BSM workshop Portoroz, April 9, 2015

Lepton Non-Universality and Flavor in Rare Decays

 R_K @LHCb $\neq 1$

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.151601, arXiv:1406.6482 [hep-ex]

physics highlight: http://physics.aps.org/articles/v7/102

based on works with Martin Schmaltz and Ivo de Medeiros Varzielas arXiv:1408.1627, arXiv:1411.4773, arXiv:1503.01084 [hep-ph].

Gudrun Hiller, Dortmund

$$
R_K = \frac{{\cal B}(\bar B \to \bar K \mu\mu)}{{\cal B}(\bar B \to \bar K ee)}
$$

idea: $R_{H}^{\rm SM} = 1+$ tiny for $H=K, K^*, X_s, ...$ GH, Krüger, hep-ph/0310219

refined, cuts, correlations, models: 0709.4174 Bobeth etal

early data: Belle 0904.0770, BaBar 1204.3933, consistent with SM

 $B^{\pm} \to K^{\pm} e e$ and $B^{\pm} \to K^{\pm} \mu \mu$ events at LHCb. Full data set, 3fb^{-1} , from 7 and 8 TeV LHC run.

Fig from 9910221, solid: SM, dotted and dot-dashed: BSM scenario

Select low dilepton mass window: $1 \leq q^2 < 6$ GeV² below J/Ψ .

situation for numerator $\mu\mu$ and denominator ee of R_K separately:

 \overline{a} 1209.4284 (μ) and 1406.6482 (e) b Bobeth, GH, van Dyk '12, form factors from 1006.4945

Individual branching ratios make presently no case for new physics, although muons are a bit below SM. The ratio R_K is much cleaner.

Probing Lepton e vs μ **universality with** R_K

.. which was the idea behind R_K in first place:

Lepton-universal effects – including hadronic ones – drop out in ratios of branching fractions GH, Krüger'03

$$
R_K = \frac{\mathcal{B}(\bar{B} \to \bar{K}\mu\mu)}{\mathcal{B}(\bar{B} \to \bar{K}ee)}
$$

 $R_K^{\rm SM} = 1$ up to kinematic corrections ${\cal O}(m_\mu^2/m_b^2)$ and electromagnetic logs (depending on exp. cuts) $\mathcal{O}(\frac{\alpha_e}{4\pi})$ $\frac{\alpha_e}{4\pi Log(m_e/m_b))}$ at O(permille) level.

$$
R_K^{LHCb} = 0.745 \pm^{0.090}_{0.074} \pm 0.036\,, \qquad \text{1406.6482\,hep-ex}
$$

 2.6σ : if taken at face value this implies lepton-nonuniversal new physics in the flavor sector.

Comments:

 $-R_K=0.745\pm_{0.074}^{0.090}\pm{0.036}< 1$ implies suppressed muons and/or enhanced electrons, that is, BSM in electrons, or muons, or both.

 $-R_K \simeq 3/4$ is almost an order 1 effect. Yet, it is not excluded by other data essentially because R_K is so clean and the effect, lepton-nonuniversality in $b \rightarrow s$, is quite specific.

 $-$ Ongoing precision fits in $B\to K^{(*)}\ell\ell$ decays (Babar,Belle,CDF, ATLAS,CMS,LHCb) 1307.5683, 1308.1501, 1310.2478 dominated from hadron colliders hence give essentially lepton-specific constraints for $\ell = \mu$.

– Electrons much more difficult for LHCb than muons: $B \to K\mu\mu$: ∼ 1226 events, $B \to Kee$: ∼ $O(200)$ events.

- 1) About $R_K \checkmark$
- 2) Model-independent interpretations (implications for Wilson coefficients)
- 3) Model-interpretations; Leptoquarks; mass scale for this?
- 4) Diagnosing with more ratios: R_K vs R_{K^*} vs R_φ vs R_{X_s} vs ..
- 5) Connecting to flavor; LFV and probing the origin

$b \rightarrow s \ell \ell$ **FCNCs model-independently**

Construct EFT ${\cal H}_{\rm eff}=-4\frac{G_F}{\sqrt{2}}$ $\frac{F}{2}\,V_{tb}V_{ts}^*\,\sum_i C_i(\mu)O_i(\mu)$ at dim 6

V,A operators $\mathcal{O}_9 = [\bar{s}\gamma_\mu P_L b] \, [\bar{\ell}\gamma^\mu \ell]$, $\mathcal{O}'_9 = [\bar{s}\gamma_\mu P_R b] \, [\bar{\ell}\gamma^\mu \ell]$

