
01.02.2010

Mainzer MarkenzeichenMainzer Markenzeichen

TRIGA Ionenfallen MAMI LHC IceCube

ultrakalte
Neutronen

Antiprotonen Hadronen-
struktur

Higgs, SUSY,
Extra-Dimensionen

Neutrinos

Energie [GeV]
101410410010-1310-18

� Anwendung komplementärer Methoden, Ansätze und
Experimente zur Verfolgung gemeinsamer Ziele

� Methodische Vielfalt

� Breiter Bereich der physikalischen Skalen;
„von den niedrigsten zu den höchsten Energien“

ERC Advanced Grant (EFT4LHC) 
An Effective Field Theory Assault on the 
Zeptometer Scale: Exploring the Origins of 
Flavor and Electroweak Symmetry Breaking

                                                Cluster of Excellence 
Precision Physics, Fundamental Interactions and Structure of Matter

Matthias Neubert 
Mainz Institute for Theoretical Physics

Johannes Gutenberg University

mitp.uni-mainz.de 

Particle Phenomenology from the Early Universe 
to High-Energy Colliders 
Portoroz, Slovenia, 7—10 April 2015

Rare exclusive radiative decays of Z, W 
and Higgs bosons in QCD factorization



Introduction

Obtaining a rigorous control of strong-interaction phenomena in a regime 
where QCD is strongly coupled is still a challenge to particle physics

• inclusive processes such as e+e-→hadrons, B→Xlν: quark-hadron 

duality & local operator-product expansion 

• deep-inelastic scattering, collider physics: factorization into partonic 

cross sections convoluted with parton distribution functions

• hard exclusive processes with individual final-state hadrons:           

QCD factorization approach, factorization into partonic rates 
convoluted with light-cone distribution amplitudes (LCDAs) 
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Introduction

Obtaining a rigorous control of strong-interaction phenomena in a regime 
where QCD is strongly coupled is still a challenge to particle physics

• inclusive processes such as e+e-→hadrons, B→Xlν: quark-hadron 

duality & local operator-product expansion 

• deep-inelastic scattering, collider physics: factorization into partonic 

cross sections convoluted with parton distribution functions

• hard exclusive processes with individual final-state hadrons:           

QCD factorization approach, factorization into partonic rates 
convoluted with light-cone distribution amplitudes (LCDAs) 


All existing applications of QCD factorization suffer from fact that energy 
scales are not sufficiently large for power corrections to be negligible

• notoriously difficult to disentangle                power corrections from 

uncertainties related to the LCDAs

• no comprehensive program to determine the LCDAs of hadrons
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Introduction

We propose to use exclusive radiative Z and W decays into final states 
containing a single meson as a laboratory to study the QCD factorization 
approach in a context where power corrections are under control


Price to pay is that the higher the energy release in the process,            
the smaller the probability for any particular final state is


Enormous rates of electroweak gauge bosons at future, high-luminosity 
machines present us with new opportunities for precision electroweak 
and QCD physics, which will make such studies possible:


• high-luminosity LHC (3000 fb-1):  ~1011 Z boson and ~5∙1011 W bosons


• TLEP, dedicated run at Z pole: ~1012 Z boson per year


• large samples of W bosons in dedicated runs at WW or tt thresholds

2



Introduction

Our work is motivated by recent investigations of exclusive Higgs decays 
h→Vγ, which were proposed as a way to probe for non-standard Yukawa 
couplings of the Higgs boson, both diagonal and non-diagonal ones


Such measurements are extremely challenging at LHC and future colliders


Observing exclusive radiative decays of Z and W bosons would provide a 
proof-of-principle that such kind of searches can be performed


Based on: 

“Exclusive radiative decays of W and Z bosons in QCD factorization”

Yuval Grossmann, Matthias König, MN (arXiv:1501.06569 → JHEP)


+ work in preparation
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Physical picture:  Exclusive Z→Mγ decays
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Figure 1: Leading-order Feynman diagrams for the radiative decays Z0 → M0γ. The
meson bound state is represented by the gray blob.

M , and as a result the QCD factorization approach can be tested at energies of order 10GeV,
about a factor 2 higher than those available in exclusive B-meson decays. We round off our
study in Section 5 with some experimental considerations. Our main results are summarized
in Section 6. Technical details of our calculations and the extraction of meson decay constants
are relegated to three appendices.

2 Theoretical framework

Our main focus in this work is on the rare, exclusive radiative decays Z → Mγ and W → Mγ,
where M denotes a pseudoscalar or vector meson. We assign momentum k to the final-state
meson and q to the photon. The leading-order Feynman diagrams for the case of Z → Mγ
are shown in Figure 1. The decay plane is spanned by the vectors k and q. We will refer to
vectors in this plane as being longitudinal, and to vector orthogonal to it as being transverse.
We only consider cases where the mass of the final-state meson satisfies mM ≪ mZ . Up to
corrections suppressed as (mM/mZ)2, this mass can then be set to zero. In this limit, we have
kµ = Enµ and qµ = En̄µ, where E = mZ/2 is the energy of the final-state particles in the
Z-boson rest frame, and n and n̄ are two light-like vectors satisfying n · n̄ = 2.

2.1 Derivation of the factorization formula

For the purposes of this discussion we work in the rest frame of the decaying heavy boson. The
decay amplitudes can be calculated from first principles using the QCD factorization approach
[1–5], because the energy E released to the final-state meson is much larger than the scale
of long-distance hadronic physics. At leading power in an expansion in ΛQCD/mZ , they can
be written as convolutions of calculable hard-scattering coefficients with LCDAs of the meson
M . A simple way to derive the corresponding factorization theorem employs the formalism of
SCET [10–13]. It provides a systematic expansion of decay amplitudes in powers of a small
expansion parameter λ = ΛQCD/E. The light final-state meson moving along the direction nµ

can be described in terms of collinear quark, anti-quark and gluon fields. These particles carry
collinear momenta pc that are approximately aligned with the direction n. Their components
scale like (n · pc, n̄ · pc, p⊥c ) ∼ E(λ2, 1,λ). Note that p2c ∼ Λ2

QCD, as appropriate for an exclusive
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⇠ 1

(q + xk)2
=

1

xm

2
Z

k (k2 ⇡ 0)

q (q2 = 0)

xk + . . .

hard

• the intermediate propagator is  
highly virtual (q2~mZ2) and can  
be “integrated out”, giving rise  
to a hard function H(x)


• field operators for the external 
quark (and gluon) fields can be 
separated by light-like 
distances, since k2≈0

M

At leading power in an expansion in                  , one obtains the QCD 
factorization theorem:

⇤QCD/mZ

decay constant defined in terms of a matrix element of the QCD tensor current. The leading-
order LCDAs can be interpreted as the amplitudes for finding a quark with longitudinal
momentum fraction x insinde the meson. The factor of γ5 in the first equation is present for a
pseudoscalar meson (M = P ) but absent for a longitudinally polarized vector meson (M = V∥).
The projection onto a transversely polarized vector meson does not arise at leading power in
the radiative decays of W and Z bosons. For a given meson, exactly one of the possible
Dirac structures contributes, and we denote the corresponding Wilson coefficient by CM(t, µ).
Defining the Fourier-transformed Wilson coefficient, called the hard function, via

HM(x, µ) ≡
∫

dtCM(t, µ) eixtn̄·k , (5)

we obtain the factorization formula

A = −ifME

∫ 1

0

dxHM(x, µ)φM(x, µ) + power corrections . (6)

Insertions of additional collinear fields or derivatives yield power-suppressed contributions. In
particular, the insertion of an additional collinear gluon field gives rise to three-particle LCDAs.
In order to fully establish the factorization theorem (6) one must show that the convolution
integral over the momentum fraction x converges at the endpoints. This question has been
addressed in the context of the more complicated processes B → γlν [34] and B → K∗γ
in [35]. The behavior near the endpoints can be described by means of soft-collinear fields
[36, 37] with momenta scaling as (n ·psc, n̄ ·psc, p⊥sc) ∼ E(λ2,λ,λ3/2). The contributions of such
modes are always power suppressed. In the present case, we find that endpoint singularities
are absent at leading and subleading power in the large-energy expansion.

LCDAs play the same role for hard exclusive processes which PDFs play for inclusive
ones. While they encode genuinely non-perturbative hadronic physics, they can be rigorously
defined in terms of non-local operator matrix elements in QCD [1–5]. These matrix elements
can be systematically expanded in terms of structures of different twist. When applied to high-
energetic exclusive processes such as the ones considered here, the twist expansion translates
into an expansion in powers of ΛQCD/E. There is an extensive amount of literature devoted
to the study of distribution amplitudes. For light pseudoscalar mesons, the two- and three-
particle LCDAs up to twist-3 order were studied, e.g., in [38], while the corresponding LCDAs
for vector mesons were analyzed, e.g., in [39–41]. We stress that, at the scale of the large
energies released in decays of W and Z bosons, even charm and bottom quarks can be treated
as light quarks, and hence heavy mesons containing these quarks can be described by LCDAs.
This will be discussed further below.

In order to apply these results in practical calculations, it is convenient to define momentum-
space projection operators, which can be applied directly to the decay amplitudes computed
with on-shell external parton states [8, 42]. For all two-particle projections onto LCDAs of
leading and subleading twist, it is sufficient to assign momenta k1 = xk + k⊥ + . . . and
k2 = (1− x)k− k⊥ + . . . to the quark and the anti-quark in the meson M , where k is treated
as a light-like vector (k2 = 0). Meson mass effects of order m2

M enter only at twist-4 level.
They have a tiny numerical impact for the decays considered here, and we will consistently
set m2

M → 0 unless noted otherwise. The variables x and (1 − x) denote the longitudinal
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hard function: 

calculable in PT LCDA:


non-perturbative hadronic physics
decay constant: 


extractable from data



Meson decay constants
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⌧� ! M�⌫⌧

P� ! l�⌫̄l

V 0 ! l+l�

lattice QCD

Decay constants are the amplitudes for producing a meson out of the 
vacuum via a local current:

momentum fractions carried by the quark and the anti-quark in the two-body Fock state of
the meson. Each Feynman diagram gives an expression of the form

ū(k1)A(q, k1, k2) v(k2) = Tr [v(k2) ū(k1)A(q, k1, k2)]

→
∫ 1

0

dxTr [MM (k, x, µ)A(q, k1, k2)]k⊥→0 ,
(7)

where in the last step we have introduced the light-cone projection operator MM(k, µ) for the
meson M , which at higher order contains derivatives with respect to the parton transverse
momentum k⊥. It is understood that k⊥ is set to zero after these derivatives have been
performed.

Up to twist-3 order, the light-cone projector for a pseudoscalar meson can be written in
the form [8, 42]

MP (k, x, µ) =
ifP
4

{

/kγ5 φP (x, µ)− µP (µ) γ5

[

φp(x, µ)− iσµν
kµ n̄ν

k · n̄
φ′
σ(x, µ)

6

+ iσµνk
µ φσ(x, µ)

6

∂

∂k⊥ν

]

+ 3-particle LCDAs

}

.

(8)

Here φP is the leading-twist LCDA of the meson, while φp and φσ denote the two-particle
LCDAs appearing at twist-3 order. These are scale-dependent functions, which we define in
the MS renormalization scheme. The decay constant fP of the meson P is defined in terms of
its matrix element of a local axial-vector current

⟨P (k)| q̄1γµγ5q2 |0⟩ = −ifPk
µ . (9)

The scale-dependent parameter µP (µ) = m2
P/[mq1(µ) +mq2(µ)] governs the normalization of

the twist-3 LCDAs.2 The vector n̄ in the above expression denotes a longitudinal light-like
vector not aligned with k. A convenient choice is to take the photon momentum, n̄ = q.
At twist-3 order the projector also contains three-particle LCDAs containing a quark, an
anti-quark and a gluon. We will see that the contributions of twist-3 LCDAs are strongly
suppressed compared with those of the leading-twist amplitudes. In order to estimate their
effects, we will for simplicity neglect the three-particle LCDAs. This is referred to as the
Wandzura-Wilczek approximation (WWA) [43]. When this is done, the QCD equations of
motion fix the form of the twist-3 LCDAs completely, and one obtains [38]

φp(x, µ)
∣

∣

WWA
= 1 , φσ(x, µ)

∣

∣

WWA
= 6x(1− x) . (10)

The light-cone projection operators for vector mesons are more complicated. They are given in
Appendix A. For our purposes it suffices to quote the projector for a longitudinally polarized
vector meson at leading power. It is

MV∥
(k, x, µ) = −

ifV mV

4

ε∥∗V · n̄
k · n̄

/k φV (x, µ) + · · · = −
ifV
4

/k φV (x, µ) + . . . . (11)

2Note that µπ = m2
π/(mu +md) holds for charged and neutral pions, see e.g. [32].
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The function φV (x, µ) is sometimes called φ∥
V (x, µ) in the literature. We have used that the

longitudinal polarization vector is given by ε∥µV = 1
mV

(

kµ −m2
V

n̄µ

k·n̄

)

. The vector-meson decay
constant fV is defined in terms of the local matrix element

⟨V (k, εV )| q̄1γµq2 |0⟩ = −ifV mV ε
∗µ
V . (12)

Before proceeding, let us comment on the structure of power corrections to the factorization
formula (6). Inspecting the explicit form of the projection operator for a pseudoscalar meson
in (8), and the corresponding projectors for vector mesons given in (A.1) and (A.4), we observe
that consecutive terms in the twist expansion contain even and odd numbers of Dirac matrices
in alternating order. Since the gauge interactions in the Standard Model preserve chirality,
it follows that for a given helicity amplitude either all terms with an even number of Dirac
matrices contribute or all terms containing an odd number, but not both. Consequently, the
SCET expansion for the Z → Mγ decay amplitudes with fixed polarizations of all particles is
an expansion in powers of (ΛQCD/mZ)2. The power counting changes when quark-mass effects
are taken into account. They give rise to chirality-changing vertices, which give corrections
suppressed by mQ/mZ to both the amplitudes and the meson projectors. This leads to power
corrections of order mQΛQCD/m2

Z and (mQ/mZ)2. For heavy quarks with mQ ≫ ΛQCD, the
latter corrections are the dominant ones. However, as long as the relevant quark masses mQ

are much smaller than the hard scale mZ of the process, these corrections are still small. The
present case is different from the situation encountered in exclusive B-meson decays [6–9],
where the presence of a heavy quark mass, which is of the same order as the energy released in
the decay, allows for O(1) chirality-changing interactions. In this case the decay amplitudes
receive first-order ΛQCD/mb corrections.

2.2 Systematics of the Gegenbauer expansion

The leading-twist LCDAs obey an expansion in Gegenbauer polynomials of the form [1, 5]

φM(x, µ) = 6x(1− x)

[

1 +
∞
∑

n=1

aMn (µ)C(3/2)
n (2x− 1)

]

, (13)

which can be inverted to give

aMn (µ) =
2(2n+ 3)

3(n+ 1)(n+ 2)

∫ 1

0

dxC(3/2)
n (2x− 1)φM(x, µ) . (14)

The Gegenbauer moments have a diagonal scale evolution at leading order in perturbation
theory. They are non-perturbative hadronic parameters, which can only be accessed using
data or a non-perturbative approach such as light-cone QCD sum rules (see e.g. [39–41]) or
lattice QCD [44]. In Table 1 we collect the values for the decay constants and the first two
Gegenbauer moments aM1,2 for light pseudoscalar and vector mesons. Our notation is such that
K(∗) ∼ (qs̄) with q = u, d, and x is the momentum fraction of the light quark q.

