U⌫

L)
↵i⌫iL. The equations of

motion for Weyl fermions with a Majorana mass term
are used and the axion neutrino couplings are written
in terms of the Majorana mass eigenstates [58]. Present
laboratory and astrophysical limits on flavor violating in-
teractions do not seem to imply any constraints on the
PQ scale stronger than those obtained from the diago-
nal interactions [53]. On the other hand, the presence
of lepton flavor violating interactions of the axion in the
extended BJ model deserves further detailed scrutiny.

The DFSZ invisible axion framework su↵ers from the
domain wall problem (the non-perturbative instanton po-
tential breaks the U(1)PQ explicitly to a ZNq discrete
symmetry where Nq is the number of quark flavors). The
standard cosmological solution is then the assumption of
a low reheating temperature (see [59] for a comprehensive
discussion).

A. Naturalness

An interesting feature of all the models considered in
this study is the fact that the hierarchy between the elec-
troweak and the PQ scales can be made technically nat-
ural and stable against radiative corrections. Let us con-
sider, for definiteness, the case of the PQ extended TII
model. At the tree level, the hierarchy between the PQ
and the electroweak scale can be obtained without fine-
tuning among the scalar potential parameters of Eq. (24)
by requiring the ultraweak limit

�i3,�5 ⇠ O
✓
v2

V 2
�

◆
and �6 ⇠ O

✓
v�
V�

◆
, (79)

where the last equation is set by the stationarity condi-
tion (38) and i is running over all the scalar multiplets
but the SM singlet (all non-singlet mass parameters are
taken at the weak scale). As a matter of fact, this guar-
antees that the heavy (PQ-scale) neutral singlet decou-
ples from the rest of the spectrum (see Appendix A and
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• The ultraweak limit                     is technically natural (extended Poincare’ symmetry)

- This is readily verified by inspecting the fixed point structure of the RGEs
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*again, ignoring gravity

• The hierarchy b/w PQ and EW scales is automatically achieved without fine-tunings for
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is antisymmetric, det f = 0 (for three generations) and,
hence, detMZB

⌫ = 0.
As in the previous cases (TII and BJ), the smallness of

neutrino masses can be due to di↵erent factors. Taking
into account the strong bounds on the Yukawa couplings
f and g coming from the LFV processes (see Sect. VC), it
turns out that the assumption �7 . 4⇡⇥O( v

V�
), tailored

to keep the non-singlet scalars at the electroweak scale,
ensures also the correct absolute neutrino mass scale [20].

Finally, we briefly comment on the case �6 6= 0. In
such a setting there is an extra one-loop contribution to
the neutrino masses, similar to the one in Fig. 3 (the rel-
evant expression can be found in Eqs. (25)-(26) of [39]).
As already mentioned, the original Zee model is excluded
by neutrino data and, in order to obtain a viable neutrino
texture, the size of such a one-loop diagram must be com-
parable with the two-loop expression in Eq. (73), thus in-
troducing a fine-tuning in the couplings. Let us also note
that �6 6= 0 introduces a tree-level mixing between the
charged SU(2)L-doublet and singlet scalars that a↵ects
Eq. (74). At variance with the ZB model, the lightest
neutrino is no longer massless. In this study, we will not
pursue the analysis of this hybrid model any further.

V. DISCUSSION

The three setups presented in the previous sections
share a number of common features which we shall briefly
summarize here. In particular, all three models contain
a DFSZ invisible axion with a tiny coupling to neutri-
nos [39, 40]. It is noticeable that, at variance with the
TII and ZB extended models, the axion in the BJ case
exhibits flavour violating couplings to the leptons of the
same order of the flavour-diagonal ones:
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where a denotes the axion field and fa =
p
2V�. The

mass eigenstates eiL, ⌫
i
L (i = 1, 2, 3) are connected to the

interaction basis e↵L, ⌫↵L (↵ = 1, 2, 3) via the relations
e↵L = (Ue

L)
↵ieiL and ⌫↵L = (U⌫

L)
↵i⌫iL. The equations of

motion for Weyl fermions with a Majorana mass term
are used and the axion neutrino couplings are written
in terms of the Majorana mass eigenstates [58]. Present
laboratory and astrophysical limits on flavor violating in-
teractions do not seem to imply any constraints on the
PQ scale stronger than those obtained from the diago-
nal interactions [53]. On the other hand, the presence
of lepton flavor violating interactions of the axion in the
extended BJ model deserves further detailed scrutiny.

The DFSZ invisible axion framework su↵ers from the
domain wall problem (the non-perturbative instanton po-
tential breaks the U(1)PQ explicitly to a ZNq discrete
symmetry where Nq is the number of quark flavors). The
standard cosmological solution is then the assumption of
a low reheating temperature (see [59] for a comprehensive
discussion).