 $\mathcal{O}_{10} = \left[\bar{s}\gamma_\mu P_L b\right] \left[\bar{\ell}\gamma^\mu \gamma_5 \ell\right] , \quad \mathcal{O}'_{10} = \left[\bar{s}\gamma_\mu P_R b\right] \left[\bar{\ell}\gamma^\mu \gamma_5 \ell\right]$

S,P operators $\mathcal{O}_S=[\bar sP_Rb]\, [\bar \ell\ell] \, , \quad \mathcal{O}'_S=[\bar sP_Lb]\, [\bar \ell\ell] \, , \qquad \textsf{ONLY} \, O_9, O_{10}$ are SM, all other BSM

$$
\mathcal{O}_{P} = \left[\bar{s} P_R b \right] \left[\bar{\ell} \gamma_5 \ell \right], \quad \mathcal{O}'_P = \left[\bar{s} P_L b \right] \left[\bar{\ell} \gamma_5 \ell \right]
$$

and tensors $\mathcal{O}_T = [\bar{s}\sigma_{\mu\nu}b] [\bar{\ell}\sigma^{\mu\nu}\ell]$, $\mathcal{O}_{T5} = [\bar{s}\sigma_{\mu\nu}b] [\bar{\ell}\sigma^{\mu\nu}\gamma_5\ell]$

lepton specific $C_iO_i\to C_i^\ell$ $\ell^{\ell}_i O^{\ell}_i, \, \ell=e,\mu,\tau$ Barring the presence of several different types of operators, hence allowing for tuning, there are the following model-independent explanations for R_K :

- *i)* V,A operators with muons
- *ii)* V,A operators with electrons
- *iii*) S,P operators electrons (disfavored at 1 σ and requires cancellations, testable with $\bar{B}\to\bar{K}ee$ angular distributions)

Tensors and S,P muons are excluded.

Model-independent interpretations with V,A interactions: $arXiv:1408.1627$, 1406.6681

$$
0.7 \lesssim \text{Re}[X^{e} - X^{\mu}] \lesssim 1.5,
$$

$$
X^{\ell} = C_{9}^{\text{NP}\ell} + C_{9}^{\prime\ell} - (C_{10}^{\text{NP}\ell} + C_{10}^{\prime\ell})
$$

– The required NP is large $C_9^{\rm SM}$ $_{9}^{\rm SM} \simeq -C_{10}^{\rm SM} \simeq 4.2.$

– Since the SM couples V-A-like, the leading constraints on X^ℓ from SM-NP-interference have V-A structure for the leptons; there is no sensitivity to V+A (right-handed) leptons at this level.

Lets use the chiral basis:

$$
\mathcal{O}_{LL}^{\ell} \equiv (\mathcal{O}_{9}^{\ell} - \mathcal{O}_{10}^{\ell})/2, \quad \mathcal{O}_{LR}^{\ell} \equiv (\mathcal{O}_{9}^{\ell} + \mathcal{O}_{10}^{\ell})/2, \n\mathcal{O}_{RL}^{\ell} \equiv (\mathcal{O}_{9}^{\prime \ell} - \mathcal{O}_{10}^{\prime \ell})/2, \quad \mathcal{O}_{RR}^{\ell} \equiv (\mathcal{O}_{9}^{\prime \ell} + \mathcal{O}_{10}^{\prime \ell})/2.
$$

R_K sensitive to left-handed leptons:

$$
C_{LL}^{\ell} = C_9^{\ell} - C_{10}^{\ell} , \quad C_{RL}^{\ell} = C_9^{\prime \ell} - C_{10}^{\prime \ell} .
$$

right-handed leptons: $C^{\ell}_{LR} = C^{\ell}_9 + C^{\ell}_{10}, C^{\ell}_{RR} = C'^{\ell}_{9} + C'^{\ell}_{10}$

This suggests to use in global fits invariant-constraints such as $C_9^{\rm NP\ell}$ $C_9^{\rm NP\ell} = -C_{10}^{\rm NP\ell}\,,\quad C_9^{\rm NP\ell\ell} = -C_{10}^{\rm NP\ell\ell}.$

Fig from 1410.4545 – global fit including R_K

- Bounds stronger for $\mu\mu$ (*y*-axis) than for ee (*x*-axis).
- Both left-handed quarks C_{LL} (left-handed plot) and right-handed quarks C_{BL} (right-handed plot) can be sizable.