An expansion such as (13) is useful provided we have some reason to believe that the
infinite series is dominated by the first few terms. Higher-order Gegenbauer moments of the
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Meson M fM [MeV] λM [MeV] ⟨v2⟩ σ

D 204.6± 5.0 460± 110 – 0.246± 0.059

Ds 257.5± 4.6 550± 150 – 0.279± 0.076

B 186± 9 460± 110 – 0.087± 0.021

Bs 224± 10 550± 150 – 0.102± 0.028

J/ψ 403± 5 – 0.30± 0.15 0.158± 0.040

Υ(1S) 684± 5 – 0.10± 0.05 0.091± 0.023

Υ(4S) 326± 17 – 0.10± 0.05 0.091± 0.023

Table 2: Hadronic input parameters for pseudoscalar and vector mesons containing
heavy quarks. Scale-dependent quantities are defined at µ0 = 1GeV. The values for
fD and fDs are taken from [45]. The values for fB and fB are taken from two recent,
unquenched lattice calculations [69, 70], which obtain identical central values but quote
very different error estimates. We quote the averages of the uncertainties given by the
two groups. The values of the J/ψ and Υ(nS) decay constants can be derived from
data, as explained in Appendix B.

significant. In our analysis below we need the first inverse moment of the LCDA with respect
to x, which is of order mM/ΛQCD and cannot be related to a local HQET matrix element.
One defines [6]

∫ 1

0

dx
φM(x, µ0)

x
≡

mM

λM(µ0)
+ . . . , (18)

where the hadronic parameter λM(µ0) ∼ ΛQCD is independent of the heavy-quark mass, and
the dots denote corrections that are power-suppressed relative to the leading term. The
parameter λM is poorly known at present. A QCD sum-rule estimate for the B meson yields
λB(1GeV) = (460±110)MeV [67], and we will use this value in our phenomenological analysis
for both B andD mesons. Concerning Bs andDs mesons, we shall use the estimate λMs−λM ≈
90MeV from [68] and increase the error to ±150MeV. As a plausible model at a low scale
µ0 = 1GeV we take [65]

φM(x, µ0) = Nσ
x(1 − x)

σ2
exp

(

−
x

σ

)

; σ =
λM(µ0)

mM
, (19)

where the normalization constant Nσ ≈ 1 can be determined in closed form. For heavy-
light mesons M ∼ (Qq̄) containing a heavy quark and a light anti-quark, one simply replaces
x ↔ (1− x) in the above relations.

In Table 2 we collect the values for the decay constants and the width parameters for
heavy pseudoscalar and vector mesons, which will be used in our phenomenological analysis.
In the cases of (qQ̄) and (QQ̄) bound states, Gegenbauer moments of roughly n ! 1/σ
give important contributions to the LCDAs, because they are required to resolve the narrow
structures of the LCDAs near the peak region. For example, at µ0 = 1GeV the first 5 (6)
Gegenbauer coefficients of the B-meson (Υ-meson) LCDA are larger in magnitude than 0.1,
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Meson M fM [MeV] aM1 (µ0) aM2 (µ0)

π 130.4± 0.2 0 0.29± 0.08

K 156.2± 0.7 −0.07± 0.04 0.24± 0.08

ρ 212± 4 0 0.17± 0.07

ω 185± 5 0 0.15± 0.12

K∗ 203± 6 −0.06± 0.04 0.16± 0.09

φ 231± 5 0 0.23± 0.08

Table 1: Hadronic input parameters for light pseudoscalar and vector mesons, with
scale-dependent quantities defined at µ0 = 1GeV. We assume isospin symmetry and
use the same values for charged and neutral mesons. The values for fπ and fK are taken
from [45]. The other decay constants are extracted from τ− → M−ντ and V 0 → l+l−

decays [46], as discussed in Appendix B. For all other parameters we adopt the values
compiled in [47] from a combination of results obtained using lattice QCD [44] and
light-cone QCD sum rules (see e.g. [40, 48–51]), including conservative error estimates.

pion were studied in [52, 53] using a QCD sum-rule approach employing non-local vacuum
condensates. These authors find aπ2 = 0.20, aπ4 = −0.14, aπ6 = 5 · 10−3, and aπ8 = aπ10 = 4 · 10−3

at the scale µ0 = 1GeV. Their value of aπ2 is consistent with the result given in Table 1, while
higher moments aπn with n ≥ 6 are estimated to be negligibly small. On the other hand, in
more recent work [54] the authors have performed fits to the first eight Gegenbauer moments
of the pion LCDA using data on the π0γ∗γ form factor obtained by the BaBar and Belle
collaborations [55, 56]. They find aπ2 = 0.10 (0.14), aπ4 = 0.10 (0.23), aπ6 = 0.10 (0.18) and
aπ8 = 0.034 (0.050) at µ0 = 1GeV for Belle (BaBar), which suggests that aπ6 and aπ8 may not
be insignificant. In our phenomenological analysis we will vary aM4 (µ0) between −0.15 and
+0.15 for all light mesons and use this to estimate the effect of unknown higher Gegenbauer
moments. With this treatment, the relevant combination of Gegenbauer coefficients given in
relation (44) below agrees with all of the above models within our quoted uncertainties.

It is an important question to ask what can be said on general grounds about the behavior
of the Gegenbauer expansion. It is commonly assumed, and is supported by power-counting
analyses in SCET, that the leading-twist LCDAs vanish at the endpoints x = 0 and x = 1,
such that the integrals

∫ 1

0
dx
x φM(x) and

∫ 1

0
dx
1−x φM(x) converge. This statement implies that

the infinite sums
∑

n a
M
n and

∑

n(−1)n aMn converge. Barring accidental cancellations, this
requires that for large n the coefficients aMn fall off faster than 1/n, and this condition should
hold for all values of µ0. From a physical point of view, high-rank Gegenbauer polynomials
C(3/2)

n (2x− 1) with n ≫ 1 resolve structures on scales ∆x ∼ 1/n. For a light meson M , it is
reasonable to assume that the LCDA φM(x) does not exhibit pronounced structures at scales
much smaller than O(1), in which case the coefficients aMn must decrease rapidly at large n.

The LCDAs of heavy mesons are an exception to this rule, since the presence of the heavy-
quark mass introduces a distinct scale. For a quarkonium state M ∼ (QQ̄) composed of two
identical heavy quarks, the LCDA peaks at x = 1/2 and has a width that tends to zero in the
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Light-cone distribution amplitudes (LCDAs)

Momentum distribution of partons in a given Fock state of a meson 
(quark-antiquark, quark-antiquark-gluon, …):


Expansion in Gegenbauer polynomials (diagonalizes evolution at LO):


• Gegenbauer moments fall off faster than 1/n for large n

• odd moments are SU(3)-violating effects

• all moments                    (except             ) in the limit

• model predictions obtained using lattice QCD, QCD sum rules and 

effective field theories (NRQCD, HQET)    

6

The function φV (x, µ) is sometimes called φ∥
V (x, µ) in the literature. We have used that the

longitudinal polarization vector is given by ε∥µV = 1
mV

(

kµ −m2
V

n̄µ

k·n̄

)

. The vector-meson decay
constant fV is defined in terms of the local matrix element

⟨V (k, εV )| q̄1γµq2 |0⟩ = −ifV mV ε
∗µ
V . (12)

Before proceeding, let us comment on the structure of power corrections to the factorization
formula (6). Inspecting the explicit form of the projection operator for a pseudoscalar meson
in (8), and the corresponding projectors for vector mesons given in (A.1) and (A.4), we observe
that consecutive terms in the twist expansion contain even and odd numbers of Dirac matrices
in alternating order. Since the gauge interactions in the Standard Model preserve chirality,
it follows that for a given helicity amplitude either all terms with an even number of Dirac
matrices contribute or all terms containing an odd number, but not both. Consequently, the
SCET expansion for the Z → Mγ decay amplitudes with fixed polarizations of all particles is
an expansion in powers of (ΛQCD/mZ)2. The power counting changes when quark-mass effects
are taken into account. They give rise to chirality-changing vertices, which give corrections
suppressed by mQ/mZ to both the amplitudes and the meson projectors. This leads to power
corrections of order mQΛQCD/m2

Z and (mQ/mZ)2. For heavy quarks with mQ ≫ ΛQCD, the
latter corrections are the dominant ones. However, as long as the relevant quark masses mQ

are much smaller than the hard scale mZ of the process, these corrections are still small. The
present case is different from the situation encountered in exclusive B-meson decays [6–9],
where the presence of a heavy quark mass, which is of the same order as the energy released in
the decay, allows for O(1) chirality-changing interactions. In this case the decay amplitudes
receive first-order ΛQCD/mb corrections.

2.2 Systematics of the Gegenbauer expansion

The leading-twist LCDAs obey an expansion in Gegenbauer polynomials of the form [1, 5]

φM(x, µ) = 6x(1− x)

[

1 +
∞
∑

n=1

aMn (µ)C(3/2)
n (2x− 1)

]

, (13)

which can be inverted to give

aMn (µ) =
2(2n+ 3)

3(n+ 1)(n+ 2)

∫ 1

0

dxC(3/2)
n (2x− 1)φM(x, µ) . (14)

The Gegenbauer moments have a diagonal scale evolution at leading order in perturbation
theory. They are non-perturbative hadronic parameters, which can only be accessed using
data or a non-perturbative approach such as light-cone QCD sum rules (see e.g. [39–41]) or
lattice QCD [44]. In Table 1 we collect the values for the decay constants and the first two
Gegenbauer moments aM1,2 for light pseudoscalar and vector mesons. Our notation is such that
K(∗) ∼ (qs̄) with q = u, d, and x is the momentum fraction of the light quark q.

An expansion such as (13) is useful provided we have some reason to believe that the
infinite series is dominated by the first few terms. Higher-order Gegenbauer moments of the
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hadronic state. The collinear quark and gluon fields are introduced as gauge-invariant objects
dressed with Wilson lines. Explicitly, one defines [30, 31]

Xc =
/n/̄n

4
W †

c q , Aµ
c⊥ = W †

c (iD
µ
c⊥Wc) , (1)

where iDµ
c = i∂µ + igAµ

c denotes the covariant collinear derivative, and

Wc(x) = P exp

(

ig

∫ 0

−∞
dt n̄ · Ac(x+ tn̄)

)

(2)

is a collinear Wilson line extending from x to infinity along the direction n̄. Both fields are
of O(λ) in SCET power counting. Adding more component fields to an operator always leads
to further power suppression. At leading order in λ, the operators with a non-zero matrix
element between the vacuum and a single meson state are thus of the form X̄c(tn̄) . . . Xc(0)
and Aµ

c⊥(tn̄) . . . Ac⊥µ(0), where without loss of generality we set x = 0 for one of the fields.
Since the effective collinear fields are gauge invariant by themselves, composite operators built
out of these fields can be non-local along the light-like direction n̄. The two-gluon operator
would only be relevant for decays into mesons containing a flavor-singlet component on their
wave functions, such as the pseudoscalar mesons η and η′ [32]. Such decays will be discussed
in a forthcoming publication [33]. It follows that at leading power in the expansion in λ, the
Z → Mγ and W → Mγ decay amplitudes into non-singlet final states can be written in the
factorized form

A =
∑

i

∫

dtCi(t, µ) ⟨M(k)| X̄c(tn̄)
/̄n

2
Γi Xc(0)|0⟩+ power corrections

=
∑

i

∫

dtCi(t, µ) ⟨M(k)| q̄(tn̄)
/̄n

2
Γi [tn̄, 0] q(0)|0⟩+ power corrections,

(3)

where µ is the factorization scale, and Γi ∈ {1, γ5, γµ⊥}. The four matrices (/̄n/2)Γi provide a
basis of Dirac matrices sandwiched between two collinear quark spinors. The Wilson coeffi-
cients Ci(t) are process dependent and can be calculated perturbatively. In the last step we
have used the definition (1) and combined the two Wilson lines Wc(tn̄)W †

c (0) ≡ [tn̄, 0] into a
straight Wilson line extending from 0 to tn̄. The meson matrix elements of the bi-local oper-
ators in the second line define the leading-order LCDAs of pseudoscalar and vector mesons.
Specifically, one has

⟨M(k)| q̄(tn̄)
/̄n

2
(γ5) [tn̄, 0] q(0)|0⟩ = −ifME

∫ 1

0

dx eixtn̄·k φM(x, µ) ; M = P, V∥ ,

⟨V⊥(k)| q̄(tn̄)
/̄n

2
γµ⊥ [tn̄, 0] q(0)|0⟩ = −if⊥

V (µ)E ε⊥∗µ
V

∫ 1

0

dx eixtn̄·k φ⊥
V (x, µ) ,

(4)

where E = n̄ · k/2 denotes the energy of the meson in the rest frame of the decaying boson,
fP and fV are the decay constants of pseudoscalar and vector mesons defined in terms of their
matrix elements of local (axial-)vector currents, and f⊥

V (µ) is a scale-dependent vector-meson
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RG evolution effects

RG evolution from μ0 up to the electroweak scale changes the shapes 
of the LCDAs significantly, as they approach closer to the asymptotic 
form


Evolution of moments:

7

�M (x, µ ! 1) = 6x(1� x)

Our final expressions for the decay amplitudes will contain the scale-dependent, leading-
twist LCDAs φM(x, µ) with M = P, V∥. These functions satisfy the integro-differential evolu-
tion equation

µ
d

dµ
φM(x, µ) = −

∫ 1

0

dy V (x, y, µ)φM(y, µ) , (28)

where V (x, y, µ) = V0(x, y)
CFαs(µ)

π + O(α2
s). The eigenfunctions of the one-loop Brodsky-

Lepage kernel V0(x, y) in (22) are the Gegenbauer polynomials 6x(1 − x)C(3/2)
n (2x − 1), and

hence the Gegenbauer moments an(µ) defined in (13) are multiplicatively renormalized at this
order. They obey the RG equation [1]

µ
d

dµ
aMn (µ) = −γn

αs(µ)

4π
aMn (µ) , (29)

where

γn = 2CF

(

4Hn+1 −
2

(n + 1)(n+ 2)
− 3

)

, with Hn+1 =
n+1
∑

k=1

1

k
. (30)

The evolution of the leading-twist LCDAs at two-loop order has been studied in [77–80]. The
RG equation for the Gegenbauer moments becomes more complicated at this order, since the
scale dependence of aMn (µ) receives contributions proportional to aMk (µ) with k = 0, . . . , n [79–
81]. The evolution equation can still be solved analytically using an iterative scheme. Explicit
results for the lowest moments can be found, e.g., in [50]. However, given that all present
estimates of the hadronic parameters aMn are afflicted with large theoretical uncertainties, it
is sufficient for all practical purposes to use the leading-order solution (29). It reads

aMn (µ) =

(

αs(µ)

αs(µ0)

)γn/2β0

aMn (µ0) , (31)

where β0 =
11
3 Nc− 2

3nf is the first coefficient of the QCD β function. Here µ0 ∼ 1GeV denotes
a low scale, at which the Gegenbauer moments are derived from a non-perturbative approach,
while µ is a high scale to which the LCDAs are evolved. In our analysis this scale is set by the
mass of the decaying electroweak boson. Note that one must adjust the values of β0 whenever
µ crosses a flavor threshold. All of the anomalous dimensions are strictly positive, which
implies that aMn (µ) → 0 in the formal limit µ → ∞. Indeed, for large n the evolution supplies

an additional suppression factor (1/n)K with K = CFαs

π ln µ2

µ2
0
. In this limit, the leading-twist

LCDAs approach the asymptotic form 6x(1− x).
Figure 3 shows the RG evolution of the LCDAs of the kaon, J/ψ meson and B meson

from a low scale µ0 = 1GeV up to a high scale mZ . We use the Gegenbauer moments and
width parameters collected in Tables 1 and 2. For light mesons we truncate the Gegenbauer
expansion (13) at n = 2. For heavy mesons we use the model LCDAs given in (17) and (19),
compute their first 20 Gegenbauer moments, evolve the corresponding coefficients aMn from
µ0 to mZ , and reconstruct the LCDAs at the high scale from (13). The dotted line in the
plots shows the asymptotic form 6x(1 − x). Evolution effects alter the shapes of the various
distributions in a significant way. At the electroweak scale, the LCDAs are significantly closer

14

Figure 3: RG evolution of the LCDAs of the kaon (left), the J/ψ meson (middle) and
the B meson (right) from a low scale µ0 = 1GeV (dashed lines) to a high scale µ = mZ

(solid lines). The dotted grey line shows the asymptotic form 6x(1−x) for comparison.

to the asymptotic form 6x(1−x) than at a low hadronic scale. Consequently, RG effects render
our predictions more insensitive to poorly determined hadronic input parameters. Notice, in
particular, that the LCDA of the J/ψ meson at µ = mZ is as close to the asymptotic form
as the kaon LCDA. In practice, the LCDAs of heavy mesons at a scale much larger than the
heavy-quark mass can be well described in terms of a Gegenbauer expansion truncated after
a few Gegenbauer moments.

2.4 Flavor wave functions of neutral mesons

The couplings of photons and of the electroweak gauge bosons W and Z to fermions are flavor
dependent. While the flavor content of charged mesons is unambiguous, for neutral mesons
complications arise from the fact that a given meson can be a superposition of different flavor
components. We write the flavor wave function of the neutral final-state meson M0 in the
form

|M0⟩ =
∑

q=u,d,s,c,b

cMq |qq̄⟩ ; with
∑

q

|cMq |2 = 1 . (32)

For heavy mesons containing charm or bottom quarks such effects can safely be neglected.
The heavy mesons ηc and J/ψ have cc = 1, while ηb and Υ have cb = 1. Mixing effects can
however be important for light mesons.