A. Naturalness

An interesting feature of all the models considered in
this study is the fact that the hierarchy between the elec-
troweak and the PQ scales can be made technically nat-
ural and stable against radiative corrections. Let us con-
sider, for definiteness, the case of the PQ extended TII
model. At the tree level, the hierarchy between the PQ
and the electroweak scale can be obtained without fine-
tuning among the scalar potential parameters of Eq. (24)
by requiring the ultraweak limit
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✓
v2

V 2
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◆
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, (79)

where the last equation is set by the stationarity condi-
tion (38) and i is running over all the scalar multiplets
but the SM singlet (all non-singlet mass parameters are
taken at the weak scale). As a matter of fact, this guar-
antees that the heavy (PQ-scale) neutral singlet decou-
ples from the rest of the spectrum (see Appendix A and
Sect. IVC). It is noteworthy that the ultraweak limit
�i3,�5,�6 ⌧ 1 is associated with the emergence of an ad-
ditional Poincaré symmetry of the action [39, 60] (see [61]
for a recent discussion) which makes this limit perturba-
tively stable. It is readily verified that the renormaliza-
tion of the couplings connecting the “light” and “heavy”
sectors is as a set multiplicative (the relevant beta func-
tions exhibit a fixed point for vanishing couplings). The
hierarchy among the ultraweak couplings in Eq. (78) is
stable since �2

6 ⌧ �i3. The couplings �5 and �6 are them-
selves multiplicatively renormalized since lepton number
is restored when one of them is vanishing. The natural-
ness requirement, together with the constraints coming
from the LFV phenomenology, allows us to reproduce in
all three setups above the correct neutrino mass scale to-
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is antisymmetric, det f = 0 (for three generations) and,
hence, detMZB

⌫ = 0.
As in the previous cases (TII and BJ), the smallness of

neutrino masses can be due to di↵erent factors. Taking
into account the strong bounds on the Yukawa couplings
f and g coming from the LFV processes (see Sect. VC), it
turns out that the assumption �7 . 4⇡⇥O( v

V�
), tailored

to keep the non-singlet scalars at the electroweak scale,
ensures also the correct absolute neutrino mass scale [20].

Finally, we briefly comment on the case �6 6= 0. In
such a setting there is an extra one-loop contribution to
the neutrino masses, similar to the one in Fig. 3 (the rel-
evant expression can be found in Eqs. (25)-(26) of [39]).
As already mentioned, the original Zee model is excluded
by neutrino data and, in order to obtain a viable neutrino
texture, the size of such a one-loop diagram must be com-
parable with the two-loop expression in Eq. (73), thus in-
troducing a fine-tuning in the couplings. Let us also note
that �6 6= 0 introduces a tree-level mixing between the
charged SU(2)L-doublet and singlet scalars that a↵ects
Eq. (74). At variance with the ZB model, the lightest
neutrino is no longer massless. In this study, we will not
pursue the analysis of this hybrid model any further.

V. DISCUSSION

The three setups presented in the previous sections
share a number of common features which we shall briefly
summarize here. In particular, all three models contain
a DFSZ invisible axion with a tiny coupling to neutri-
nos [39, 40]. It is noticeable that, at variance with the
TII and ZB extended models, the axion in the BJ case
exhibits flavour violating couplings to the leptons of the
same order of the flavour-diagonal ones:
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where the last equation is set by the stationarity condi-
tion (38) and i is running over all the scalar multiplets
but the SM singlet (all non-singlet mass parameters are
taken at the weak scale). As a matter of fact, this guar-
antees that the heavy (PQ-scale) neutral singlet decou-
ples from the rest of the spectrum (see Appendix A and
Sect. IVC). It is noteworthy that the ultraweak limit
�i3,�5,�6 ⌧ 1 is associated with the emergence of an ad-
ditional Poincaré symmetry of the action [39, 60] (see [61]
for a recent discussion) which makes this limit perturba-
tively stable. It is readily verified that the renormaliza-
tion of the couplings connecting the “light” and “heavy”
sectors is as a set multiplicative (the relevant beta func-
tions exhibit a fixed point for vanishing couplings). The
hierarchy among the ultraweak couplings in Eq. (78) is
stable since �2

6 ⌧ �i3. The couplings �5 and �6 are them-
selves multiplicatively renormalized since lepton number
is restored when one of them is vanishing. The natural-
ness requirement, together with the constraints coming
from the LFV phenomenology, allows us to reproduce in
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• The ultraweak limit                     is technically natural (extended Poincare’ symmetry)