If we assume new physics in muons alone employ $\mathcal{B}(\bar{B}_s\to \mu\mu)$

 $\mathcal{B}(\bar{B}_{s}\to \mu \mu)^{\rm exp}$ $\frac{\mathcal{B}(B_s - \mu \mu)}{\mathcal{B}(\bar{B}_s - \mu \mu)^{\text{SM}}} = 0.79 \pm 0.20$ is suppressed currently.

$$
0.0 \le \text{Re}[C_{LR}^{\mu} + C_{RL}^{\mu} - C_{LL}^{\mu} - C_{RR}^{\mu}] \lesssim 1.9, \quad (\mathcal{B}(B_s \to \mu\mu))
$$

0.7 $\lesssim -\text{Re}[C_{LL}^{\mu} + C_{RL}^{\mu}] \lesssim 1.5.$ (R_K)

This isolates C_{LL}^{μ} as the only single operator (particle) interpretation of R_K . Note: this is V-A. Iff $\mathcal{B}(\bar{B}_s\to \mu\mu)$ would be enhanced this would isolate $C_{RL}^{\mu} \simeq -1$, V+A! $b \rightarrow see$ way less constrained.

V,A muons and V,A electrons can be realized with leptoquark models

GH, Schmaltz arXiv:1408.1627, Phys. Rev. D 90, 054014 (2014)

A model with C_{RL}^e (includes R-parity violating MSSM):

 $\mathcal{L} = -\lambda_{d\ell} \, \varphi \, (\bar{d}P_L \ell)$ with leptoquark $\varphi(3,2)_{1/6}$ with mass M .

 ${\cal H}_{\rm eff} = -\frac{|\lambda_{d\ell}|^2}{M^2}$ $\frac{|\lambda_{d\ell}|^2}{M^2}(\bar{d}P_L\ell)\,(\bar{\ell}P_Rd)=\frac{|\lambda_{d\ell}|^2}{2M^2}$ $\frac{\lambda_{d\ell}|^2}{2M^2}[\bar d\gamma^\mu P_Rd]\,[\bar\ell\gamma_\mu P_L\ell]$ from tree level φ exchange and fierzing.

In terms of the usual Wilson coefficients:

 $C_{10}'^e = -C_9'^e$ $\frac{d\theta}{9} = \frac{\lambda_{se} \lambda_b^*}{V_{th} V_{t}^*}$ be </u> $\overline{V_{tb}V_{ts}^*}$ ts π α_e √ 2 $4M^2G_F$ $= -\frac{\lambda_{se}\lambda_{b}^*}{2M^2}$ be </u> $\frac{\Delta_{be}^{se}\lambda_{be}^{*}}{2M^{2}}(24\text{TeV})^{2}$ R_K -benchmark: $C_9^{\prime e}$ $\delta^{e}_{9}=-C'^{e}_{10}\simeq 1/2$ follows $M^{2}/\lambda_{se}\lambda_{be}^{*}\simeq (24\text{TeV})^{2}$ Viable parameters of the (scalar) leptoquarks read

1 TeV $\leq M \leq 48$ TeV 2 · 10⁻³ $\lesssim |\lambda_{se}\lambda_{be}^*| \lesssim 4$ $4\cdot 10^{-4} \lesssim |\lambda_{qe}| \lesssim 5$

 $-SU(2)$ implies corresponding effects in $b\to s\nu\bar{\nu}$ (only electron-neutrinos affected, signal diluted over 3 species). $\mathcal{B}(B\to K\nu\nu)$ reduced by 5 %, $\mathcal{B}(B\to K^*\nu\nu)$ enhanced by 5 %, F_L enhanced by 2 % w.r.t SM.

- Further correlation with B_s mixing, $b \rightarrow s\gamma$, and direct searches.
- Decay modes of φ -dublet: $\varphi^{2/3} \to b \ e^+ \ , \quad \varphi^{-1/3} \to b \ \nu$