Following [32], we assume isospin symmetry of all hadronic matrix elements, but we dif-
ferentiate between the matrix elements of mesons containing up or down quarks and those
containing strange quarks. The π0 and ρ0 mesons are members of an isospin triplet and have
flavor content (|uū⟩− |dd̄⟩)/

√
2. Things get more complicated when we consider the mesons η,

η′ and ω, φ, however. In the SU(3) flavor-symmetry limit, the pseudoscalar meson η is a flavor
octet and η′ a flavor singlet. However, it is known empirically that SU(3)-breaking corrections
to these assignments are large. In the following we shall not rely on SU(3) flavor symmetry,
but instead introduce another assumption, expected to be accurate at the 10% level. In the
absence of the axial anomaly, the flavor states |ηq⟩ = (|uū⟩ + |dd̄⟩)/

√
2 and ηs⟩ = |ss̄⟩ mix

only through OZI-violating effects, which are known phenomenologically to be small. It is
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√
2. Things get more complicated when we consider the mesons η,

η′ and ω, φ, however. In the SU(3) flavor-symmetry limit, the pseudoscalar meson η is a flavor
octet and η′ a flavor singlet. However, it is known empirically that SU(3)-breaking corrections
to these assignments are large. In the following we shall not rely on SU(3) flavor symmetry,
but instead introduce another assumption, expected to be accurate at the 10% level. In the
absence of the axial anomaly, the flavor states |ηq⟩ = (|uū⟩ + |dd̄⟩)/
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Exclusive radiative decays Z→Mγ



Factorization of the decay amplitude

Form-factor decomposition of the decay amplitude:


At leading power, the Z-boson (and the photon) have transverse 
polarization, while a final-state vector meson is longitudinally polarized


Diagrams at LO and NLO:


therefore reasonable to assume that the axial anomaly is the only effect that mixes the two
flavor states [82, 83]. This assumption implies, in particular, that the vector mesons ω and
φ are pure (|uū⟩ + |dd̄⟩)/

√
2 and |ss̄⟩ states, respectively, as is indeed the case to very good

approximation. The anomaly introduces an effective mass term for the system of η and η′

states, which is not diagonal in the flavor basis {|ηq⟩, |ηs⟩}. Since this is by assumption the
only mixing effect, one obtains a mixing scheme with a single mixing angle in the flavor basis.

As explained in [32], the η and η′ mesons have a leading-twist two-gluon LCDA besides the
LCDAs corresponding to the quark-anti-quark Fock states ηq and ηs. The two-gluon LCDA
contributes to the Z → η(′)γ decay amplitudes at order αs, through fermion box graphs with
Zγgg as external particles. A detailed analysis of these decays will be presented elsewhere [33].

3 Radiative decays of electroweak gauge bosons

We now apply our general approach to study the rare, exclusive radiative decays Z → Mγ
and W → Mγ, where M denotes a pseudoscalar (P ) or vector meson (V ). The leading-order
Feynman diagrams contributing to the first process were already shown in Figure 1. We only
consider cases where the mass of the final-state meson is much smaller than the mass of the
decaying boson. Up to corrections of order (mM/mZ,W )2 this mass can then be set to zero.

3.1 Radiative hadronic decays of Z bosons

We begin our analysis with the decays Z0 → M0γ. We find that, at leading order in the
expansion in ΛQCD/mZ , only pseudoscalar or longitudinally polarized vector mesons can be
produced. The corresponding decay amplitudes can be written in the general form

iA(Z → Mγ) = ±
egfM

2 cos θW

[

iϵµναβ
kµqνεαZ ε

∗β
γ

k · q
FM
1 −

(

εZ · ε∗γ −
q · εZ k · ε∗γ

k · q

)

FM
2

]

, (33)

where the upper (lower) sign refers to the case where M = P (V∥). Here θW is the electroweak
mixing angle. Both the photon and the Z boson are transversely polarized with respect to the
decay axis. The second term inside the brackets can be written more compactly as ε⊥Z ·ε⊥∗

γ , and
below we use this as a short-hand notation. We use a convention where ϵ0123 = −1. For neutral
mesons that are eigenstates of the charge-conjugation operation, C invariance implies [24]

FM
2 = 0 . (34)

The decay amplitudes are then proportional to the vector product εZ × ε∗γ of the transversely
polarized photon and Z boson. However, in new-physics models in which the Z boson has
flavor-changing neutral-current (FCNC) couplings, Z → Mγ decays into mesons that are not
flavor diagonal (and hence not eigenstates of C) can occur. In this case relation (34) no longer
holds. In complete generality, the decay rates, summed (averaged) over the polarization states
of the photon (Z boson), are obtained as

Γ(Z → Mγ) =
αmZf 2

M

6v2

(

∣

∣FM
1

∣

∣

2
+
∣

∣FM
2

∣

∣

2
)

. (35)
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Figure 2: One-loop QCD corrections to the first diagram in Figure 1. Analogous
corrections exist for the other diagram.

Besides the subtraction of 1/ϵ poles using dimensional regularization in the MS scheme,
one must carefully address the question of how to define γ5 in d ̸= 4 dimensions. Some of
the amplitudes considered in this work involve traces of Dirac matrices containing a single
insertion of γ5. It is well known that for such traces the naive dimensional regularization
scheme with anti-commuting γ5 is algebraically inconsistent. Here we employ the ’tHooft-
Veltman (HV) scheme [72], in which γ5 = iγ0γ1γ2γ3 anti-commutes with the four matrices γµ

with µ ∈ {0, 1, 2, 3}, while it commutes with the remaining (d− 4) Dirac matrices γµ⊥.
3 While

this definition is mathematically consistent, it violates the Ward identities of chiral gauge
theories by finite terms, which must be restored order by order in perturbation theory [74]. In
the present case, this is accomplished by performing the finite renormalization Aµ = ZHVA

µ
HV

of the axial-vector current, where [75]

ZHV(µ) = 1−
CFαs(µ)

π
+O(α2

s) . (24)

In addition, the leading-twist LCDA of a pseudoscalar meson, which is defined in terms of a
matrix element of a non-local axial-vector current on the light-cone, receives a finite renor-
malization of the form

φP,HV(x, µ) =

∫ 1

0

dy Z−1
HV(x, y, µ)φP (y, µ) , (25)

where [76]

Z−1
HV(x, y, µ) = δ(x− y) +

2CFαs(µ)

π

[

x

y
θ(y − x) +

1− x

1− y
θ(x− y)

]

+O(α2
s) . (26)

This redefinition is important to restore the proper normalization of the LCDA φP (x, µ).
Integrating relation (25) over x, we find that

∫ 1

0

dxφP,HV(x, µ) = Z−1
HV(µ)

∫ 1

0

dy φP (y, µ) = Z−1
HV(µ) , (27)

with ZHV given in (24). The integral turns the matrix element of the non-local axial-vector
current into the corresponding local matrix element.

3For the purposes of our analysis, the HV scheme is equivalent but more convenient than the scheme
proposed by Larin [73].
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Z0

γ

Z0

γ

Figure 1: Leading-order Feynman diagrams for the radiative decays Z0 → M0γ. The
meson bound state is represented by the gray blob.

M , and as a result the QCD factorization approach can be tested at energies of order 10GeV,
about a factor 2 higher than those available in exclusive B-meson decays. We round off our
study in Section 5 with some experimental considerations. Our main results are summarized
in Section 6. Technical details of our calculations and the extraction of meson decay constants
are relegated to three appendices.

2 Theoretical framework

Our main focus in this work is on the rare, exclusive radiative decays Z → Mγ and W → Mγ,
where M denotes a pseudoscalar or vector meson. We assign momentum k to the final-state
meson and q to the photon. The leading-order Feynman diagrams for the case of Z → Mγ
are shown in Figure 1. The decay plane is spanned by the vectors k and q. We will refer to
vectors in this plane as being longitudinal, and to vector orthogonal to it as being transverse.
We only consider cases where the mass of the final-state meson satisfies mM ≪ mZ . Up to
corrections suppressed as (mM/mZ)2, this mass can then be set to zero. In this limit, we have
kµ = Enµ and qµ = En̄µ, where E = mZ/2 is the energy of the final-state particles in the
Z-boson rest frame, and n and n̄ are two light-like vectors satisfying n · n̄ = 2.

2.1 Derivation of the factorization formula

For the purposes of this discussion we work in the rest frame of the decaying heavy boson. The
decay amplitudes can be calculated from first principles using the QCD factorization approach
[1–5], because the energy E released to the final-state meson is much larger than the scale
of long-distance hadronic physics. At leading power in an expansion in ΛQCD/mZ , they can
be written as convolutions of calculable hard-scattering coefficients with LCDAs of the meson
M . A simple way to derive the corresponding factorization theorem employs the formalism of
SCET [10–13]. It provides a systematic expansion of decay amplitudes in powers of a small
expansion parameter λ = ΛQCD/E. The light final-state meson moving along the direction nµ

can be described in terms of collinear quark, anti-quark and gluon fields. These particles carry
collinear momenta pc that are approximately aligned with the direction n. Their components
scale like (n · pc, n̄ · pc, p⊥c ) ∼ E(λ2, 1,λ). Note that p2c ∼ Λ2

QCD, as appropriate for an exclusive

4

8



Factorization of the decay amplitude

Form factors are related to overlap integrals of hard functions with LCDAs 
and can be expressed in terms of Gegenbauer moments:


odd momentseven moments

depend on quark electric charges and Z-boson couplings

Figure 4: Scale dependence of the combinations C(±)
n (mZ , µ) aMn (µ)/aMn (µ0) for the

first two Gegenbauer moments (n = 1, 2). The red dashed lines show the results at

leading-order, where C(±)
n (mZ , µ) = 1. The blue and yellow lines show the results at

next-to-leading order obtained when the one-loop expressions in (40) are used.

Note that c(+)
0 = −5 and c(−)

0 = −4 are pure numbers. Using the evolution equations (29) and
the explicit expressions for the one-loop anomalous dimensions given in (30), it is straight-
forward to check that the master integrals in (39) are independent of the factorization scale
µ. Indeed, the coefficient of the logarithm in (41) is equal to −γn/(2CF ). Note also that the
imaginary parts associated with the logarithm do not contribute to the decay rates at O(αs).

In Figure 4, we study the scale dependence of individual terms in the sums over Gegen-
bauer moments in (39) at leading (dashed red lines) and next-to-leading order (solid lines) in
perturbation theory. At leading order the µ dependence of the Gegenbauer moments, shown
explicitly in (31), is left uncompensated, and hence a significant scale dependence arises. At
next-to-leading order this dependence is compensated by the logarithmic terms contained in
the one-loop corrections (41) to the hard-scattering coefficients C(+)

n (mZ , µ) (blue lines) and

C(−)
n (mZ , µ) (orange lines). The resulting next-to-leading order curves exhibit excellent sta-

bility under variations of the factorization scale in the interval mZ/2 < µ < 2mZ .
In terms of the master integrals defined in (39), the form factors FM

i are given by

FM
1 =

QM

6

[

IM+ (mZ) + ĪM+ (mZ)
]

= QM

∞
∑

n=0

C(+)
2n (mZ , µ) a

M
2n(µ) ,

FM
2 =

Q′
M

6

[

IM− (mZ)− ĪM− (mZ)
]

= −Q′
M

∞
∑

n=0

C(−)
2n+1(mZ , µ) a

M
2n+1(µ) ,

(42)

where
QP =

∑

q

6cPq Qq vq , QV =
∑

q

6cVq Qq aq , (43)

and the coefficients Q′
M and related to QM by exchanging vq ↔ aq. Corrections to the results

(42) arise only at twist-4 level and are suppressed by (ΛQCD/mZ)2 or (mM/mZ)2. They are
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Factorization of the decay amplitude

Form factors are related to overlap integrals of hard functions with LCDAs 
and can be expressed in terms of Gegenbauer moments:


Hard functions in moment space:


with:


      → large logs are resummed to all orders by choosing

Here α = 1/137.036 is the fine-structure constant evaluated at q2 = 0 [45], as appropriate for
a real photon, and v denotes the Higgs vacuum expectation value, which enters through the
relation (g/ cos θW )2 = 4m2

Z/v
2 evaluated at µ = mZ . This can be solved to give

v ≡ v(mZ) = mZ
sin θW cos θW
√

πα(mZ)
= 245.36GeV , (36)

where we have used α(mZ) = 1/127.940 ± 0.014 and sin2 θW = 0.23126 ± 0.00005, with the
weak mixing angle determined from the neutral-current couplings of the Z boson evaluated
at µ = mZ [45]. The form factors FM

i are given in terms of overlap integrals of calculable
hard-scattering coefficients with LCDAs.

Evaluating the diagrams shown in Figures 1 and 2, we find that the relevant hard-scattering
coefficients for the decays V → Mγ (with V = Z,W ) are given by

H±(x,mV , µ) =
1

x

[

1 +
CFαs(µ)

4π
h±(x,mV , µ) +O(α2

s)

]

, (37)

where

h±(x,mV , µ) = (2 lnx+ 3)

(

ln
m2

V

µ2
− iπ

)

+ ln2 x− 9 + (±1− 2)
x ln x

1− x
. (38)

Our result for h+ agrees with a corresponding expression derived in the context of a study of
meson-photon transition form factors at high Q2 performed in [84]. The expression for h− is
new. The relevant convolutions of the hard-scattering coefficients H±(x,mV , µ) with LCDAs
give rise to the master integrals (we define aM0 (µ) ≡ 1)

IM± (mV ) =

∫ 1

0

dxH±(x,mV , µ)φM(x, µ) = 3
∞
∑

n=0

(−1)n C(±)
n (mV , µ) a

M
n (µ) ,

ĪM± (mV ) =

∫ 1

0

dxH±(1− x,mV , µ)φM(x, µ) = 3
∞
∑

n=0

C(±)
n (mV , µ) a

M
n (µ) ,

(39)

with

C(±)
n (mV , µ) = 1 +

CFαs(µ)

4π
c(±)
n

(mV

µ

)

+O(α2
s) . (40)

The integrals IM± arise from the diagrams shown in Figure 2, in which the photon is attached to
the quark inside the meson. Diagrams in which the photon is attached to the anti-quark give
rise to the integrals ĪM± . In evaluating the integrals we have used the Gegenbauer expansion
(13). The two types of integrals are related to each other by the fact that the Gegenbauer

polynomials C(3/2)
n (2x−1) transform into themselves times a factor (−1)n under the exchange

of x ↔ (1 − x). Notice that at tree level the master integrals involve the infinite sums over
Gegenbauer moments with equal coefficients. Employing a technique explained in Appendix C,
we have succeeded to derive a closed expression for the one-loop coefficients c(±)

n (mV /µ). It
reads

c(±)
n

(mV

µ

)

=

[

2

(n + 1)(n+ 2)
− 4Hn+1 + 3

](

ln
m2

V

µ2
− iπ

)

+ 4H2
n+1 −

4(Hn+1 − 1)± 1

(n+ 1)(n+ 2)
+

2

(n+ 1)2(n+ 2)2
− 9 .

(41)
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Here α = 1/137.036 is the fine-structure constant evaluated at q2 = 0 [45], as appropriate for
a real photon, and v denotes the Higgs vacuum expectation value, which enters through the
relation (g/ cos θW )2 = 4m2

Z/v
2 evaluated at µ = mZ . This can be solved to give

v ≡ v(mZ) = mZ
sin θW cos θW
√

πα(mZ)
= 245.36GeV , (36)

where we have used α(mZ) = 1/127.940 ± 0.014 and sin2 θW = 0.23126 ± 0.00005, with the
weak mixing angle determined from the neutral-current couplings of the Z boson evaluated
at µ = mZ [45]. The form factors FM

i are given in terms of overlap integrals of calculable
hard-scattering coefficients with LCDAs.