• For a fully natural model, an extended scalar sector is expected below the TeV scale

*again, ignoring gravity

• The hierarchy b/w PQ and EW scales is automatically achieved without fine-tunings for
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5SISSA/ISAS, Via Bonomea 265, 34136 Trieste, Italy

We survey a few minimal scalar extensions of the standard electroweak model that provide a simple
setup for massive neutrinos in connection with an invisible axion. The presence of a chiral U(1)
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4Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics,
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1INFN, Sezione di Trieste, SISSA, Via Bonomea 265, 34136 Trieste, Italy
2Dipartimento di Fisica, Università di Genova and INFN,
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4Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics,
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is antisymmetric, det f = 0 (for three generations) and,
hence, detMZB

⌫ = 0.
As in the previous cases (TII and BJ), the smallness of

neutrino masses can be due to di↵erent factors. Taking
into account the strong bounds on the Yukawa couplings
f and g coming from the LFV processes (see Sect. VC), it
turns out that the assumption �7 . 4⇡⇥O( v

V�
), tailored

to keep the non-singlet scalars at the electroweak scale,
ensures also the correct absolute neutrino mass scale [20].

Finally, we briefly comment on the case �6 6= 0. In
such a setting there is an extra one-loop contribution to
the neutrino masses, similar to the one in Fig. 3 (the rel-
evant expression can be found in Eqs. (25)-(26) of [39]).
As already mentioned, the original Zee model is excluded
by neutrino data and, in order to obtain a viable neutrino
texture, the size of such a one-loop diagram must be com-
parable with the two-loop expression in Eq. (73), thus in-
troducing a fine-tuning in the couplings. Let us also note
that �6 6= 0 introduces a tree-level mixing between the
charged SU(2)L-doublet and singlet scalars that a↵ects
Eq. (74). At variance with the ZB model, the lightest
neutrino is no longer massless. In this study, we will not
pursue the analysis of this hybrid model any further.

V. DISCUSSION

The three setups presented in the previous sections
share a number of common features which we shall briefly
summarize here. In particular, all three models contain
a DFSZ invisible axion with a tiny coupling to neutri-
nos [39, 40]. It is noticeable that, at variance with the
TII and ZB extended models, the axion in the BJ case
exhibits flavour violating couplings to the leptons of the
same order of the flavour-diagonal ones:
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where a denotes the axion field and fa =
p
2V�. The

mass eigenstates eiL, ⌫
i
L (i = 1, 2, 3) are connected to the

interaction basis e↵L, ⌫↵L (↵ = 1, 2, 3) via the relations
e↵L = (Ue

L)
↵ieiL and ⌫↵L = (U⌫

L)
↵i⌫iL. The equations of

motion for Weyl fermions with a Majorana mass term
are used and the axion neutrino couplings are written
in terms of the Majorana mass eigenstates [58]. Present
laboratory and astrophysical limits on flavor violating in-
teractions do not seem to imply any constraints on the
PQ scale stronger than those obtained from the diago-
nal interactions [53]. On the other hand, the presence
of lepton flavor violating interactions of the axion in the
extended BJ model deserves further detailed scrutiny.

The DFSZ invisible axion framework su↵ers from the
domain wall problem (the non-perturbative instanton po-
tential breaks the U(1)PQ explicitly to a ZNq discrete
symmetry where Nq is the number of quark flavors). The
standard cosmological solution is then the assumption of
a low reheating temperature (see [59] for a comprehensive
discussion).

A. Naturalness

An interesting feature of all the models considered in
this study is the fact that the hierarchy between the elec-
troweak and the PQ scales can be made technically nat-
ural and stable against radiative corrections. Let us con-
sider, for definiteness, the case of the PQ extended TII
model. At the tree level, the hierarchy between the PQ
and the electroweak scale can be obtained without fine-
tuning among the scalar potential parameters of Eq. (24)
by requiring the ultraweak limit
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where the last equation is set by the stationarity condi-
tion (38) and i is running over all the scalar multiplets
but the SM singlet (all non-singlet mass parameters are
taken at the weak scale). As a matter of fact, this guar-
antees that the heavy (PQ-scale) neutral singlet decou-
ples from the rest of the spectrum (see Appendix A and
Sect. IVC). It is noteworthy that the ultraweak limit
�i3,�5,�6 ⌧ 1 is associated with the emergence of an ad-
ditional Poincaré symmetry of the action [39, 60] (see [61]
for a recent discussion) which makes this limit perturba-
tively stable. It is readily verified that the renormaliza-
tion of the couplings connecting the “light” and “heavy”
sectors is as a set multiplicative (the relevant beta func-
tions exhibit a fixed point for vanishing couplings). The
hierarchy among the ultraweak couplings in Eq. (78) is
stable since �2