see talks by Ilja Dorsner and Sacha Davidson for LHC pheno

see talk by Marco Nardeccia

 $\mathcal{L} = -\lambda_{b\mu} \, \varphi^* \, q_3 \ell_2 - \lambda_{s\mu} \, \varphi^* \, q_2 \ell_2, \qquad \varphi(3,3)_{-1/3}$ ${\cal H}_{\rm eff} = -\frac{\lambda_{s\mu}^* \lambda_{b\mu}}{M^2}$ $\overline{M^2}$ $\left(\frac{1}{4}\right)$ $\frac{1}{4} [\bar{q_2} \tau^a \gamma^\mu P_L q_3] [\bar{\ell_2} \tau^a \gamma_\mu P_L \ell_2] + \frac{3}{4} [\bar{q_2} \gamma^\mu P_L q_3] [\bar{\ell_2} \gamma_\mu P_L \ell_2]$ gives $C_9^{\rm NP\mu}$ $\frac{\delta_{0}^{\mathrm{NP}\mu}}{9} = -C_{10}^{\mathrm{NP}\mu} = \frac{\pi}{\alpha_{\mathrm{e}}}$ α_e $\lambda^*_{s\mu} \lambda_{b\mu}$ $\overline{V_{tb}V_{ts}^*}$ ts √ 2 $2M^2G_F$ $\simeq -0.5$ and similar mass range as other model.

Decay modes of φ -triplet:

$$
\varphi^{2/3} \rightarrow t \nu
$$

\n
$$
\varphi^{-1/3} \rightarrow b \nu, t \mu^-
$$

\n
$$
\varphi^{-4/3} \rightarrow b \mu^-
$$

The $U(1)_{\tau-\mu}$ -extension of SM 1403.1269 Altmannshofer etal also violates lepton-universality. (V,A -muons-type i) model, no BSM in ee .) see talks by Andreas Crivellin, and connecting to dark sector, Avelino Vicente

C (LH-quark currents) versus \mathbb{C} $\overline{\mathcal{L}}$ (RH quark currents)?

Long story in interpreting $B\to K^{(*)}\mu\mu$ data/global fits as hadronic uncertainties (power corrections, resonances) could shadow BSM.

e.g. Camalich, Jäger '12, Lyon, Zwicky'14, .. in global fits 1307.5683, 1308.1501, 1310.2478, ...

$$
0.7 \le -\text{Re}[C_{LL}^{\mu} + C_{RL}^{\mu} - (C_{LL}^e + C_{RL}^e)] \lesssim 1.5 \,. \tag{R_K}
$$

By parity and lorentz invariance, C, C' enter decay amplitudes $B \to K\ell\ell$ etc as GH, Schmaltz 1411.4773

$$
C + C' : K, K^*_{\perp}, \dots
$$

$$
C - C' : K_0(1430), K^*_{0, \|}, \dots
$$

so different ratios R_K , R_{K^*} etc are complementary. It follows that double ratios R_{K^*}/R_K are cleanly probing right-handed currents! In addition, since K^* is dominated by '0' and ' ||' polarization, the complementarity between R_K and R_{K^*} (similarly R_{φ}) is maximal.

predictions: $R_K = R_n$, $R_{K^*} = R_{\varphi}$, and correlations between R_H . Measure two R_H (with $C \pm C'$) and predict all of them !

see talk by Wolfgang Altmannshofer

Diagnosing lepton-nonuniversality

Green band: R_K 1 sigma LHCb. Curves: different BSM scenarios. red dashed: pure C_{LL} . Black solid: $C_{LL} = -2C_{RL}$. Blue: C_{RL} . Orange band is prediction for R_{K*} (not significantly measurend) based on R_K and $B \to X_s \ell\ell\mathrm{:}~ R_{X_s}^{\mathrm{Belle'09}}$ $R_{X_s}^{\rm Belle'09}=0.42\pm0.25\,,\quad R_{X_s}^{\rm BaBar'13}$ $\frac{\text{BaBar}}{X_s} = 0.58 \pm 0.19.$

Given the breakdown of lepton-universaltiy, chances are that generically there is lepton flavor violation, too arXiv:1411.0565.

Explaining R_K with muons and electrons requires theory of flavor. Thats an opportunity– given a signal– to access origin of flavor arXiv:1503.01084

Leptoquark coupling matrix:

\n
$$
\lambda \equiv \begin{pmatrix}\n\lambda_{de} & \lambda_{d\mu} & \lambda_{d\tau} \\
\lambda_{se} & \lambda_{s\mu} & \lambda_{s\tau} \\
\lambda_{be} & \lambda_{b\mu} & \lambda_{b\tau}\n\end{pmatrix}
$$

Well-motivated ansatz: use $U(1)$ -flavor-symmetry for quarks and non-abelian one e.g. A_4 for leptons and assume Higgs to be uncharged. Predicts generically hierarchies for quarks and "zeros" and "ones" for leptons. Explicit realizations include