Evaluating the diagrams shown in Figures 1 and 2, we find that the relevant hard-scattering
coefficients for the decays V → Mγ (with V = Z,W ) are given by

H±(x,mV , µ) =
1

x

[

1 +
CFαs(µ)

4π
h±(x,mV , µ) +O(α2

s)

]

, (37)

where

h±(x,mV , µ) = (2 lnx+ 3)

(

ln
m2

V

µ2
− iπ

)

+ ln2 x− 9 + (±1− 2)
x ln x

1− x
. (38)

Our result for h+ agrees with a corresponding expression derived in the context of a study of
meson-photon transition form factors at high Q2 performed in [84]. The expression for h− is
new. The relevant convolutions of the hard-scattering coefficients H±(x,mV , µ) with LCDAs
give rise to the master integrals (we define aM0 (µ) ≡ 1)

IM± (mV ) =

∫ 1

0

dxH±(x,mV , µ)φM(x, µ) = 3
∞
∑

n=0

(−1)n C(±)
n (mV , µ) a

M
n (µ) ,

ĪM± (mV ) =

∫ 1

0

dxH±(1− x,mV , µ)φM(x, µ) = 3
∞
∑

n=0

C(±)
n (mV , µ) a

M
n (µ) ,

(39)

with

C(±)
n (mV , µ) = 1 +

CFαs(µ)

4π
c(±)
n

(mV

µ

)

+O(α2
s) . (40)

The integrals IM± arise from the diagrams shown in Figure 2, in which the photon is attached to
the quark inside the meson. Diagrams in which the photon is attached to the anti-quark give
rise to the integrals ĪM± . In evaluating the integrals we have used the Gegenbauer expansion
(13). The two types of integrals are related to each other by the fact that the Gegenbauer

polynomials C(3/2)
n (2x−1) transform into themselves times a factor (−1)n under the exchange

of x ↔ (1 − x). Notice that at tree level the master integrals involve the infinite sums over
Gegenbauer moments with equal coefficients. Employing a technique explained in Appendix C,
we have succeeded to derive a closed expression for the one-loop coefficients c(±)

n (mV /µ). It
reads

c(±)
n

(mV

µ

)

=

[

2

(n + 1)(n+ 2)
− 4Hn+1 + 3

](

ln
m2

V

µ2
− iπ

)

+ 4H2
n+1 −

4(Hn+1 − 1)± 1

(n+ 1)(n+ 2)
+

2
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Factorization of the decay amplitude

For flavor-diagonal neutral mesons all odd moments vanish: 


Each term in the sum is formally scale independent:

10

Meson P QP =
∑

q 6c
P
q Qq vq Meson V QV =

∑

q 6c
V
q Qq aq

π0 1
2
√
2

(

1− 4 sin2 θW
)

ρ0 1
2
√
2

ηq
3

2
√
2

(

1− 20
9 sin2 θW

)

ω 3
2
√
2

ηs, ηb
1
2 −

2
3 sin

2 θW φ, Υ 1
2

ηc 1− 8
3 sin

2 θW J/ψ 1

Table 3: Coefficients QM for the ground-state neutral pseudoscalar and vector mesons.

phenomenologically irrelevant. In the above expressions Qq denotes the electric charge of a
quarks in units of e, while vq = 1

2 T
q
3 − sin2 θW Qq and aq = 1

2 T
q
3 (not to be confused with

the Gegenbauer moments) are its vector and axial-vector couplings to the Z boson. Our
finding that the form factors for pseudoscalar and vector mesons in (42) have exactly the
same structure crucially relies on a mathematically consistent treatment of γ5, see Section 2.3.
At tree level C(±)

n = 1, and hence the form factor FM
1 (FM

2 ) is proportional to the infinite sum
of all even (odd) Gegenbauer moments of the meson M . Charge-conjugation invariance implies
that the LCDAs of a flavor-diagonal neutral mesons are symmetric under the exchange of x and
(1−x), and hence for these mesons the odd Gegenbauer moments aM2n+1 vanish. This leads to
relation (34). The non-zero form factor FM

1 involves the infinite sum over the even Gegenbauer
moments times some flavor-dependent coefficients QM , which we collect in Table 3.

Explicit predictions for the leading-twist LCDAs derived by means of non-perturbative
methods are typically obtained at a low hadronic scale µ0 ∼ 1GeV. When these predictions are
used in (42), the expressions for the radiative corrections involve large logarithms ln(m2

Z/µ
2
0) ≈

9, which must be resummed to all orders in perturbation theory to obtain reliable predictions.
This resummation is most readily performed by evaluating the result (42) at the scale µ = mZ

(or any other scale of the same order), in which case we obtain

ReFM
1 = QM

[

0.94 + 1.05 aM2 (mZ) + 1.15 aM4 (mZ) + 1.22 aM6 (mZ) + . . .
]

= QM

[

0.94 + 0.41 aM2 (µ0) + 0.29 aM4 (µ0) + 0.23 aM6 (µ0) + . . .
]

.
(44)

We use the three-loop expression for the running coupling as provided by the RunDec pro-
gram [85], normalized to αs(mZ) = 0.1185 ± 0.0006 [45] and with heavy-quark thresholds at
mb(mb) = 4.163GeV and mc(mc) = 1.279GeV [86]. The Gegenbauer moments at the high
scale µ = mZ in the first line can be related to hadronic input parameters calculated at the
low scale µ0 = 1GeV using the relations (31). In this process the coefficients of the higher
moments get successively smaller.

Decays into a transversely polarized vector meson are only allowed at twist-3 order. This
presents us with an opportunity to study the structure of power corrections with a specific
test case. We adopt the approximation where three-particle LCDAs are neglected. We then
evaluate the diagrams in Figure 1 using the projector for a transversely polarized vector meson
given in Appendix A. The decay amplitude can be decomposed in a form analogous to (33),
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therefore reasonable to assume that the axial anomaly is the only effect that mixes the two
flavor states [82, 83]. This assumption implies, in particular, that the vector mesons ω and
φ are pure (|uū⟩ + |dd̄⟩)/

√
2 and |ss̄⟩ states, respectively, as is indeed the case to very good

approximation. The anomaly introduces an effective mass term for the system of η and η′

states, which is not diagonal in the flavor basis {|ηq⟩, |ηs⟩}. Since this is by assumption the
only mixing effect, one obtains a mixing scheme with a single mixing angle in the flavor basis.

As explained in [32], the η and η′ mesons have a leading-twist two-gluon LCDA besides the
LCDAs corresponding to the quark-anti-quark Fock states ηq and ηs. The two-gluon LCDA
contributes to the Z → η(′)γ decay amplitudes at order αs, through fermion box graphs with
Zγgg as external particles. A detailed analysis of these decays will be presented elsewhere [33].

3 Radiative decays of electroweak gauge bosons

We now apply our general approach to study the rare, exclusive radiative decays Z → Mγ
and W → Mγ, where M denotes a pseudoscalar (P ) or vector meson (V ). The leading-order
Feynman diagrams contributing to the first process were already shown in Figure 1. We only
consider cases where the mass of the final-state meson is much smaller than the mass of the
decaying boson. Up to corrections of order (mM/mZ,W )2 this mass can then be set to zero.

3.1 Radiative hadronic decays of Z bosons

We begin our analysis with the decays Z0 → M0γ. We find that, at leading order in the
expansion in ΛQCD/mZ , only pseudoscalar or longitudinally polarized vector mesons can be
produced. The corresponding decay amplitudes can be written in the general form

iA(Z → Mγ) = ±
egfM

2 cos θW

[

iϵµναβ
kµqνεαZ ε

∗β
γ

k · q
FM
1 −

(

εZ · ε∗γ −
q · εZ k · ε∗γ

k · q

)

FM
2

]

, (33)

where the upper (lower) sign refers to the case where M = P (V∥). Here θW is the electroweak
mixing angle. Both the photon and the Z boson are transversely polarized with respect to the
decay axis. The second term inside the brackets can be written more compactly as ε⊥Z ·ε⊥∗

γ , and
below we use this as a short-hand notation. We use a convention where ϵ0123 = −1. For neutral
mesons that are eigenstates of the charge-conjugation operation, C invariance implies [24]

FM
2 = 0 . (34)

The decay amplitudes are then proportional to the vector product εZ × ε∗γ of the transversely
polarized photon and Z boson. However, in new-physics models in which the Z boson has
flavor-changing neutral-current (FCNC) couplings, Z → Mγ decays into mesons that are not
flavor diagonal (and hence not eigenstates of C) can occur. In this case relation (34) no longer
holds. In complete generality, the decay rates, summed (averaged) over the polarization states
of the photon (Z boson), are obtained as

Γ(Z → Mγ) =
αmZf 2

M

6v2

(

∣

∣FM
1

∣

∣

2
+
∣

∣FM
2

∣

∣

2
)

. (35)
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Figure 4: Scale dependence of the combinations C(±)
n (mZ , µ) aMn (µ)/aMn (µ0) for the

first two Gegenbauer moments (n = 1, 2). The red dashed lines show the results at

leading-order, where C(±)
n (mZ , µ) = 1. The blue and yellow lines show the results at

next-to-leading order obtained when the one-loop expressions in (40) are used.

Note that c(+)
0 = −5 and c(−)

0 = −4 are pure numbers. Using the evolution equations (29) and
the explicit expressions for the one-loop anomalous dimensions given in (30), it is straight-
forward to check that the master integrals in (39) are independent of the factorization scale
µ. Indeed, the coefficient of the logarithm in (41) is equal to −γn/(2CF ). Note also that the
imaginary parts associated with the logarithm do not contribute to the decay rates at O(αs).

In Figure 4, we study the scale dependence of individual terms in the sums over Gegen-
bauer moments in (39) at leading (dashed red lines) and next-to-leading order (solid lines) in
perturbation theory. At leading order the µ dependence of the Gegenbauer moments, shown
explicitly in (31), is left uncompensated, and hence a significant scale dependence arises. At
next-to-leading order this dependence is compensated by the logarithmic terms contained in
the one-loop corrections (41) to the hard-scattering coefficients C(+)

n (mZ , µ) (blue lines) and

C(−)
n (mZ , µ) (orange lines). The resulting next-to-leading order curves exhibit excellent sta-

bility under variations of the factorization scale in the interval mZ/2 < µ < 2mZ .
In terms of the master integrals defined in (39), the form factors FM

i are given by

FM
1 =

QM

6

[

IM+ (mZ) + ĪM+ (mZ)
]

= QM

∞
∑

n=0

C(+)
2n (mZ , µ) a

M
2n(µ) ,

FM
2 =

Q′
M

6

[

IM− (mZ)− ĪM− (mZ)
]

= −Q′
M

∞
∑

n=0

C(−)
2n+1(mZ , µ) a

M
2n+1(µ) ,

(42)

where
QP =

∑

q

6cPq Qq vq , QV =
∑

q

6cVq Qq aq , (43)

and the coefficients Q′
M and related to QM by exchanging vq ↔ aq. Corrections to the results

(42) arise only at twist-4 level and are suppressed by (ΛQCD/mZ)2 or (mM/mZ)2. They are
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strongly reduced sensitivity to hadronic parameters!



Power-suppressed corrections

Power-suppressed contributions to the decay amplitudes with given 
helicities are organized in an expansion in powers of                       for 
light mesons and                    for mesons containing heavy quarks


These corrections are tiny, of order 10-4 for light mesons and at most 1% 
for the heaviest meson we will consider — the Υ(1S)


The QCD factorization approach thus allows for precise predictions, 
which are limited only by our incomplete knowledge of the LCDAs

(⇤QCD/mZ)
2

(mM/mZ)
2

This opens up the possibility for a beautiful program of 
electroweak precision physics and precisions tests of the SM 

and the QCD factorization approach!
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Exclusive radiative decays of Z bosons

Predictions for branching ratios including detailed error estimates:

12

Decay mode Branching ratio asymptotic LO

Z0 → π0γ (9.80 +0.09
− 0.14 µ ± 0.03f ± 0.61a2 ± 0.82a4) · 10−12 7.71 14.67

Z0 → ρ0γ (4.19 +0.04
− 0.06 µ ± 0.16f ± 0.24a2 ± 0.37a4) · 10−9 3.63 5.68

Z0 → ωγ (2.82 +0.03
− 0.04 µ ± 0.15f ± 0.28a2 ± 0.25a4) · 10−8 2.48 3.76

Z0 → φγ (1.04 +0.01
− 0.02 µ ± 0.05f ± 0.07a2 ± 0.09a4) · 10−8 0.86 1.49

Z0 → J/ψ γ (8.02 +0.14
− 0.15 µ ± 0.20f

+0.39
− 0.36 σ) · 10−8 10.48 6.55

Z0 → Υ(1S) γ (5.39 +0.10
− 0.10 µ ± 0.08f

+0.11
− 0.08 σ) · 10−8 7.55 4.11

Z0 → Υ(4S) γ (1.22 +0.02
− 0.02 µ ± 0.13f

+0.02
− 0.02 σ) · 10−8 1.71 0.93

Z0 → Υ(nS) γ (9.96 +0.18
− 0.19 µ ± 0.09f

+0.20
− 0.15 σ) · 10−8 13.96 7.59

Table 4: Predicted branching fractions for various Z → Mγ decays, including error
estimates due to scale dependence (subscript “µ”) and the uncertainties in the meson
decay constants (“f”), the Gegenbauer moments of light mesons (“an”), and the width
parameters of heavy mesons (“σ”). See text for further explanations.

our case, on the other hand, p2 = m2
Z is equal to the mass of the decaying heavy gauge boson,

in which case the above expression does not exhibit a 1/k2 pole, but is instead proportional
to 1/m2

Z . Hence we conclude that A = 0 in (68). Note that in the limit k2 → 0 one obtains
from (69)

1

m2
Z

(

1

ϵ
+ ln

m2
Z

µ2
− iπ + const.

)

, (70)

which is precisely of the form of our (bare) hard-scattering coefficients.

3.4 Phenomenological results

We are now ready to present detailed numerical predictions for the various radiative decay
modes. We start with the decays of the Z boson, using relation (35). Besides the input
parameters already mentioned, we need the Z-boson mass mZ = (91.1876± 0.0021)GeV and
total width ΓZ = (2.4955±0.0009)GeV [45]. When squaring the decay amplitudes, we expand
the resulting expressions consistently to first order in αs. The imaginary parts of the form
factors in (42) do not enter at this order. Our results are presented in Table 4. Significant
uncertainties in our predictions arise from the hadronic input parameters, in particular the
meson decay constants (see Appendix B) and the various Gegenbauer moments. Their impact
is explicitly shown in the table. Our error budget also includes a perturbative uncertainty,
which we estimate by varying the factorization scale by a factor of 2 about the default value
µ = mZ . All other uncertainties, such as those in the values of Standard Model parameters,
are negligible. Note also that power corrections from higher-twist LCDAs are bound to be
negligibly small, since they scale like (ΛQCD/mZ)2 for light mesons and at most like (mM/mZ)2

for heavy ones. The predicted branching fractions range from about 10−11 for Z0 → π0γ to
about 10−7 for Z0 → J/ψ γ. In the last row, the symbol Υ(nS) means that we sum over
the first three Υ states (n = 1, 2, 3). Strong, mode-specific differences arise foremost from the
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Exclusive radiative decays of Z bosons

Predictions for branching ratios including detailed error estimates:
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Table 4: Predicted branching fractions for various Z → Mγ decays, including error
estimates due to scale dependence (subscript “µ”) and the uncertainties in the meson
decay constants (“f”), the Gegenbauer moments of light mesons (“an”), and the width
parameters of heavy mesons (“σ”). See text for further explanations.

our case, on the other hand, p2 = m2
Z is equal to the mass of the decaying heavy gauge boson,

in which case the above expression does not exhibit a 1/k2 pole, but is instead proportional
to 1/m2

Z . Hence we conclude that A = 0 in (68). Note that in the limit k2 → 0 one obtains
from (69)
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which is precisely of the form of our (bare) hard-scattering coefficients.