6 ⌧ �i3. The couplings �5 and �6 are them-
selves multiplicatively renormalized since lepton number
is restored when one of them is vanishing. The natural-
ness requirement, together with the constraints coming
from the LFV phenomenology, allows us to reproduce in
all three setups above the correct neutrino mass scale to-
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antees that the heavy (PQ-scale) neutral singlet decou-
ples from the rest of the spectrum (see Appendix A and
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• The ultraweak limit                     is technically natural (extended Poincare’ symmetry)

• For a fully natural model, an extended scalar sector is expected below the TeV scale

*again, ignoring gravity

• The hierarchy b/w PQ and EW scales is automatically achieved without fine-tunings for
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Sezione di Genova, Via Dodecaneso 33, 16159 Genova, Italy
3Faculty of Nuclear Sciences and Physical Engineering,

Czech Technical University in Prague, Brehová 7, 115 19 Praha 1, Czech Republic
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1INFN, Sezione di Trieste, SISSA, Via Bonomea 265, 34136 Trieste, Italy
2Dipartimento di Fisica, Università di Genova and INFN,
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4Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics,
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5SISSA/ISAS, Via Bonomea 265, 34136 Trieste, Italy

We survey a few minimal scalar extensions of the standard electroweak model that provide a simple
setup for massive neutrinos in connection with an invisible axion. The presence of a chiral U(1)
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Gifts from light scalars
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à la Peccei-Quinn drives the pattern of Majorana neutrino masses while providing a dynamical
solution to the strong CP problem and an axion as a dark matter candidate. We paradigmatically
apply such a renormalizable framework to type-II seesaw and to two viable models for neutrino
oscillations where the neutrino masses arise at one and two loops, respectively. We comment on
the naturalness of the e↵ective setups as well as on their implications for vacuum stability and
electroweak baryogenesis.

PACS numbers: 12.60.Fr,14.60.Pq,14.80.Va

I. INTRODUCTION

V = VSM +M2
X |X2|+ �XH |X|2|H|2 + . . . (1)

|�| (2)

Abs� (3)

Arg � (4)

Hu, Hd,� (5)

. 10 meV (6)

TeV (7)

V� & 109 GeV (8)

��5 / �5(. . .) (9)

��6 / �6(. . .) (10)

��13 / �13(. . .) + �23(. . .) + ��3(. . .) + 8�2
5 + 3�2

6 (11)

��23 / �13(. . .) + �23(. . .) + ��3(. . .) + 8�2
5 + 3�2

6 (12)

⇤ stefano.bertolini@sissa.it
† luca.di.luzio@ge.infn.it
‡ helena.kolesova@fjfi.cvut.cz

§ malinsky@ipnp.troja.m↵.cuni.cz

• New extra scalars can easily improve the stability of the EW vacuum
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1INFN, Sezione di Trieste, SISSA, Via Bonomea 265, 34136 Trieste, Italy
2Dipartimento di Fisica, Università di Genova and INFN,
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The first LHC run has led to the discovery of a scalar
particle that looks much like the Higgs boson of the
SU(2)L ⌦U(1)Y electroweak standard model (SM). The
raising limits on exotic physics scales set a challenge to
the popular issue of naturalness [1], a paradigm that has
guided much of the beyond the SM modelling in the last
decades. This notwithstanding, neutrino oscillations and
dark matter call for physics beyond the standard sce-
nario. Baryon asymmetry calls for it as well while elec-
troweak vacuum stability may not be an issue in min-
imally extended scenarios [2]. We aim at discussing a
class of minimal extensions of the SM that account for
the aforementioned open issues. To this end we choose
to maintain the fermionic SM content as it stands and
consider only extensions of the scalar sector. Advantages
of this choice will be clear in the following. According
to that, the only tree-level realization of the dimension-
5 Weinberg operator (LLHH)/M for Majorana neutrino
masses is via the mediation of an SU(2)L scalar triplet of
hypercharge one. This is commonly known as the type-II
seesaw [3–7], Fig. 1a.
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B. PQ charges

The invariants in Eq. (43) and Eq. (47) enforce the
following constraints on the PQ charges:

�X` +Xe �Xd = 0 , (48)

2X` +X� = 0 , (49)

2X� �Xu �Xd = 0 , (50)

X� +Xu �X� �Xd = 0 . (51)

Solving in terms of Xu and Xd we get:

X` = �3Xu

4
+
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4
, Xe = �3Xu

4
+

5Xd

4
,

X� =
3Xu

2
� Xd

2
, X� =

Xu

2
+

Xd

2
. (52)