Single lepton flavor
$$
\lambda^{[e]} \equiv \begin{pmatrix} \lambda_{de} & 0 & 0 \\ \lambda_{se} & 0 & 0 \\ \lambda_{be} & 0 & 0 \end{pmatrix}, \quad \lambda^{[\mu]} \equiv \begin{pmatrix} 0 & \lambda_{d\mu} & 0 \\ 0 & \lambda_{s\mu} & 0 \\ 0 & \lambda_{b\mu} & 0 \end{pmatrix}
$$

hierarchy:
$$
\lambda^{[\rho\kappa]} \sim \lambda_0 \begin{pmatrix} \rho_d \kappa & \rho_d & \rho_d \\ \rho \kappa & \rho & \rho \\ \kappa & 1 & 1 \end{pmatrix}
$$

constraints: $\rho_d \lesssim 0.02$, $\kappa \lesssim 0.5$, $10^{-4} \lesssim \rho \lesssim 1$, $\kappa/\rho \lesssim 0.5$, $\rho_d/\rho \lesssim 1.6$

predictions:

$$
\mathcal{B}(B \to K\mu^{\pm}e^{\mp}) \simeq 3 \cdot 10^{-8} \kappa^2 \left(\frac{1 - R_K}{0.23}\right)^2, \qquad (1)
$$

$$
\mathcal{B}(B \to K e^{\pm} \tau^{\mp}) \simeq 2 \cdot 10^{-8} \kappa^2 \left(\frac{1 - R_K}{0.23}\right)^2, \qquad (2)
$$

$$
\mathcal{B}(B \to K\mu^{\pm} \tau^{\mp}) \simeq 2 \cdot 10^{-8} \left(\frac{1 - R_K}{0.23}\right)^2, \qquad (3)
$$

and

$$
\mathcal{B}(\mu \to e\gamma) \simeq 2 \cdot 10^{-12} \frac{\kappa^2}{\rho^2} \left(\frac{1 - R_K}{0.23} \right)^2, \tag{4}
$$
\n
$$
\mathcal{B}(\tau \to e\gamma) \simeq 4 \cdot 10^{-14} \frac{\kappa^2}{\rho^2} \left(\frac{1 - R_K}{0.23} \right)^2, \tag{5}
$$
\n
$$
\mathcal{B}(\tau \to \mu \gamma) \simeq 3 \cdot 10^{-14} \frac{1}{\rho^2} \left(\frac{1 - R_K}{0.23} \right)^2, \tag{6}
$$
\n
$$
\mathcal{B}(\tau \to \mu \eta) \simeq 4 \cdot 10^{-11} \rho^2 \left(\frac{1 - R_K}{0.23} \right)^2. \tag{7}
$$

asymmetric branching ratios:

$$
\frac{\mathcal{B}(B_s \to \ell^+ \ell^{\prime -})}{\mathcal{B}(B_s \to \ell^- \ell^{\prime +})} \simeq \frac{m_{\ell}^2}{m_{\ell^{\prime}}^2}.
$$
 Left-handed leptons only (8)

$$
\frac{\mathcal{B}(B_s \to \mu^+ e^-)}{\mathcal{B}(B_s \to \mu^+ \mu^-)_{\text{SM}}} \simeq 0.01 \,\kappa^2 \cdot \left(\frac{1 - R_K}{0.23}\right)^2, \tag{9}
$$
\n
$$
\frac{\mathcal{B}(B_s \to \tau^+ e^-)}{\mathcal{B}(B_s \to \mu^+ \mu^-)_{\text{SM}}} \simeq 4 \,\kappa^2 \cdot \left(\frac{1 - R_K}{0.23}\right)^2, \tag{10}
$$
\n
$$
\frac{\mathcal{B}(B_s \to \tau^+ \mu^-)}{\mathcal{B}(B_s \to \mu^+ \mu^-)_{\text{SM}}} \simeq 4 \cdot \left(\frac{1 - R_K}{0.23}\right)^2, \tag{11}
$$

- If LHCb's measurement of R_K substantiates it implies that there is more difference between a muon and an electron than their mass. Lepton-universality, a feature of the $SU(3)_C \times SU(2)_L \times U(1)_Y$ SM appears to be violated in $b \rightarrow s$ FCNC transitions.
- Current data allow for model-independent explanations, as well as model frameworks such as leptoquarks, with $M \leq 50$ TeV. There is no conflict with other measurements nor with model-building.
- Explanations imply correlations with other FCNC processes including LFV as well as predictions for direct searches, that can be tested in the future.