3.4 Phenomenological results

We are now ready to present detailed numerical predictions for the various radiative decay
modes. We start with the decays of the Z boson, using relation (35). Besides the input
parameters already mentioned, we need the Z-boson mass mZ = (91.1876± 0.0021)GeV and
total width ΓZ = (2.4955±0.0009)GeV [45]. When squaring the decay amplitudes, we expand
the resulting expressions consistently to first order in αs. The imaginary parts of the form
factors in (42) do not enter at this order. Our results are presented in Table 4. Significant
uncertainties in our predictions arise from the hadronic input parameters, in particular the
meson decay constants (see Appendix B) and the various Gegenbauer moments. Their impact
is explicitly shown in the table. Our error budget also includes a perturbative uncertainty,
which we estimate by varying the factorization scale by a factor of 2 about the default value
µ = mZ . All other uncertainties, such as those in the values of Standard Model parameters,
are negligible. Note also that power corrections from higher-twist LCDAs are bound to be
negligibly small, since they scale like (ΛQCD/mZ)2 for light mesons and at most like (mM/mZ)2

for heavy ones. The predicted branching fractions range from about 10−11 for Z0 → π0γ to
about 10−7 for Z0 → J/ψ γ. In the last row, the symbol Υ(nS) means that we sum over
the first three Υ states (n = 1, 2, 3). Strong, mode-specific differences arise foremost from the
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Exclusive radiative decays of Z bosons

Predictions for branching ratios including detailed error estimates:

Decay mode Branching ratio asymptotic LO

Z0 → π0γ (9.80 +0.09
− 0.14 µ ± 0.03f ± 0.61a2 ± 0.82a4) · 10−12 7.71 14.67

Z0 → ρ0γ (4.19 +0.04
− 0.06 µ ± 0.16f ± 0.24a2 ± 0.37a4) · 10−9 3.63 5.68

Z0 → ωγ (2.82 +0.03
− 0.04 µ ± 0.15f ± 0.28a2 ± 0.25a4) · 10−8 2.48 3.76

Z0 → φγ (1.04 +0.01
− 0.02 µ ± 0.05f ± 0.07a2 ± 0.09a4) · 10−8 0.86 1.49

Z0 → J/ψ γ (8.02 +0.14
− 0.15 µ ± 0.20f
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− 0.36 σ) · 10−8 10.48 6.55
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+0.02
− 0.02 σ) · 10−8 1.71 0.93

Z0 → Υ(nS) γ (9.96 +0.18
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Table 4: Predicted branching fractions for various Z → Mγ decays, including error
estimates due to scale dependence (subscript “µ”) and the uncertainties in the meson
decay constants (“f”), the Gegenbauer moments of light mesons (“an”), and the width
parameters of heavy mesons (“σ”). See text for further explanations.
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Z is equal to the mass of the decaying heavy gauge boson,

in which case the above expression does not exhibit a 1/k2 pole, but is instead proportional
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Z . Hence we conclude that A = 0 in (68). Note that in the limit k2 → 0 one obtains
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which is precisely of the form of our (bare) hard-scattering coefficients.

3.4 Phenomenological results

We are now ready to present detailed numerical predictions for the various radiative decay
modes. We start with the decays of the Z boson, using relation (35). Besides the input
parameters already mentioned, we need the Z-boson mass mZ = (91.1876± 0.0021)GeV and
total width ΓZ = (2.4955±0.0009)GeV [45]. When squaring the decay amplitudes, we expand
the resulting expressions consistently to first order in αs. The imaginary parts of the form
factors in (42) do not enter at this order. Our results are presented in Table 4. Significant
uncertainties in our predictions arise from the hadronic input parameters, in particular the
meson decay constants (see Appendix B) and the various Gegenbauer moments. Their impact
is explicitly shown in the table. Our error budget also includes a perturbative uncertainty,
which we estimate by varying the factorization scale by a factor of 2 about the default value
µ = mZ . All other uncertainties, such as those in the values of Standard Model parameters,
are negligible. Note also that power corrections from higher-twist LCDAs are bound to be
negligibly small, since they scale like (ΛQCD/mZ)2 for light mesons and at most like (mM/mZ)2

for heavy ones. The predicted branching fractions range from about 10−11 for Z0 → π0γ to
about 10−7 for Z0 → J/ψ γ. In the last row, the symbol Υ(nS) means that we sum over
the first three Υ states (n = 1, 2, 3). Strong, mode-specific differences arise foremost from the
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Comparison with existing predictions

When all Gegenbauer moments are neglected, i.e.                               , we 
obtain for the decay rates:


→ agrees with a formula for                   in Arnellos, Marciano, Parsa (1982)


Manohar obtained an estimate for the                   rate using a local OPE, 
which is too small by a factor (2/3)2 = 4/9 (understood ✓)


Huang and Petriello (2014) performed a calculation of some                    
decay rates using NRQCD and an approach similar to ours, finding: 

Z0 ! ⇡0�
Manohar (1990)

�M (x) = 6x(1� x)

Decay mode Branching ratio asymptotic LO

W± → π±γ (4.00 +0.06
− 0.11 µ ± 0.01f ± 0.49a2 ± 0.66a4) · 10−9 2.45 8.09

W± → ρ±γ (8.74 +0.17
− 0.26 µ ± 0.33f ± 1.02a2 ± 1.57a4) · 10−9 6.48 15.12

W± → K±γ (3.25 +0.05
− 0.09 µ ± 0.03f ± 0.24a1 ± 0.38a2 ± 0.51a4) · 10−10 1.88 6.38

W± → K∗±γ (4.78 +0.09
− 0.14 µ ± 0.28f ± 0.39a1 ± 0.66a2 ± 0.80a4) · 10−10 3.18 8.47

W± → Dsγ (3.66 +0.02
− 0.07 µ ± 0.12CKM ± 0.13f

+1.47
− 0.82 σ) · 10−8 0.98 8.59

W± → D±γ (1.38 +0.01
− 0.02 µ ± 0.10CKM ± 0.07f

+0.50
− 0.30 σ) · 10−9 0.32 3.42

W± → B±γ (1.55 +0.00
− 0.03 µ ± 0.37CKM ± 0.15f

+0.68
− 0.45 σ) · 10−12 0.09 6.44

Table 5: Predicted branching fractions for various W → Mγ decays, including error
estimates due to scale dependence and the uncertainties in the CKM matrix elements,
the meson decay constants and the LCDAs. The notation is the same as in Table 4.
See text for further explanations.

We now proceed to present our predictions for exclusive radiative decays of W bosons.
In this case we need the input parameters mW = (80.385 ± 0.015)GeV and ΓW = (2.0897 ±
0.0008)GeV, as well as the relevant entries of the quark mixing matrix, which are |Vud| =
0.97425± 0.00022, |Vus| = 0.2253± 0.0008, |Vcs| = 0.986± 0.016, |Vcd| = 0.225± 0.008, |Vcb| =
(41.1±1.3)·10−3, and |Vub| = (4.13±0.49)·10−3 [45]. Starting from relation (56), we obtain the
results shown in Table 5. In this case the pattern of the different decay modes reflects mainly
the pattern of the relevant CKM matrix elements, and to a lesser extent the differences in the
decay constants. The Cabibbo-allowed decays W → πγ, ργ, and Dsγ have branching fractions
of order few times 10−9 to few times 10−8, where decays into heavy mesons are enhanced
due to the structure of the relevant overlap integral in (18). The Cabibbo-suppressed modes
W → K(∗)γ and the strongly CKM-suppressed decay W → Bγ have correspondingly smaller
branching ratios. The uncertainties inherited from CKM elements are shown where they are
significant. In a recent paper, the W± → π±γ branching ratio was estimated to be 0.64 · 10−9

[14], which is about 6.3 times smaller than the value we obtain (see below).
In the last two columns in Tables 4 and 5 we show different approximations to our results.

The first one (labelled “asymptotic”) gives the central values of the branching ratios (in the
appropriate units) obtained if the asymptotic form 6x(1−x) of the meson LCDA is employed.
As we have explained, RG evolution effects from the low hadronic scale µ0 = 1GeV up to
the electroweak scale have the effect of strongly suppressing the contributions from higher
Gegenbauer moments. Indeed, we observe that using the asymptotic form provides reason-
able approximations in most cases (especially for the Z → Mγ modes). The corresponding
expressions for the decay rates read

Γ(Z0 → M0γ)
∣

∣

asymp
=
αmZf 2

M

6v2
Q2

M

[

1−
10

3

αs(mZ)

π

]

,

Γ(W± → M±γ)
∣

∣

asymp
=
αmWf 2

M

24v2
|Vij|2

[

1−
17

3

αs(mW )

π

]

,

(71)

28

Z0 ! P 0�

Z0 ! V 0�

from the evolution of the LCDA from the hard scale MZ down to the phi mass scale, mφ.

We perform a detailed estimate of the remaining sources of theoretical uncertainty affecting

both decays. We find the following final results for the branching ratios:

BSM(Z → J/ψ + γ) = (9.96± 1.86)× 10−8,

BSM(Z → Υ(1S) + γ) = (4.93± 0.51)× 10−8,

BSM(Z → φ+ γ) = (1.17± 0.08)× 10−8. (1)

Although small, it is possible that the heavy quarkonium branching ratios will be accessible

in Run II measurements [12]. Compared to the analogous Higgs-boson decays [3, 4], the

J/ψ and φ branching ratios are smaller by 1-2 orders of magnitude. This is due primarily

to the suppression of the indirect amplitude in the Z-boson decays as compared to the

Higgs decays. This amplitude proceeds through the Zγγ∗ effective coupling, which receives

contributions from Standard Model anomaly diagrams. It depends on the difference between

fermion masses within a generation, and decouples for heavy fermions such as the top quark.

The only numerically-relevant contributions therefore come from the tau lepton, the charm

quark and the bottom quark. Since these fermion masses are small, the indirect amplitude

is small for this process.

Our paper is organized as follows. In Section II, we derive the amplitude for the Z →

J/ψ + γ decay. The Υ decay calculation is identical. We discuss our evaluation of both the

direct and indirect contributions, and our evaluation of the leading QCD and relativistic

corrections. In Section III we describe our calculation of the Z → φ + γ process using

the LCDA approach. We present our numerical results and describe our estimates of the

theoretical uncertainties in Section IV. We conclude in Section V.

II. THE DECAY Z → J/ψ + γ

We begin by discussing the decay Z → J/ψ + γ. Since the calculation of the Υ decay is

identical to the J/ψ we do not present it explicitly. We give numerical results for both modes

in a later section. This process receives contributions from both a direct amplitude and an

indirect amplitude. These are shown respectively in the left and right panels of Fig. 1. We

calculate the direct-amplitude contribution to this process using the non-relativistic QCD

(NRQCD) framework [9]. We include the velocity corrections through O(v2). In addition,

4
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Exclusive radiative decays as BSM probes



Radiative Z decays as a BSM probe

Predictions for branching ratios test Z-boson couplings to quarks:


• at LEP, |ab| and |ac| have been measured to 1% accuracy, but no 
accurate direct determinations of the light-quark couplings have been 
performed


• using our predictions, one could measure |as|, |ad| and |au| to about 6%

14

Z0

γ

Z0

γ

Figure 1: Leading-order Feynman diagrams for the radiative decays Z0 → M0γ. The
meson bound state is represented by the gray blob.

M , and as a result the QCD factorization approach can be tested at energies of order 10GeV,
about a factor 2 higher than those available in exclusive B-meson decays. We round off our
study in Section 5 with some experimental considerations. Our main results are summarized
in Section 6. Technical details of our calculations and the extraction of meson decay constants
are relegated to three appendices.

2 Theoretical framework

Our main focus in this work is on the rare, exclusive radiative decays Z → Mγ and W → Mγ,
where M denotes a pseudoscalar or vector meson. We assign momentum k to the final-state
meson and q to the photon. The leading-order Feynman diagrams for the case of Z → Mγ
are shown in Figure 1. The decay plane is spanned by the vectors k and q. We will refer to
vectors in this plane as being longitudinal, and to vector orthogonal to it as being transverse.
We only consider cases where the mass of the final-state meson satisfies mM ≪ mZ . Up to
corrections suppressed as (mM/mZ)2, this mass can then be set to zero. In this limit, we have
kµ = Enµ and qµ = En̄µ, where E = mZ/2 is the energy of the final-state particles in the
Z-boson rest frame, and n and n̄ are two light-like vectors satisfying n · n̄ = 2.

2.1 Derivation of the factorization formula

For the purposes of this discussion we work in the rest frame of the decaying heavy boson. The
decay amplitudes can be calculated from first principles using the QCD factorization approach
[1–5], because the energy E released to the final-state meson is much larger than the scale
of long-distance hadronic physics. At leading power in an expansion in ΛQCD/mZ , they can
be written as convolutions of calculable hard-scattering coefficients with LCDAs of the meson
M . A simple way to derive the corresponding factorization theorem employs the formalism of
SCET [10–13]. It provides a systematic expansion of decay amplitudes in powers of a small
expansion parameter λ = ΛQCD/E. The light final-state meson moving along the direction nµ

can be described in terms of collinear quark, anti-quark and gluon fields. These particles carry
collinear momenta pc that are approximately aligned with the direction n. Their components
scale like (n · pc, n̄ · pc, p⊥c ) ∼ E(λ2, 1,λ). Note that p2c ∼ Λ2

QCD, as appropriate for an exclusive

4



Radiative Z decays as a BSM probe

Predictions for branching ratios with non-standard FCNC Z-couplings:

15

Decay mode Branching ratio SM background

Z0 → K0γ
[

(7.70± 0.83) |vsd|2 + (0.01± 0.01) |asd|2
]

· 10−8 λ
sin2 θW

α
π ∼ 2 · 10−3

Z0 → D0γ
[

(5.30 +0.67
− 0.43) |vcu|2 + (0.62 +0.36

− 0.23) |acu|2
]

· 10−7 λ
sin2 θW

α
π ∼ 2 · 10−3

Z0 → B0γ
[

(2.08 +0.59
− 0.41) |vbd|2 + (0.77 +0.38

− 0.26) |abd|2
]

· 10−7 λ3

sin2 θW
α
π ∼ 8 · 10−5

Z0 → Bsγ
[

(2.64 +0.82
− 0.52) |vbs|2 + (0.87 +0.51

− 0.33) |abs|2
]

· 10−7 λ2

sin2 θW
α
π ∼ 4 · 10−4

Table 6: Branching fractions for FCNC transitions Z → Mγ, which could arise from
physics beyond the Standard Model. The different theoretical uncertainties have been
added in quadrature. The last column shows our estimates for the irreducible Standard
Model background up to which one can probe the flavor-changing couplings vij and
aij. Here λ ≈ 0.2 is the Wolfenstein parameter.

where Vij is the relevant CKM matrix element for the production of the charged meson M+.
The dominant corrections to the Z → Mγ branching fractions arise from the second Gegen-
bauer moment aM2 , which is positive for light mesons and negative for heavy quarkonia. The
dominant corrections to the W → Mγ branching fractions with kaons, D mesons or B mesons
in the final state arise from the first Gegenbauer moment aM1 . It gives a large positive contri-
bution in all cases. In the case of heavy mesons this effect is particularly pronounced. The
approximate results in (71) are fully consistent with corresponding (tree-level) expressions
derived in [24]. The result for the Z0 → π0γ decay rate derived in [25] is lower than ours by a
factor 4/9, and the formula for the W± → π±γ decay rate derived in [14] differs from (71) by
a factor 2/9. The origin of the discrepancy is related to the fact that the theoretical approach
used in these papers is based on an expansion in a parameter ω0 = 2, and the numerical
estimates are obtained by keeping only the leading term in the expansion – a fact that was
admitted in these papers. In Appendix D we trace the source of the discrepancy in more
detail. In the last column in Tables 4 and 5 (labelled “LO”) we present the branching ratios
one would obtain at tree level using the model predictions for the LCDAs at the low scale µ0.
In this approximation the one-loop QCD corrections, which contain large logarithms of the
form αs ln(m2

Z,W/µ2
0), are omitted. For most decays the corresponding results overshoot the

values obtained at next-to-leading order by significant amounts; only for decays into heavy
quarkonia they underestimate the branching fractions.

Future precision measurements of the exclusive radiative decays Z → Mγ would not only
serve as powerful tests of the Standard Model and of the framework of QCD factorization.
These decays can in principle also be used to search for non-standard FCNC couplings of
the Z boson. If such couplings exist, then the diagrams shown in Figure 1 can lead to final-
state mesons of mixed flavor, such as K0, D0, B0 and Bs. It is straightforward to calculate
the corresponding decay rates in our approach, starting from the general relations (35) and
(42). We parameterize the non-standard vector and axial-vector couplings of the Z boson
by vij and aij , respectively, where i, j are the quark flavors of the final-state meson. Our
predictions for the corresponding branching fractions are given in Table 6. At higher order
some Standard Model background to these searches exists, since electroweak loop graphs such
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Figure 1: Leading-order Feynman diagrams for the radiative decays Z0 → M0γ. The
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M , and as a result the QCD factorization approach can be tested at energies of order 10GeV,
about a factor 2 higher than those available in exclusive B-meson decays. We round off our
study in Section 5 with some experimental considerations. Our main results are summarized
in Section 6. Technical details of our calculations and the extraction of meson decay constants
are relegated to three appendices.

2 Theoretical framework

Our main focus in this work is on the rare, exclusive radiative decays Z → Mγ and W → Mγ,
where M denotes a pseudoscalar or vector meson. We assign momentum k to the final-state
meson and q to the photon. The leading-order Feynman diagrams for the case of Z → Mγ
are shown in Figure 1. The decay plane is spanned by the vectors k and q. We will refer to
vectors in this plane as being longitudinal, and to vector orthogonal to it as being transverse.
We only consider cases where the mass of the final-state meson satisfies mM ≪ mZ . Up to
corrections suppressed as (mM/mZ)2, this mass can then be set to zero. In this limit, we have
kµ = Enµ and qµ = En̄µ, where E = mZ/2 is the energy of the final-state particles in the
Z-boson rest frame, and n and n̄ are two light-like vectors satisfying n · n̄ = 2.