Following [39, 52] we require the orthogonality of the hy-
percharge and axion currents. This leads to the relation

Xuv
2
u = Xdv

2
d , (53)

where vu = hHui and vd = hHdi. Adding this condition
to Eq. (52), we can determine all the PQ charges up to
an overall normalization. We choose this normalization
by the condition

X� = 1 . (54)

By defining x ⌘ vu/vd the remaining charges in Eq. (52)
read

Xu =
2

x2 + 1
, Xd =

2x2

x2 + 1
, X` =

x2 � 3

2(x2 + 1)
,
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2(x2 + 1)
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3� x2

x2 + 1
. (55)

C. Scalar spectrum

To compute the scalar spectrum we expand the scalar
fields around the chargeless and CP-conserving vacuum
configuration
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� �+
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!
, (58)

� = V� +
�0 + i⌘0�p

2
, (59)

with vu, vd, v� and V� denoting the relevant (real) vac-
uum expectation values (VEVs). 2

2 While it is assumed that there exists a region of the scalar po-
tential parameters for which the absolute minimum preserves the

FIG. 2. The tree-level “hug” diagram responsible for the
Majorana neutrino mass in the PQ extended type-II seesaw
model.

The scalar spectrum of the model is detailed in Ap-
pendix A and the main features are discussed in Sect. V.
Here we just anticipate that the model features a DFSZ
invisible axion, with a tiny coupling to neutrinos, and its
SM singlet companion with a PQ scale mass. By invoking
a technically natural ultraweak limit (see the discussion
in Sect. VA) such a heavy scalar is su�ciently decou-
pled from all the other physical scalar states that are
requested to live at the TeV scale thus preserving the ra-
diative stability of the light scalar spectrum. At the weak
scale the model allows for a SM-like Higgs boson; this,
together with a brief account of the relevant phenomeno-
logical constraints, shall be discussed in Sect. VC.

D. Neutrino masses

In the TII model, the neutrino masses are generated
through the tree-level diagram in Fig. 2.

Their expression is conveniently obtained by comput-
ing the (induced) VEV of the triplet. Let us hence con-
sider the projection of the scalar potential along the neu-
tral VEV components of Eqs. (56)–(59)

hVTIIi =
�
µ2
� + ��3V

2
� + ��1v

2
u + (��2 + �8)v

2
d

�
v2�

+ 2�6V�vuvdv� +O �v4�
�
+ v�-indep. terms . (60)

Given the phenomenological hierarchy V� � vu,d � v�,
the stationary condition with respect to v� is well ap-
proximated by

2M2
�v� + 2�6V�vuvd ⇡ 0 , (61)

where we defined the e↵ective mass parameter

M2
� = µ2

� + ��3V
2
� + ��1v

2
u + (��2 + �8)v

2
d . (62)

electric charge, it can be shown (see Sect. VD) that the potential
of Eq. (47) does not lead to spontaneous CP violation.
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pendix A and the main features are discussed in Sect. V.
Here we just anticipate that the model features a DFSZ
invisible axion, with a tiny coupling to neutrinos, and its
SM singlet companion with a PQ scale mass. By invoking
a technically natural ultraweak limit (see the discussion
in Sect. VA) such a heavy scalar is su�ciently decou-
pled from all the other physical scalar states that are
requested to live at the TeV scale thus preserving the ra-
diative stability of the light scalar spectrum. At the weak
scale the model allows for a SM-like Higgs boson; this,
together with a brief account of the relevant phenomeno-
logical constraints, shall be discussed in Sect. VC.

D. Neutrino masses

In the TII model, the neutrino masses are generated
through the tree-level diagram in Fig. 2.

Their expression is conveniently obtained by comput-
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à la Peccei-Quinn drives the pattern of Majorana neutrino masses while providing a dynamical
solution to the strong CP problem and an axion as a dark matter candidate. We paradigmatically
apply such a renormalizable framework to type-II seesaw and to two viable models for neutrino
oscillations where the neutrino masses arise at one and two loops, respectively. We comment on
the naturalness of the e↵ective setups as well as on their implications for vacuum stability and
electroweak baryogenesis.

PACS numbers: 12.60.Fr,14.60.Pq,14.80.Va

I. INTRODUCTION

TeV (1)

V� & 109 GeV (2)

��5 / �5(. . .) (3)

��6 / �6(. . .) (4)

��13 / �13(. . .) + �23(. . .) + ��3(. . .) + 8�2
5 + 3�2

6 (5)

��23 / �13(. . .) + �23(. . .) + ��3(. . .) + 8�2
5 + 3�2

6 (6)

���3 / �13(. . .) + �23(. . .) + ��3(. . .) + 2�2
6 (7)

⇤ stefano.bertolini@sissa.it
† luca.di.luzio@ge.infn.it
‡ helena.kolesova@fjfi.cvut.cz
§ malinsky@ipnp.troja.m↵.cuni.cz

@µT
µ⌫
/� = @µT

µ⌫
� = 0 (8)

S =

Z
d4xL/�(x) +

Z
d4x0L�(x

0) (9)

Massive neutrinos and invisible axion minimally connected

Stefano Bertolini,1, ⇤ Luca Di Luzio,2, † Helena Kolešová,3, 4, 5, ‡ and Michal Malinský4, §

1INFN, Sezione di Trieste, SISSA, Via Bonomea 265, 34136 Trieste, Italy
2Dipartimento di Fisica, Università di Genova and INFN,
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5SISSA/ISAS, Via Bonomea 265, 34136 Trieste, Italy

We survey a few minimal scalar extensions of the standard electroweak model that provide a simple
setup for massive neutrinos in connection with an invisible axion. The presence of a chiral U(1)
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ii) A real pseudoscalar SM singlet ⌘0�:
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which is the zero-mass mode of the PQ-breaking field
corresponding to the axion.
iii) A complex triplet �:
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here M2
H is written in the (H⇤
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Ĥd

!
=

 
cos↵ sin↵

� sin↵ cos↵

! 
H⇤

u

Hd

!
, (A6)

where

tan 2↵ =
2�5V

2
�

(�13 � �23)V 2
� � µ2

1 + µ2
2

. (A7)

The corresponding eigenvalues then read

2M2
u,d = (�13 + �23)V

2
� � µ2

1 � µ2
2

±
q
((�13 � �23)V 2

� � µ2
1 + µ2

2)
2
+ 4�2

5V
4
� . (A8)

2. vu,d,� 6= 0 case

By plugging Eqs. (56)–(59) into the expression of the
scalar potential in Eq. (47), we obtain the stationarity
equations in the form

0 =
@ hVTIIi
@vu

= 2vu
�
2�1v

2
u + �12v

2
d + �13V

2
� + ��1v

2
� � µ2

1

�
+ 2�6v�V�vd � 2�5vdV

2
� , (A9)

0 =
@ hVTIIi
@vd

= 2vd
�
2�2v

2
d + �12v

2
u + �23V

2
� + (��2 + �8)v

2
� � µ2

2

�
+ 2�6v�V�vu � 2�5vuV

2
� , (A10)

0 =
@ hVTIIi
@V�

= 2V�

�
2�3V

2
� + �13v

2
u + �23v

2
d � 2�5vuvd + ��3v

2
� � µ2

3

�
+ 2�6v�vuvd , (A11)

0 =
@ hVTIIi
@v�

= 2v�
�
2 (��4 + �9) v

2
� + ��1v

2
u + (��2 + �8)v

2
d + ��3V

2
� + µ2

�

�
+ 2�6V�vuvd . (A12)

The spectrum is then obtained by expanding the scalar potential up to the second order in the fields of Eqs. (56)–
(59), around the vacuum configuration given by the above stationarity equations. This yields:

i) Neutral scalars (h0
u, h

0
d,�

0, �0):

M2
S =

0

BBB@

4�1v
2
u + (�5V� � �6v�)V�vd/vu (�6v� � �5V�)V� + 2�12vuvd

(�6v� � �5V�)V� + 2�12vuvd 4�2v
2
d + (�5V� � �6v�)V�vu/vd

�2�5V�vd + �6v�vd + 2�13V�vu �2�5V�vu + �6v�vu + 2�23V�vd
�6V�vd + 2��1v�vu �6V�vu + 2 (�8 + ��2) v�vd

�2�5V�vd + �6v�vd + 2�13V�vu �6V�vd + 2��1v�vu
�2�5V�vu + �6v�vu + 2�23V�vd �6V�vu + 2 (�8 + ��2) v�vd

4�3V
2
� � �6v�vuvd/V� �6vuvd + 2��3v�V�

�6vuvd + 2��3v�V� 4 (�9 + ��4) v2� � �6V�vdvd/v�

1

CCCA
, (A13)

where Rank M2
S = 4. The exact form of the eigenvalues is quite cumbersome. However, the required hierarchy

v� ⌧ vu, vd ⌧ V� allows us to compute the eigenvalues perturbatively. Taking into account the scaling of the
couplings in Eq. (101), we define �6 ⌘ c6

v�
V�

, �5 ⌘ c5
v2

V 2
�
, �i3 ⌘ ci3

v2

V 2
�

with c5, c6, ci3 being O(1) coe�cients. Hence,

the leading contribution to the neutral scalar mass matrix (given by the terms & O(v2)) reads