2.1 Derivation of the factorization formula

For the purposes of this discussion we work in the rest frame of the decaying heavy boson. The
decay amplitudes can be calculated from first principles using the QCD factorization approach
[1–5], because the energy E released to the final-state meson is much larger than the scale
of long-distance hadronic physics. At leading power in an expansion in ΛQCD/mZ , they can
be written as convolutions of calculable hard-scattering coefficients with LCDAs of the meson
M . A simple way to derive the corresponding factorization theorem employs the formalism of
SCET [10–13]. It provides a systematic expansion of decay amplitudes in powers of a small
expansion parameter λ = ΛQCD/E. The light final-state meson moving along the direction nµ

can be described in terms of collinear quark, anti-quark and gluon fields. These particles carry
collinear momenta pc that are approximately aligned with the direction n. Their components
scale like (n · pc, n̄ · pc, p⊥c ) ∼ E(λ2, 1,λ). Note that p2c ∼ Λ2

QCD, as appropriate for an exclusive
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Predictions for branching ratios with non-standard FCNC Z-couplings:
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Decay mode Branching ratio SM background
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[

(7.70± 0.83) |vsd|2 + (0.01± 0.01) |asd|2
]

· 10−8 λ
sin2 θW

α
π ∼ 2 · 10−3

Z0 → D0γ
[

(5.30 +0.67
− 0.43) |vcu|2 + (0.62 +0.36

− 0.23) |acu|2
]

· 10−7 λ
sin2 θW

α
π ∼ 2 · 10−3

Z0 → B0γ
[

(2.08 +0.59
− 0.41) |vbd|2 + (0.77 +0.38

− 0.26) |abd|2
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· 10−7 λ3

sin2 θW
α
π ∼ 8 · 10−5

Z0 → Bsγ
[

(2.64 +0.82
− 0.52) |vbs|2 + (0.87 +0.51

− 0.33) |abs|2
]

· 10−7 λ2

sin2 θW
α
π ∼ 4 · 10−4

Table 6: Branching fractions for FCNC transitions Z → Mγ, which could arise from
physics beyond the Standard Model. The different theoretical uncertainties have been
added in quadrature. The last column shows our estimates for the irreducible Standard
Model background up to which one can probe the flavor-changing couplings vij and
aij. Here λ ≈ 0.2 is the Wolfenstein parameter.
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Figure 8: Examples of QED (left) and electroweak radiative corrections (center and
right) to the Z → Mγ decay amplitudes. The last two diagrams can give rise to
flavor-violating decays in the Standard Model.

relevant flavor-dependent coefficients in Table 3, as well as from differences in the values of the
decay constants. The combined uncertainties in the predictions for the branching fractions are
typically of order 10% and are dominated by the uncertainties in the shapes of the LCDAs.
The only exception are the decays Z0 → Υγ, for which the relevant hadronic overlap integral
is constrained by the model-independent relation (16).

In our analysis we neglect two-loop QCD corrections, whose effects should be covered by the
error we estimate from scale variations, and one-loop QED or electroweak radiative corrections,
a few examples of which are shown in Figure 8. Their impact should be much smaller than
the theoretical uncertainties inherent in our predictions. Consider, as a concrete example, the
contribution of the first diagram, which only contributes to the Z → V γ amplitudes. Notice
that the photon propagator 1/k2 with k2 = m2

V is cancelled, because the Z → γγ∗ amplitude
vanishes if both photons are on-shell [87]. As a result, there is no enhancement factor and the
diagram is suppressed, compared with the leading contributions shown in Figure 1, by a factor
α/π ∼ 2 · 10−3. This naive estimate is confirmed by the result of a detailed calculation of this
contribution to the Z → J/ψ γ decay amplitude, which found that its effect leads to a reduction
of the leading contribution by 0.2%, corresponding to a 0.4% correction of the branching ratio
[27]. In the same paper, the authors have presented predictions for three of the Z → V γ decay
modes along with theoretical error estimates. They are Br(Z → φγ) = (11.7 ± 0.8) · 10−9,
Br(Z → J/ψ γ) = (9.96 ± 1.86) · 10−8, and Br(Z → Υ(1S) γ) = (4.93 ± 0.51) · 10−8. The
last two branching ratios are consistent with our findings within errors. Note that in the
NRQCD approach adopted by these authors the decay constants of the heavy quarkonia
are themselves derived from an expansion about the non-relativistic limit. This introduces
additional uncertainties, which can be avoided if the decay constants are extracted from data,
as discussed in Appendix B. The analysis of the decay Z0 → φγ presented in [27] uses an
approach similar to ours but only includes the leading logarithmic evolution effects from the
hadronic scale µ0 = 1GeV to the high scale µ ∼ mZ . Also, the value fφ = (235±5)MeV based
on 2006 data is used for the φ-meson decay constant, which is inconsistent with our updated
value fφ = (210 ± 5)MeV. Rescaling their result with the squared ratio of decay constants
leads to Br(Z0 → φγ) = (9.3±0.6) ·10−9, which is consistent with our result but has a smaller
uncertainty. The non-logarithmic O(αs) corrections included here for the first time reduce the
branching ratio by a significant amount. We also find that the present ignorance about the
precise shape of the φ-meson LCDA gives rise to a larger theoretical uncertainty.
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Indirect upper bounds on FCNC couplings from neutral-meson mixing:


These imply:


If these indirect bounds are used, the                         branching ratios are 
pushed to below 10-14, which makes them unobservable


However, the direct bounds obtainable using our method are model 
independent and should be seen as complementary to the indirect ones!
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Table 7: Indirect constraints on the flavor-changing Z-boson couplings vij and aij (at
95% confidence level) derived from neutral-meson mixing [88–90].

as those shown in the last two diagrams in Figure 8 can give rise to flavor-changing transitions.
Naive dimensional analysis shows that the contributions of these diagrams, relative to the
contributions from the graphs in Figure 9 (in units of the new-physics couplings vij and aij),
scale like (α/π) |VikV ∗

kj|/ sin2 θW , where k can be any one of the three possible generation
indices. The relevant loop functions depend on the dimensionless ratios m2

k/m
2
Z and m2

W/m2
Z ,

which are either of O(1) or can be set to zero. Consequently one can only probe the new-
physics couplings vij and aij up to some irreducible Standard Model background, which is
estimated in the last column in Table 6.

Possible FCNC couplings of the Z boson are heavily constrained by precision flavor physics,
in particular by bounds on the ∆F = 2 mixing amplitudes. It is a straightforward exercise to
match our parameters vij and aij onto the Wilson coefficients in the general effective ∆F = 2
Hamiltonian as defined, e.g., in [88]. We obtain

C1 =
4GF√

2
(vij + aij)

2 , C̃1 =
4GF√

2
(vij − aij)

2 , C5 = −
4GF√

2

(

v2ij − a2ij
)

. (72)

All other coefficients are zero at tree level. Using the bounds compiled in [88] as well as
updated results reported in [89, 90], we find the upper bounds on various combinations of vij
and aij parameters shown in Table 7. The strongest bounds exist for the coefficients C5 of
mixed-chirality operators (right column). They can be avoided by assuming that vij = ±aij ,
such that the flavor-changing couplings are either purely left-handed or purely right-handed.
Under this assumption one finds from the table that |vsd| < 8.5 · 10−5, |vcu| < 7.4 · 10−5,
|vbd| < 1.0 · 10−4 and |vbs| < 3.7 · 10−4, and the same bounds apply to |aij|. If these indirect
bounds are used, then the branching fraction shown in Table 6 are predicted to be at most
a few times 10−15 (a few times 10−14 for the case of Z0 → Bsγ), meaning that they will be
unobservable at the LHC and all currently discussed future facilities. We find it nevertheless
worthwhile to illustrate the general idea of such new-physics searches. First of all, it should be
emphasized that the indirect bounds derived from K−K̄, D−D̄ and Bd,s−B̄d,s mixing are to
some extent model dependent, since one cannot tell whether the flavor violation originates from
the couplings of the Z boson or from some other new particle. It is conceivable that in some
(admittedly fine-tuned) models flavor-violating couplings of the Z boson can be compensated
by the effects of some other, heavy boson. Also, in deriving the bounds on a particular Wilson
coefficient Ci one assumes that a single new-physics operator is present at a time and sets the
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All other coefficients are zero at tree level. Using the bounds compiled in [88] as well as
updated results reported in [89, 90], we find the upper bounds on various combinations of vij
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All other coefficients are zero at tree level. Using the bounds compiled in [88] as well as
updated results reported in [89, 90], we find the upper bounds on various combinations of vij
and aij parameters shown in Table 7. The strongest bounds exist for the coefficients C5 of
mixed-chirality operators (right column). They can be avoided by assuming that vij = ±aij ,
such that the flavor-changing couplings are either purely left-handed or purely right-handed.
Under this assumption one finds from the table that |vsd| < 8.5 · 10−5, |vcu| < 7.4 · 10−5,
|vbd| < 1.0 · 10−4 and |vbs| < 3.7 · 10−4, and the same bounds apply to |aij|. If these indirect
bounds are used, then the branching fraction shown in Table 6 are predicted to be at most
a few times 10−15 (a few times 10−14 for the case of Z0 → Bsγ), meaning that they will be
unobservable at the LHC and all currently discussed future facilities. We find it nevertheless
worthwhile to illustrate the general idea of such new-physics searches. First of all, it should be
emphasized that the indirect bounds derived from K−K̄, D−D̄ and Bd,s−B̄d,s mixing are to
some extent model dependent, since one cannot tell whether the flavor violation originates from
the couplings of the Z boson or from some other new particle. It is conceivable that in some
(admittedly fine-tuned) models flavor-violating couplings of the Z boson can be compensated
by the effects of some other, heavy boson. Also, in deriving the bounds on a particular Wilson
coefficient Ci one assumes that a single new-physics operator is present at a time and sets the
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Table 7: Indirect constraints on the flavor-changing Z-boson couplings vij and aij (at
95% confidence level) derived from neutral-meson mixing [88–90].

as those shown in the last two diagrams in Figure 8 can give rise to flavor-changing transitions.
Naive dimensional analysis shows that the contributions of these diagrams, relative to the
contributions from the graphs in Figure 9 (in units of the new-physics couplings vij and aij),
scale like (α/π) |VikV ∗
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k/m
2
Z and m2

W/m2
Z ,

which are either of O(1) or can be set to zero. Consequently one can only probe the new-
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estimated in the last column in Table 6.
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2
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4GF√

2

(
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)
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All other coefficients are zero at tree level. Using the bounds compiled in [88] as well as
updated results reported in [89, 90], we find the upper bounds on various combinations of vij
and aij parameters shown in Table 7. The strongest bounds exist for the coefficients C5 of
mixed-chirality operators (right column). They can be avoided by assuming that vij = ±aij ,
such that the flavor-changing couplings are either purely left-handed or purely right-handed.
Under this assumption one finds from the table that |vsd| < 8.5 · 10−5, |vcu| < 7.4 · 10−5,
|vbd| < 1.0 · 10−4 and |vbs| < 3.7 · 10−4, and the same bounds apply to |aij|. If these indirect
bounds are used, then the branching fraction shown in Table 6 are predicted to be at most
a few times 10−15 (a few times 10−14 for the case of Z0 → Bsγ), meaning that they will be
unobservable at the LHC and all currently discussed future facilities. We find it nevertheless
worthwhile to illustrate the general idea of such new-physics searches. First of all, it should be
emphasized that the indirect bounds derived from K−K̄, D−D̄ and Bd,s−B̄d,s mixing are to
some extent model dependent, since one cannot tell whether the flavor violation originates from
the couplings of the Z boson or from some other new particle. It is conceivable that in some
(admittedly fine-tuned) models flavor-violating couplings of the Z boson can be compensated
by the effects of some other, heavy boson. Also, in deriving the bounds on a particular Wilson
coefficient Ci one assumes that a single new-physics operator is present at a time and sets the
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Radiative decays h→Vγ as probes of 
light-quark Yukawa couplings



Two competing h→Vγ decay topologies

Decay amplitudes are governed by the destructive interference of an 
“indirect’’ h→γγ*/γZ*→γV pole contribution and a “direct” contribution 
proportional to the quark Yukawa coupling, which can be calculated 
using QCD factorization


Contribution of the on-shell h→γγ amplitude, which is sensitive to new 
physics via κW, κt, κb, κτ, κγγ …, can be eliminated by considering a ratio 
of decay rates
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Bodwin, Petriello, Stoynev, Velasco (2013)

Kagan, Perez, Petriello, Soreq, Stoynev, Zupan (2014)
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Figure 2: Direct (left and center) and indirect (right) contributions to the h → V γ
decay amplitudes. The crossed circle in the third diagram denotes the off-shell h → γγ∗

and h → γZ∗ amplitudes.

using the formalism of soft-collinear effective theory (SCET) [25–28]. It was shown in this
reference that, for a given helicity amplitude, the power corrections to the leading term are
suppressed by (ΛQCD/mh)2 for light mesons and (mQ/mh)2 for mesons containing heavy quarks
of flavor Q. Even for the b-quark these power corrections are negligible. The third diagram
in Figure 2 shows a different production mechanism, in which the vector meson is produced
via the conversion of an off-shell photon or Z boson produced in a h → γγ∗/γZ∗ transition.
We refer to these as the “indirect” contributions. They involves the hadronic matrix element
of a local current and thus can be expressed in terms of the decay constant fV of the vector
meson. The direct contributions are sensitive to the Yukawa couplings of the Higgs boson to
quarks. We shall find that in the SM the direct and indirect contributions to the h → V γ
decay amplitude are of about the same size an interfere destructively for V = Υ(nS), while the
direct contributions are smaller than the indirect ones by factors of about 0.09 for V = J/ψ,
2.3 × 10−3 for V = φ and [xxx] for V = ρ,ω. The sensitivity to the Yukawa couplings thus
crucially relies on the precision with which the indirect contributions can be calculated. We
will come back to this point below.

The most general parametrization of the h → V γ decay amplitude is

iA(h → V γ) = −
efV
2

[

(

ε∗V · ε∗γ −
q · ε∗V k · ε∗γ

k · q

)

F V
1 − iϵµναβ

kµqνε∗αV ε
∗β
γ

k · q
F V
2

]

, (7)

where both the final-state meson and the photon are transversely polarized. The decay con-
stant fV of the vector meson is defined in terms of its matrix element of a local vector current
as

⟨V (k, ε)| q̄γµq |0⟩ = −ifV mV ε
∗µ . (8)

From (7), the decay rate is obtained as

Γ(h → V γ) =
αf 2

V

8mh

(

∣

∣F V
1

∣

∣

2
+
∣

∣F V
2

∣

∣

2
)

. (9)

Here α = 1/137.036 is the fine-structure constant evaluated at q2 = 0 [19], as appropriate for
a real photon.
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of flavor Q. Even for the b-quark these power corrections are negligible. The third diagram
in Figure 2 shows a different production mechanism, in which the vector meson is produced
via the conversion of an off-shell photon or Z boson produced in a h → γγ∗/γZ∗ transition.
We refer to these as the “indirect” contributions. They involves the hadronic matrix element
of a local current and thus can be expressed in terms of the decay constant fV of the vector
meson. The direct contributions are sensitive to the Yukawa couplings of the Higgs boson to
quarks. We shall find that in the SM the direct and indirect contributions to the h → V γ
decay amplitude are of about the same size an interfere destructively for V = Υ(nS), while the
direct contributions are smaller than the indirect ones by factors of about 0.09 for V = J/ψ,
2.3 × 10−3 for V = φ and [xxx] for V = ρ,ω. The sensitivity to the Yukawa couplings thus
crucially relies on the precision with which the indirect contributions can be calculated. We
will come back to this point below.
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where both the final-state meson and the photon are transversely polarized. The decay con-
stant fV of the vector meson is defined in terms of its matrix element of a local vector current
as

⟨V (k, ε)| q̄γµq |0⟩ = −ifV mV ε
∗µ . (8)

From (7), the decay rate is obtained as
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∣
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∣
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Here α = 1/137.036 is the fine-structure constant evaluated at q2 = 0 [19], as appropriate for
a real photon.
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Two competing h→Vγ decay topologies

Ratio of branching fractions:


Advantages:

• leading term predicted without theoretical uncertainties

• effects of h→γZ*→γV amplitude and off-shellness of the intermediate 

boson are power suppressed: δV ~ mV2/mZ,h2 very small even for Υ(1S)

• ratio of branching ratios is insensitive to the unknown total Higgs width
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PRELIMINARY

Predictions for h→J/ψ γ

Features:

• SM branching ratio ~ 3∙10-6 challenging

• 30% measurement would constrain κc to lie within -0.8 and +2.8

• present ATLAS bound suggests that charm quark likely couples more 

weakly to the Higgs boson than the top quark 😊

19

König, MN (in preparation)

Figure 7: Our wonderful results for φ!