M
2(LO)
S =

0

BBB@

4�1v
2
u + c5

vdv
2

vu
c5v

2 + 2�12vuvd 0 0

c5v
2 + 2�12vuvd 4�2v

2
d + c5

vuv
2

vd
0 0

0 0 4�3V
2
� 0

0 0 0 �c6vuvd

1

CCCA
.
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It is now clear that, at the leading order in the VEV ratio expansion, the eigenvalues of the scalar mass matrix read

{O(v2), O(v2), 4�3V
2
� , �vuvdc6} (A14)

and that there is no mixing of the singlet and triplet fields with the SU(2)L doublets. The first NLO corrections to the
mass matrix are of the order of v�v, which implies, for instance, that the mixing between the doublet and the triplet
components is of the order of v�/v. One further finds that the first corrections to the eigenvalues are only of the order
of v2� and that the mixing with the singlet component is of the order of v/V�. For large tan� = vu/vd the two doublet
eigenvalues are approximately 4�1v

2 and c5v
2 tan�, while for the mixing angle ↵ one obtains tan↵ ⇡ cot� ⌧ 1. In

this limit the lightest doublet scalar behaves as the standard model Higgs boson.

ii) Neutral pseudo-scalars (⌘0u, ⌘
0
d, ⌘

0
�, ⌘

0
� ):

M2
PS =

0

BBB@

(�5V� � �6v�)V�vd/vu (�5V� + �6v�)V� (2�5V� + �6v�) vd ��6V�vd
(�5V� + �6v�)V� (�5V� � �6v�)V�vu/vd (2�5V� � �6v�) vu �6V�vu
(2�5V� + �6v�) vd (2�5V� � �6v�) vu 4�5vuvd � �6v�vuvd/V� �6vuvd

��6V�vd �6V�vu �6vuvd ��6V�vuvd/v�

1

CCCA
(A15)

is a Rank = 2 matrix which implies the existence of two zero modes, one of them being the would-be Goldstone mode
associated with the Z boson and the other corresponding to the axion that acquires mass by non-perturbative QCD
e↵ects. Even though the eigenvalues can be given in a closed form, it is su�cient to report the LO result

⇢
0,

v4

vuvd
c5, 0,�vuvdc6

�
, (A16)

where the entries correspond, consecutively, to the pair of SU(2)L (mostly) doublet components, the singlet and the
triplet. The zeros are exact (at the perturbative level), while the other entries receive corrections at most of the order
of v2�. The mixing among the doublet and triplet components is again found to be of the order of v�/v.

iii) Singly-charged scalars: (h+
u , h

+
d , �

+)

M2
+ =

0

BB@

�4v
2
d + �7v

2
� + (�5V� � �6v�)V�vd/vu �5V

2
� + �4vuvd

�7v�vu��6V�vd
p

2

�5V
2
� + �4vuvd �4v

2
u � �8v

2
� + (�5V� � �6v�)V�vu/vd

�6V�vu+�8v�vd
p

2
�7v�vu��6V�vd

p

2
�6V�vu+�8v�vd

p

2

�7v
2
u��8v

2
d

2 � �6V�vdvu/v�

1

CCA

(A17)
is again of Rank 2, which is related to the existence of a would-be Goldstone mode associated to the W boson. In
analogy with the PS case, the eigenvalues read at LO

⇢
0,�4v

2 + c5
v4

vuvd
,�c6vuvd +

1

2

�
�7v

2
u + �8v

2
d

��
, (A18)

and the mixing of the doublet and triplet components is suppressed by the v�/v ratio.

iv) Doubly-charged scalar �++:

M2
++ = �7v

2
u � �8v

2
d � 2�9v

2
� � �6vuvdV�/v� ⇡ �7v

2
u � �8v

2
d � c6vuvd . (A19)

By comparing (A19) with (A14), (A16) and (A18) one recognizes the weak mass splitting among the triplet components
induced, at the leading order, by the �7 and �8 terms.
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It is now clear that, at the leading order in the VEV ratio expansion, the eigenvalues of the scalar mass matrix read

{O(v2), O(v2), 4�3V
2
� , �vuvdc6} (A14)

and that there is no mixing of the singlet and triplet fields with the SU(2)L doublets. The first NLO corrections to the
mass matrix are of the order of v�v, which implies, for instance, that the mixing between the doublet and the triplet
components is of the order of v�/v. One further finds that the first corrections to the eigenvalues are only of the order
of v2� and that the mixing with the singlet component is of the order of v/V�. For large tan� = vu/vd the two doublet
eigenvalues are approximately 4�1v