Figure 8: Our wonderful results for J/ψ!

Figure 9: Our wonderful results for Υ(1S)!

17

SM

mt

mc
⇡ 270

30% measurement
ATLAS: 1501.03276

[also: Bodwin, Chung, Ee, Lee, Petriello (2014)]

theory uncertainty

[also: Perez, Soreq, Stamou, Tobioka (2015)]



PRELIMINARY

Predictions for h→Y(1S) γ

Features:

• SM branching ratio ~ 5∙10-10 hopeless

• may be possible to probe the interesting region where κb ≈ -1, for which 

the branching fraction would be ~ 10-6 

• present ATLAS bound suggests that bottom quark likely couples more 

weakly to the Higgs boson than the top quark 😊
20

König, MN (in preparation)

Figure 7: Our wonderful results for φ!

Figure 8: Our wonderful results for J/ψ!

Figure 9: Our wonderful results for Υ(1S)!
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SM

mt

mb
⇡ 60

[also: Bodwin, Chung, Ee, Lee, Petriello (2014)]

ATLAS: 1501.03276



PRELIMINARY

Predictions for h→φγ

Features:

• SM branching ratio ~ 2.5∙10-6 very challenging

• 10% measurement would be required to constrain κs to the region 

between -20 and +20,  where the strange quark couples less than half 
as strongly to the Higgs boson than the bottom quark 

Figure 7: Our wonderful results for φ!

Figure 8: Our wonderful results for J/ψ!

and similarly for ∆̃V , where the denominator equals 1 (and hence κeffs = κs) in the SM.
Note that we can even go one step further and eliminate the sensitivity to the decay

constant by considering the ratio

mV

Γ(V → e+e−)

Br(h → V γ)

Br(h → γγ)
=

6

α

(

1−
m2

V

m2
h

)2
∣

∣

∣
1−∆V

∣

∣

∣

2
. (41)

[Generalize this to the case where the CP-odd form factor is not neglected! Quote
ATLAS measurements!]

Figure 9: Our wonderful results for Υ(1S)!
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[also: Kagan et al. (2014)]
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Conclusions



Summary

Predicted branching ratios with theory errors added in quadrature:


• for Z decays, one can trigger on high-energy photon and muons

• estimate that one can get several hundreds of            events at LHC

• ideas for reconstructing                     exists

• reconstructing W decays at LHC is more challenging

• a Z-factory could measure most modes with good precision!
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Mangano, Melia (2014)

(⇢,!,�) + � Kagan et al. (2014)

Decay mode Branching ratio Decay mode Branching ratio

Z0 → π0γ (9.80± 1.03) · 10−12 W± → π±γ (4.00± 0.83) · 10−9

Z0 → ρ0γ (4.19± 0.47) · 10−9 W± → ρ±γ (8.74± 1.91) · 10−9

Z0 → ωγ (2.82± 0.41) · 10−8 W± → K±γ (3.25± 0.69) · 10−10

Z0 → φγ (1.04± 0.12) · 10−8 W± → K∗±γ (4.78± 1.15) · 10−10

Z0 → J/ψ γ (8.02± 0.45) · 10−8 W± → Dsγ (3.66 +1.49
− 0.85) · 10−8

Z0 → Υ(1S) γ (5.39± 0.16) · 10−8 W± → D±γ (1.38 +0.51
− 0.33) · 10−9

Z0 → Υ(4S) γ (1.22± 0.13) · 10−8 W± → B±γ (1.55 +0.79
− 0.60) · 10−12

Table 9: Summary table of our predictions for the branching fractions of exclusive
radiative decays of Z and W bosons. Different sources of theoretical errors have been
added in quadrature.

branching fractions with some accuracy. Precise rate measurements, which would be possible
at a dedicated Z-boson factory, would offer the unique possibility to extract highly non-trivial
information about the LCDAs of various mesons in a completely model-independent way.
More specifically, for each meson M one will be able to extract the sums over the even and
odd Gegenbauer moments,

∑

n a
M
2n(µ) and

∑

n a
M
2n+1(µ), at the electroweak scale µ ∼ mZ ,

up to small and calculable radiative corrections. This is a consequence of the structure of
the basic convolution integrals in (39). We cannot imagine a theoretically cleaner way to get
access to this kind of information. We have also performed an exploratory study of the weak
radiative decays Z → MW , which allow for tests of the QCD factorization approach at lower
scales µ ∼ 10GeV, which are only a few times higher than those relevant to exclusive hadronic
B-meson decays. Our predictions for the corresponding branching fractions obtained at tree
level have been given in Table 8.

Several generalizations and extensions of our work are possible and worth exploring. Our
formalism can be applied in a straightforward way to obtain high-precision predictions for
exclusive radiative (and weak radiative) decays of the Higgs boson, extending previous tree-
level analyses presented in [17–22]. One goal of such studies is to search for enhanced Yukawa
couplings and flavor-changing interactions of the Higgs boson. In this context, new-physics
studies analogous to those presented in Section 3.4 are particularly interesting. Without
further conceptual developments, our formalism can also be extended to calculate the rates
for purely hadronic decays, such as Z,W, h → M1M2 or even decays with more than two
particles in the final state. These extensions are left for future work.

The physics case for studying some of the very rare, exclusive decays of heavy electroweak
bosons is compelling to us. There is some beautiful physics to be explored here, both from
the theoretical and the experimental points of view. We hope that our detailed exploratory
survey will raise sufficient interest that some dedicated feasibility studies for discovering such
decays at the high-luminosity LHC and future lepton colliders will be performed.
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Summary

★ With precise measurements of branching ratios, one can extract — in  
a model-independent way — information about LCDAs (sums over 
even and odd moments at a scale              )


★ It will also be possible to perform a series of novel new-physics 
searches


★ Exclusive radiative decays of Higgs bosons can be used to probe in a 
direct way the Yukawa couplings of the Higgs to light quarks


The physics case for studying these very rare decays is compelling! 
The challenge is to make it possible to observe them! 
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Light-cone distribution amplitudes (LCDAs)

Model predictions based on QCD sum rules & lattice QCD (                    ): 


Model estimate suggest than higher moments (n=6 and higher) for light 
mesons are tiny; will use                                      to estimate such effects

I.1

µ0 = 1GeV

aM4 (µ0) 2 [�0.15, 0.15]

Ball, Braun (1996); Ball et al. (2006, 2007)

Arthur et al. (2010)

Bakulev, Passek-Kumericki, Schroers, Stefanis (2001)

Bakulev, Mikhailov, Stefanis (2003)

Meson M fM [MeV] aM1 (µ0) aM2 (µ0)

π 130.4± 0.2 0 0.29± 0.08

K 156.2± 0.7 −0.07± 0.04 0.24± 0.08

ρ 212± 4 0 0.17± 0.07

ω 185± 5 0 0.15± 0.12

K∗ 203± 6 −0.06± 0.04 0.16± 0.09

φ 231± 5 0 0.23± 0.08

Table 1: Hadronic input parameters for light pseudoscalar and vector mesons, with
scale-dependent quantities defined at µ0 = 1GeV. We assume isospin symmetry and
use the same values for charged and neutral mesons. The values for fπ and fK are taken
from [45]. The other decay constants are extracted from τ− → M−ντ and V 0 → l+l−

decays [46], as discussed in Appendix B. For all other parameters we adopt the values
compiled in [47] from a combination of results obtained using lattice QCD [44] and
light-cone QCD sum rules (see e.g. [40, 48–51]), including conservative error estimates.

pion were studied in [52, 53] using a QCD sum-rule approach employing non-local vacuum
condensates. These authors find aπ2 = 0.20, aπ4 = −0.14, aπ6 = 5 · 10−3, and aπ8 = aπ10 = 4 · 10−3

at the scale µ0 = 1GeV. Their value of aπ2 is consistent with the result given in Table 1, while
higher moments aπn with n ≥ 6 are estimated to be negligibly small. On the other hand, in
more recent work [54] the authors have performed fits to the first eight Gegenbauer moments
of the pion LCDA using data on the π0γ∗γ form factor obtained by the BaBar and Belle
collaborations [55, 56]. They find aπ2 = 0.10 (0.14), aπ4 = 0.10 (0.23), aπ6 = 0.10 (0.18) and
aπ8 = 0.034 (0.050) at µ0 = 1GeV for Belle (BaBar), which suggests that aπ6 and aπ8 may not
be insignificant. In our phenomenological analysis we will vary aM4 (µ0) between −0.15 and
+0.15 for all light mesons and use this to estimate the effect of unknown higher Gegenbauer
moments. With this treatment, the relevant combination of Gegenbauer coefficients given in
relation (44) below agrees with all of the above models within our quoted uncertainties.

It is an important question to ask what can be said on general grounds about the behavior
of the Gegenbauer expansion. It is commonly assumed, and is supported by power-counting
analyses in SCET, that the leading-twist LCDAs vanish at the endpoints x = 0 and x = 1,
such that the integrals

∫ 1

0
dx
x φM(x) and

∫ 1

0
dx
1−x φM(x) converge. This statement implies that

the infinite sums
∑

n a
M
n and

∑

n(−1)n aMn converge. Barring accidental cancellations, this
requires that for large n the coefficients aMn fall off faster than 1/n, and this condition should
hold for all values of µ0. From a physical point of view, high-rank Gegenbauer polynomials
C(3/2)

n (2x− 1) with n ≫ 1 resolve structures on scales ∆x ∼ 1/n. For a light meson M , it is
reasonable to assume that the LCDA φM(x) does not exhibit pronounced structures at scales
much smaller than O(1), in which case the coefficients aMn must decrease rapidly at large n.

The LCDAs of heavy mesons are an exception to this rule, since the presence of the heavy-
quark mass introduces a distinct scale. For a quarkonium state M ∼ (QQ̄) composed of two
identical heavy quarks, the LCDA peaks at x = 1/2 and has a width that tends to zero in the

9



Light-cone distribution amplitudes (LCDAs)

Heavy quarkonia: 

• simple model function:


Heavy-light mesons: 

• simple mode function:

I.2

systematic expansion of hadronic matrix elements in powers of the small velocity v ∼ αs(mQv)
of the heavy quark in the quarkonium rest frame. One obtains [58]

∫ 1

0

dx (2x− 1)2 φM(x, µ0) =
⟨v2⟩M
3

+O(v4) . (15)

To derive this result ones uses that in the heavy-quark limit x = pQ·n̄
2mQV ·n̄ = 1+vz

2 , where

n̄µ is a light-like vector, and pµQ = mQV µ + kµ denotes the momentum of the heavy quark
inside the quarkonium state with velocity V µ. The various vectors are defined such that
V · n̄ = 1 and V · k = 0. In the rest frame of the quarkonium state we can choose V µ = (1, 0),
n̄µ = (1,−ez), and kµ = (0, mQv), where the 3-vector v is the residual velocity of the heavy
quark inside the (QQ̄) bound state. The factor 1/3 on the right-hand side of (15) is due
to rotational invariance in the rest frame. Numerical values for the NRQCD matrix element
⟨v2⟩ for the J/ψ and Υ(1S) states have been obtained from an analysis of the leptonic decay
rates Γ(J/ψ → e+e−) and Γ(Υ(1S) → e+e−) including first-order αs corrections and non-
perturbative contributions proportional to v2. In this way, the values ⟨v2⟩J/ψ = 0.225 +0.106

−0.088

[59] and ⟨v2⟩Υ(1S) = −0.009±0.003 [60] have been extracted, the latter one being inconsistent
with the fact that the second moment in (15) must be positive. Both estimates suffer from
the fact that the two-loop [61, 62] and three-loop [63] perturbative corrections to the NRQCD
predictions for these decay rates are known to be huge, precluding a reliable extraction of non-
perturbative parameters. Based on the power-counting rules of NRQCD one would naively
expect that ⟨v2⟩J/ψ ∼ 0.3 and ⟨v2⟩Υ(1S) ∼ 0.1, and we will use these estimates, along with a
50% relative error assigned to them, in our phenomenological analysis. For our calculations
we need the first inverse moments of the LCDA with respect to x or (1 − x). Expanding the
inverse moments about x = 1/2, it is immediate to derive the model-independent relation [21]

∫ 1

0

dx
φM(x, µ0)

x
=

∫ 1

0

dx
φM(x, µ0)

1− x
= 2

[

1 +
⟨v2⟩M
3

+O(v4)

]

. (16)

As a reasonable model at the low scale µ0 = 1GeV we adopt the Gaussian ansatz

φM(x, µ0) = Nσ
4x(1− x)√

2πσ
exp

[

−
(x− 1

2)
2

2σ2

]

; σ2 =
⟨v2⟩M
12

, (17)

where the polynomial in front of the Gaussian factor ensures that the LCDA vanishes at the
endpoints x = 0, 1. The normalization constant Nσ ≈ 1 can be expressed in closed form in
terms of an error function.

For a heavy-light meson stateM ∼ (qQ̄) composed of a light quark and a heavy anti-quark,
the LCDA peaks at a small value x ∼ ΛQCD/mM , where x refers to the momentum fraction of
the light spectator quark. The appropriate effective field theory for heavy-light bound states is
called heavy-quark effective theory (HQET), see [64] for a review. In the context of this theory,
it is possible to show that the first moment of the LCDA is determined by the ratio Λ̄M/mM ,
where mM denotes the heavy-meson mass and Λ̄M = mM − mQ (with mQ being the pole
mass of the heavy quark) is a hadronic parameter. One obtains ⟨x⟩ = 4

3 Λ̄M/mM +O[αs(mQ)]
[65], where the one-loop radiative corrections have been calculated in [66] and are numerically
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systematic expansion of hadronic matrix elements in powers of the small velocity v ∼ αs(mQv)
of the heavy quark in the quarkonium rest frame. One obtains [58]

∫ 1
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dx (2x− 1)2 φM(x, µ0) =
⟨v2⟩M
3

+O(v4) . (15)

To derive this result ones uses that in the heavy-quark limit x = pQ·n̄
2mQV ·n̄ = 1+vz

2 , where

n̄µ is a light-like vector, and pµQ = mQV µ + kµ denotes the momentum of the heavy quark
inside the quarkonium state with velocity V µ. The various vectors are defined such that
V · n̄ = 1 and V · k = 0. In the rest frame of the quarkonium state we can choose V µ = (1, 0),
n̄µ = (1,−ez), and kµ = (0, mQv), where the 3-vector v is the residual velocity of the heavy
quark inside the (QQ̄) bound state. The factor 1/3 on the right-hand side of (15) is due
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∫ 1

0

dx
φM(x, µ0)

x
=

∫ 1

0

dx
φM(x, µ0)

1− x
= 2

[

1 +
⟨v2⟩M
3

+O(v4)

]

. (16)

As a reasonable model at the low scale µ0 = 1GeV we adopt the Gaussian ansatz

φM(x, µ0) = Nσ
4x(1− x)√

2πσ
exp

[

−
(x− 1

2)
2

2σ2

]

; σ2 =
⟨v2⟩M
12

, (17)

where the polynomial in front of the Gaussian factor ensures that the LCDA vanishes at the
endpoints x = 0, 1. The normalization constant Nσ ≈ 1 can be expressed in closed form in
terms of an error function.

For a heavy-light meson stateM ∼ (qQ̄) composed of a light quark and a heavy anti-quark,
the LCDA peaks at a small value x ∼ ΛQCD/mM , where x refers to the momentum fraction of
the light spectator quark. The appropriate effective field theory for heavy-light bound states is
called heavy-quark effective theory (HQET), see [64] for a review. In the context of this theory,
it is possible to show that the first moment of the LCDA is determined by the ratio Λ̄M/mM ,
where mM denotes the heavy-meson mass and Λ̄M = mM − mQ (with mQ being the pole
mass of the heavy quark) is a hadronic parameter. One obtains ⟨x⟩ = 4

3 Λ̄M/mM +O[αs(mQ)]
[65], where the one-loop radiative corrections have been calculated in [66] and are numerically
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NRQCD matrix element

HQET matrix element

Meson M fM [MeV] λM [MeV] ⟨v2⟩ σ

D 204.6± 5.0 460± 110 – 0.246± 0.059

Ds 257.5± 4.6 550± 150 – 0.279± 0.076

B 186± 9 460± 110 – 0.087± 0.021

Bs 224± 10 550± 150 – 0.102± 0.028

J/ψ 403± 5 – 0.30± 0.15 0.158± 0.040

Υ(1S) 684± 5 – 0.10± 0.05 0.091± 0.023

Υ(4S) 326± 17 – 0.10± 0.05 0.091± 0.023

Table 2: Hadronic input parameters for pseudoscalar and vector mesons containing
heavy quarks. Scale-dependent quantities are defined at µ0 = 1GeV. The values for
fD and fDs are taken from [45]. The values for fB and fB are taken from two recent,
unquenched lattice calculations [69, 70], which obtain identical central values but quote
very different error estimates. We quote the averages of the uncertainties given by the
two groups. The values of the J/ψ and Υ(nS) decay constants can be derived from
data, as explained in Appendix B.

significant. In our analysis below we need the first inverse moment of the LCDA with respect
to x, which is of order mM/ΛQCD and cannot be related to a local HQET matrix element.
One defines [6]

∫ 1

0

dx
φM(x, µ0)

x
≡

mM

λM(µ0)
+ . . . , (18)

where the hadronic parameter λM(µ0) ∼ ΛQCD is independent of the heavy-quark mass, and
the dots denote corrections that are power-suppressed relative to the leading term. The
parameter λM is poorly known at present. A QCD sum-rule estimate for the B meson yields
λB(1GeV) = (460±110)MeV [67], and we will use this value in our phenomenological analysis
for both B andD mesons. Concerning Bs andDs mesons, we shall use the estimate λMs−λM ≈
90MeV from [68] and increase the error to ±150MeV. As a plausible model at a low scale
µ0 = 1GeV we take [65]

φM(x, µ0) = Nσ
x(1 − x)

σ2
exp

(

−
x

σ

)

; σ =
λM(µ0)

mM
, (19)

where the normalization constant Nσ ≈ 1 can be determined in closed form. For heavy-
light mesons M ∼ (Qq̄) containing a heavy quark and a light anti-quark, one simply replaces
x ↔ (1− x) in the above relations.

In Table 2 we collect the values for the decay constants and the width parameters for
heavy pseudoscalar and vector mesons, which will be used in our phenomenological analysis.
In the cases of (qQ̄) and (QQ̄) bound states, Gegenbauer moments of roughly n ! 1/σ
give important contributions to the LCDAs, because they are required to resolve the narrow
structures of the LCDAs near the peak region. For example, at µ0 = 1GeV the first 5 (6)
Gegenbauer coefficients of the B-meson (Υ-meson) LCDA are larger in magnitude than 0.1,
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Light-cone distribution amplitudes (LCDAs)

Input parameters for heavy mesons:


• first n~1/σ Gegenbauer moments are important for heavy mesons

I.3
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Exclusive radiative decays of W bosons

Situation is analogous, but the trilinear WWγ vertex gives rise to an 
additional (local) contribution:


Form-factor decomposition:


Explicit results:

W+

γ

W+

γ

W+

γ

Figure 5: Non-local (left and center) and local (right) contributions to the W+ → M+γ
decay amplitudes.

3.2 Radiative hadronic decays of W bosons

The exclusive radiative decays W+ → M+γ are, at first sight, very similar to the decays
Z0 → M0γ. Indeed, the contributions from the first two diagrams shown in Figure 5 can be
obtained from the corresponding contributions to the Z-boson decay amplitudes by means of
simple substitutions. The charged currents are flavor non-diagonal, and hence the final-state
meson M+ has a definite flavor structure described by a wave function |uid̄j⟩. Note that now
different electric-charge factors arise, depending on whether the photon is attached to the up-
type quark or down-type anti-quark. The charged currents are purely left-handed, and hence
we must replace

vq, aq →
cos θW
2
√
2

Vij (50)

in the equations of the previous section. However, a careful analysis shows that the first two
diagrams in Figure 5 give rise to an extra contribution with a different tensor structure. It
reads

i∆A(W+ → M+γ) = ∓
egfM
2
√
2
Vij (Qu −Qd)

k · ε∗γ q · εW
k · q

, (51)

where the upper (lower) sign refers to the case of a pseudoscalar (longitudinally polarized
vector) meson in the final state. Note that this contribution is independent of the LCDA of
the final-state meson. It vanishes for an on-shell (transverse) photon, but is not compatible
with U(1)em gauge invariance.

Since the W boson has a direct coupling to the photon, an extra contribution to the
W+ → M+γ decay amplitudes exists, which arises from the third diagram in Figure 5, in
which the final-state meson is produced by the conversion of an off-shell W boson. This graph
has no analog in the Z-boson case. The corresponding contribution to the decay amplitude
involves the meson matrix element of a local current, which to all orders in QCD is given in
terms of a meson decay constant. We find

iAlocal(W
+ → P+γ) =

egfP
2
√
2
Vij εW · ε∗γ , (52)

iAlocal(W
+ → V +γ) = −

egfV
2
√
2
Vij

2mV

m2
W −m2

V

(

q · ε∗V εW · ε∗γ − k · ε∗γ εW · ε∗V − q · εW ε∗γ · ε∗V
)

,

21

where we keep the exact dependence on the vector-meson mass mM for the time being. The
second relation can be simplified by considering the cases of longitudinal and transverse po-
larization separately. The polarization vector for a longitudinally polarized vector meson can
be decomposed as

ε∥µV =
1

mV

(

kµ −
2m2

V

m2
W −m2

V

qµ
)

, (53)

which satisfies the conditions k · ε∥V = 0 and (ε∥V )
2 = −1. The polarization vector for a

transversely polarized vector meson is defined such that k · ε⊥V = q · ε⊥V = 0. We then obtain

iAlocal(W
+ → V +

∥ γ) = −
egfV
2
√
2
Vij

[

εW · ε∗γ +O
(

m2
V

m2
W

)]

,

iAlocal(W
+
∥ → V +

⊥ γ) = −
egfV
2
√
2
Vij

mV

mW
ε⊥∗
γ · ε⊥∗

V .

(54)

The second amplitude is non-zero only if the W boson is longitudinally polarized, and we have

used a decomposition analogous to (53) to replace −2q · εW =
m2

W−m2
V

mV
in the final result. The

local amplitudes for M = P, V∥ are such that they combine with the extra term in (51) to give
a gauge-invariant result proportional to ε⊥W · ε⊥∗

γ [24, 25].
It follows from this discussion that, in analogy with (33), the leading-power amplitudes for

the decays W+ → M+γ can be written in the general form

iA(W+ → M+γ) = ±
egfM
4
√
2
Vij

(

iϵµναβ
kµqνεαW ε∗βγ

k · q
FM
1 − ε⊥W · ε⊥∗

γ FM
2

)

. (55)

Summing (averaging) over the polarization states of the photon (W boson), we obtain the
corresponding decay rates

Γ(W+ → M+γ) =
αmWf 2

M

48v2
|Vij|2

(

∣

∣FM
1

∣

∣

2
+
∣

∣FM
2

∣

∣

2
)

. (56)

In close analogy with (42), we find that the form factors are given by

FM
1 = Qu I

M
+ (mW ) +Qd Ī

M
+ (mW ) =

∞
∑

n=0

[

C(+)
2n (mW , µ) aM2n(µ)− 3C(+)

2n+1(mW , µ) aM2n+1(µ)
]

,

FM
2 = −2 (Qu −Qd) +Qu I

M
− (mW )−Qd Ī

M
− (mW ) (57)

= −2 +
∞
∑

n=0

[

3C(−)
2n (mW , µ) aM2n(µ)− C(−)

2n+1(mW , µ) aM2n+1(µ)
]

.

The contribution −2 to FM
2 arises from the local contribution in (52). Corrections to these

results are suppressed by (ΛQCD/mW )2 or (mM/mW )2. The corresponding amplitudes for the
decays W− → M−γ are obtained by replacing Vij → V ∗

ij in (55) and by replacing the charge
factors Qu ↔ Qd in (57). In addition, one must take into account that the odd Gegenbauer
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2
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The contribution −2 to FM
2 arises from the local contribution in (52). Corrections to these

results are suppressed by (ΛQCD/mW )2 or (mM/mW )2. The corresponding amplitudes for the
decays W− → M−γ are obtained by replacing Vij → V ∗

ij in (55) and by replacing the charge
factors Qu ↔ Qd in (57). In addition, one must take into account that the odd Gegenbauer
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where we keep the exact dependence on the vector-meson mass mM for the time being. The
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which satisfies the conditions k · ε∥V = 0 and (ε∥V )
2 = −1. The polarization vector for a

transversely polarized vector meson is defined such that k · ε⊥V = q · ε⊥V = 0. We then obtain
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The second amplitude is non-zero only if the W boson is longitudinally polarized, and we have
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mV
in the final result. The

local amplitudes for M = P, V∥ are such that they combine with the extra term in (51) to give
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Summing (averaging) over the polarization states of the photon (W boson), we obtain the
corresponding decay rates
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In close analogy with (42), we find that the form factors are given by
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∞
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.

The contribution −2 to FM
2 arises from the local contribution in (52). Corrections to these

results are suppressed by (ΛQCD/mW )2 or (mM/mW )2. The corresponding amplitudes for the
decays W− → M−γ are obtained by replacing Vij → V ∗

ij in (55) and by replacing the charge
factors Qu ↔ Qd in (57). In addition, one must take into account that the odd Gegenbauer
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Exclusive radiative decays of W bosons

Predictions for branching ratios including detailed error estimates:

Decay mode Branching ratio asymptotic LO

W± → π±γ (4.00 +0.06
− 0.11 µ ± 0.01f ± 0.49a2 ± 0.66a4) · 10−9 2.45 8.09

W± → ρ±γ (8.74 +0.17
− 0.26 µ ± 0.33f ± 1.02a2 ± 1.57a4) · 10−9 6.48 15.12

W± → K±γ (3.25 +0.05
− 0.09 µ ± 0.03f ± 0.24a1 ± 0.38a2 ± 0.51a4) · 10−10 1.88 6.38

W± → K∗±γ (4.78 +0.09
− 0.14 µ ± 0.28f ± 0.39a1 ± 0.66a2 ± 0.80a4) · 10−10 3.18 8.47

W± → Dsγ (3.66 +0.02
− 0.07 µ ± 0.12CKM ± 0.13f

+1.47
− 0.82 σ) · 10−8 0.98 8.59

W± → D±γ (1.38 +0.01
− 0.02 µ ± 0.10CKM ± 0.07f

+0.50
− 0.30 σ) · 10−9 0.32 3.42

W± → B±γ (1.55 +0.00
− 0.03 µ ± 0.37CKM ± 0.15f

+0.68
− 0.45 σ) · 10−12 0.09 6.44

Table 5: Predicted branching fractions for various W → Mγ decays, including error
estimates due to scale dependence and the uncertainties in the CKM matrix elements,
the meson decay constants and the LCDAs. The notation is the same as in Table 4.
See text for further explanations.

We now proceed to present our predictions for exclusive radiative decays of W bosons.
In this case we need the input parameters mW = (80.385 ± 0.015)GeV and ΓW = (2.0897 ±
0.0008)GeV, as well as the relevant entries of the quark mixing matrix, which are |Vud| =
0.97425± 0.00022, |Vus| = 0.2253± 0.0008, |Vcs| = 0.986± 0.016, |Vcd| = 0.225± 0.008, |Vcb| =
(41.1±1.3)·10−3, and |Vub| = (4.13±0.49)·10−3 [45]. Starting from relation (56), we obtain the
results shown in Table 5. In this case the pattern of the different decay modes reflects mainly
the pattern of the relevant CKM matrix elements, and to a lesser extent the differences in the
decay constants. The Cabibbo-allowed decays W → πγ, ργ, and Dsγ have branching fractions
of order few times 10−9 to few times 10−8, where decays into heavy mesons are enhanced
due to the structure of the relevant overlap integral in (18). The Cabibbo-suppressed modes
W → K(∗)γ and the strongly CKM-suppressed decay W → Bγ have correspondingly smaller
branching ratios. The uncertainties inherited from CKM elements are shown where they are
significant. In a recent paper, the W± → π±γ branching ratio was estimated to be 0.64 · 10−9

[14], which is about 6.3 times smaller than the value we obtain (see below).
In the last two columns in Tables 4 and 5 we show different approximations to our results.

The first one (labelled “asymptotic”) gives the central values of the branching ratios (in the
appropriate units) obtained if the asymptotic form 6x(1−x) of the meson LCDA is employed.
As we have explained, RG evolution effects from the low hadronic scale µ0 = 1GeV up to
the electroweak scale have the effect of strongly suppressing the contributions from higher
Gegenbauer moments. Indeed, we observe that using the asymptotic form provides reason-
able approximations in most cases (especially for the Z → Mγ modes). The corresponding
expressions for the decay rates read

Γ(Z0 → M0γ)
∣

∣

asymp
=
αmZf 2

M

6v2
Q2

M

[

1−
10

3

αs(mZ)

π

]

,

Γ(W± → M±γ)
∣

∣

asymp
=
αmWf 2

M

24v2
|Vij|2

[

1−
17

3

αs(mW )

π

]

,

(71)
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Exclusive radiative decays of W bosons

When all Gegenbauer moments are neglected, i.e.                               , we 
obtain for the decay rates:


→ agrees with a formula for                     in Arnellos, Marciano, Parsa (1982)


Using Manohar’s approach, Mangano and Melia (2014) obtained an 
estimate for the                     rate, which is too small by a factor 2/9 
(understood ✓)


In some very old papers, the authors claimed that the                     rates   
are enhanced by several orders of magnitude due to an unsuppressed 
contribution              from the axial anomaly. 


We find that such claims are false!

�M (x) = 6x(1� x)

Decay mode Branching ratio asymptotic LO

W± → π±γ (4.00 +0.06
− 0.11 µ ± 0.01f ± 0.49a2 ± 0.66a4) · 10−9 2.45 8.09

W± → ρ±γ (8.74 +0.17
− 0.26 µ ± 0.33f ± 1.02a2 ± 1.57a4) · 10−9 6.48 15.12

W± → K±γ (3.25 +0.05
− 0.09 µ ± 0.03f ± 0.24a1 ± 0.38a2 ± 0.51a4) · 10−10 1.88 6.38

W± → K∗±γ (4.78 +0.09
− 0.14 µ ± 0.28f ± 0.39a1 ± 0.66a2 ± 0.80a4) · 10−10 3.18 8.47
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W± → B±γ (1.55 +0.00
− 0.03 µ ± 0.37CKM ± 0.15f

+0.68
− 0.45 σ) · 10−12 0.09 6.44

Table 5: Predicted branching fractions for various W → Mγ decays, including error
estimates due to scale dependence and the uncertainties in the CKM matrix elements,
the meson decay constants and the LCDAs. The notation is the same as in Table 4.
See text for further explanations.

We now proceed to present our predictions for exclusive radiative decays of W bosons.
In this case we need the input parameters mW = (80.385 ± 0.015)GeV and ΓW = (2.0897 ±
0.0008)GeV, as well as the relevant entries of the quark mixing matrix, which are |Vud| =
0.97425± 0.00022, |Vus| = 0.2253± 0.0008, |Vcs| = 0.986± 0.016, |Vcd| = 0.225± 0.008, |Vcb| =
(41.1±1.3)·10−3, and |Vub| = (4.13±0.49)·10−3 [45]. Starting from relation (56), we obtain the
results shown in Table 5. In this case the pattern of the different decay modes reflects mainly
the pattern of the relevant CKM matrix elements, and to a lesser extent the differences in the
decay constants. The Cabibbo-allowed decays W → πγ, ργ, and Dsγ have branching fractions
of order few times 10−9 to few times 10−8, where decays into heavy mesons are enhanced
due to the structure of the relevant overlap integral in (18). The Cabibbo-suppressed modes
W → K(∗)γ and the strongly CKM-suppressed decay W → Bγ have correspondingly smaller
branching ratios. The uncertainties inherited from CKM elements are shown where they are
significant. In a recent paper, the W± → π±γ branching ratio was estimated to be 0.64 · 10−9

[14], which is about 6.3 times smaller than the value we obtain (see below).
In the last two columns in Tables 4 and 5 we show different approximations to our results.

The first one (labelled “asymptotic”) gives the central values of the branching ratios (in the
appropriate units) obtained if the asymptotic form 6x(1−x) of the meson LCDA is employed.
As we have explained, RG evolution effects from the low hadronic scale µ0 = 1GeV up to
the electroweak scale have the effect of strongly suppressing the contributions from higher
Gegenbauer moments. Indeed, we observe that using the asymptotic form provides reason-
able approximations in most cases (especially for the Z → Mγ modes). The corresponding
expressions for the decay rates read
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W,Z ! P�

⇠ 1/fP Jacob, Wu (1989); Keum, Pham (1993)
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