2 and c5v
2 tan�, while for the mixing angle ↵ one obtains tan↵ ⇡ cot� ⌧ 1. In

this limit the lightest doublet scalar behaves as the standard model Higgs boson.

ii) Neutral pseudo-scalars (⌘0u, ⌘
0
d, ⌘

0
�, ⌘

0
� ):

M2
PS =

0
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(�5V� � �6v�)V�vd/vu (�5V� + �6v�)V� (2�5V� + �6v�) vd ��6V�vd
(�5V� + �6v�)V� (�5V� � �6v�)V�vu/vd (2�5V� � �6v�) vu �6V�vu
(2�5V� + �6v�) vd (2�5V� � �6v�) vu 4�5vuvd � �6v�vuvd/V� �6vuvd

��6V�vd �6V�vu �6vuvd ��6V�vuvd/v�

1

CCCA
(A15)

is a Rank = 2 matrix which implies the existence of two zero modes, one of them being the would-be Goldstone mode
associated with the Z boson and the other corresponding to the axion that acquires mass by non-perturbative QCD
e↵ects. Even though the eigenvalues can be given in a closed form, it is su�cient to report the LO result

⇢
0,

v4

vuvd
c5, 0,�vuvdc6

�
, (A16)

where the entries correspond, consecutively, to the pair of SU(2)L (mostly) doublet components, the singlet and the
triplet. The zeros are exact (at the perturbative level), while the other entries receive corrections at most of the order
of v2�. The mixing among the doublet and triplet components is again found to be of the order of v�/v.

iii) Singly-charged scalars: (h+
u , h

+
d , �

+)

M2
+ =

0
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�4v
2
d + �7v

2
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(A17)
is again of Rank 2, which is related to the existence of a would-be Goldstone mode associated to the W boson. In
analogy with the PS case, the eigenvalues read at LO
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2

�
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2
u + �8v

2
d

��
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and the mixing of the doublet and triplet components is suppressed by the v�/v ratio.

iv) Doubly-charged scalar �++:

M2
++ = �7v

2
u � �8v

2
d � 2�9v

2
� � �6vuvdV�/v� ⇡ �7v

2
u � �8v

2
d � c6vuvd . (A19)

By comparing (A19) with (A14), (A16) and (A18) one recognizes the weak mass splitting among the triplet components
induced, at the leading order, by the �7 and �8 terms.
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It is now clear that, at the leading order in the VEV ratio expansion, the eigenvalues of the scalar mass matrix read

{O(v2), O(v2), 4�3V
2
� , �vuvdc6} (A14)

and that there is no mixing of the singlet and triplet fields with the SU(2)L doublets. The first NLO corrections to the
mass matrix are of the order of v�v, which implies, for instance, that the mixing between the doublet and the triplet
components is of the order of v�/v. One further finds that the first corrections to the eigenvalues are only of the order
of v2� and that the mixing with the singlet component is of the order of v/V�. For large tan� = vu/vd the two doublet
eigenvalues are approximately 4�1v

2 and c5v
2 tan�, while for the mixing angle ↵ one obtains tan↵ ⇡ cot� ⌧ 1. In

this limit the lightest doublet scalar behaves as the standard model Higgs boson.

ii) Neutral pseudo-scalars (⌘0u, ⌘
0
d, ⌘

0
�, ⌘

0
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(A15)

is a Rank = 2 matrix which implies the existence of two zero modes, one of them being the would-be Goldstone mode
associated with the Z boson and the other corresponding to the axion that acquires mass by non-perturbative QCD
e↵ects. Even though the eigenvalues can be given in a closed form, it is su�cient to report the LO result

⇢
0,

v4

vuvd
c5, 0,�vuvdc6

�
, (A16)

where the entries correspond, consecutively, to the pair of SU(2)L (mostly) doublet components, the singlet and the
triplet. The zeros are exact (at the perturbative level), while the other entries receive corrections at most of the order
of v2�. The mixing among the doublet and triplet components is again found to be of the order of v�/v.

iii) Singly-charged scalars: (h+
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(A17)
is again of Rank 2, which is related to the existence of a would-be Goldstone mode associated to the W boson. In
analogy with the PS case, the eigenvalues read at LO
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and the mixing of the doublet and triplet components is suppressed by the v�/v ratio.

iv) Doubly-charged scalar �++:
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By comparing (A19) with (A14), (A16) and (A18) one recognizes the weak mass splitting among the triplet components
induced, at the leading order, by the �7 and �8 terms.
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