Recent News in Heavy Flavor Semileptonic Decays

Thomas Mannel

Theoretische Physik I Universität Siegen

Protoroz 2015, 7.4.2015

T. Mannel, Siegen University Recent News in Heavy Flavor Semileptonic Decays

Advances in inclusive V_{cb}

Heavy Flavour Conserving Decays

イロト イポト イヨト イヨト

æ

Why Semileptonics?

• Important for Unitarity Triangle Fits

- Provide insight into QCD: Form Factors, HQE Matrix Elements
- "Tensions" are taken as hints to "new physics"

Advances in inclusive V_{cb}

T. Mannel, Siegen University Recent News in Heavy Flavor Semileptonic Decays

イロト イポト イヨト イヨト

ъ

Present state of the $b \rightarrow c$ semileptonic Calculations

- Tree level terms up to and including $1/m_b^5$ known
- $\mathcal{O}(\alpha_s)$ and full $\mathcal{O}(\alpha_s^2)$ for the partonic rate known
- $\mathcal{O}(\alpha_s)$ for the μ_π^2/m_b^2 is known
- QCD insprired modelling for the HQE matrix elements
- New: Complete α_s/m_b^2 , including the μ_G terms Alberti, Gambino, Nandi (arXiv:1311.7381) ThM, Pivovarov, Rosenthal (arXiv:1405.5072)
- This was the remaining parametrically largest uncertainty

ヘロト ヘアト ヘビト ヘビト

- Alberti et al.: Phys.Rev.Lett. 114 (2015) 6, 061802 and JHEP 1401 (2014) 147
 - Calculation of the differential rate including the charm mass
 - partially numerical calculation
- ThM, Pivovarov, Rosenthal: Phys.Lett. B741 (2015) 290-294
 - Fully analytic calculation
 - limit $m_c \rightarrow 0$
 - Possibility to include *m_c* in a Taylor series
- Results do (not?) agree,

some more checks in progress

ヘロト ヘアト ヘビト ヘビト

Perform the OPE for $T = i \int d^4x T [H_{\text{eff}}(x)H_{\text{eff}}(0)]$

★ E → ★ E →

э

• Structure of the result:

$$(\operatorname{Im} T)/R_0 = C_0 \left\{ \bar{b} \psi b - rac{\mathcal{O}_{\pi}}{2m_b^2} \right\} + rac{\mathcal{O}_{G}}{2m_b^2}$$

chromomagnetic moment operator

$$rac{1}{2M_B}C_m(\mu)\langle B(p_B)|{\cal O}_G|B(p_B)
angle=\Delta m_B^2$$

Total rate

$$\Gamma(B o X_c
u \ell) = \Gamma_b |V_{cb}|^2 \left\{ C_0 \left(1 + rac{\mu_\pi^2}{2m_b^2}
ight) + rac{C_{fin}}{8m_b^2} rac{3\Delta m_B^2}{8m_b^2}
ight\}$$

• We get
$$(\rho = m_c^2 / m_b^2)$$

$$C_{fin} = -3 + \Delta_G^{(0)}(\rho) + \frac{\alpha_s}{\pi} \Delta_G^{(1)}(\rho) \\ + \frac{\alpha_s}{\pi} \left\{ C_A \left(\frac{31}{18} - \frac{\pi^2}{9} \right) + C_F \left(\frac{43}{144} - \frac{19\pi^2}{36} \right) \right\}$$

• $\Delta_G^{(0)}(\rho)$ is known

$$\Delta_G^{(0)}(
ho) = 8
ho - 24
ho^2 + 24
ho^3 - 5
ho^4 - 12
ho^2\ln
ho$$

- $\Delta_G^{(1)}(\rho)$ is such that $\Delta_G^{(1)}(0) = 0$
- Numerically known from Alberti et al.

• Numerically (in the $m_c \rightarrow 0$ case:

$$\mathcal{C}_{\mathit{fin}} = -3(1+1.56rac{lpha_{m{s}}}{\pi})$$

This has a "normal" size

• The corresponding shift in V_{cb} is

$$rac{\Delta |V_{cb}|}{|V_{cb}|} = 4.67 rac{lpha_s}{\pi} rac{3\Delta m_B^2}{8m_b^2} rac{1}{2(1+\Delta_0^{(0)}(
ho))} \sim +0.3\%$$

イロト イポト イヨト イヨト

- Fully analytic calculation underway
 - for moments
 - for the m_c dependence in a Taylor series
 - including the full mass dependence
- Complete comparison of the two results.

Decays into *D*^{**} states

R. Klein, ThM, F. Shahriaran, D. van Dyk, arXiv:1503.00569

Decays into *D*^{**} states

- B → D and B → D^{*} exhaust about 75% of the inclusive b → c rate
- Aside from non-resonant B → Dπ: Decays into D^{**} states
- ... mainly the orbitally excited states

ヘロン 人間 とくほ とくほ とう

Orbitally excited states

Make use of Heavy Quark Symmetry:

• Spin Symmetry Doublets of orbitally excited states, labelled by the total *j* of the light degrees of freedom:

$$egin{pmatrix} |D(0^+)
angle\ |D(1^+)
angle \end{pmatrix} \quad j=1/2 \qquad ext{and} \qquad egin{pmatrix} |D^*(1^+)
angle\ |D^*(2^+)
angle \end{pmatrix} \quad j=3/2$$

• Masses in the $m_c \rightarrow \infty$ limit:

$$M(D(0^+)) = M(D(1^+)) = m_c + \bar{\Lambda}_{1/2}$$

 $M(D^*(1^+)) = M(D^*(2^+)) = m_c + \bar{\Lambda}_{3/2}$

• $\bar{\Lambda}_{3/2} - \bar{\Lambda}_{1/2}$ does not scale with $m_c!$

$1/m_c$ corrections

• Kinetic energy and choromomagnetic moment:

$$\mathcal{H}_{1/m} = rac{1}{2m_c}ar{c}(iD_\perp)^2c + rac{g_s}{2m_c}ar{c}(ec{\sigma}\cdotec{B})c$$

 Kinetic energy is spin independent and is absorbed into the mass definition

$$M_j = m_c + ar{\Lambda}_j + rac{1}{2m_c} \mu_\pi^2$$

Mass shift is independent of *j*

ヘロト 人間 ト ヘヨト ヘヨト

• Chromomagnetic moment depends on the spins:

$$ec{K} = ec{J} + ec{\sigma} = ec{L} + ec{s} + ec{\sigma}$$

 $\begin{cases} ec{L}: ext{ Orbital Angular Momentum} \\ ec{s}: ext{ Light Quark Spin} \\ ec{\sigma}: ext{ Heavy Quark Quark Spin} \end{cases}$

• Simple parametrization: The gyro-chromo-magnetic factors of the orbital motion and of the light quark spin are different:

$$\vec{B} \sim lpha' \vec{L} + eta' \vec{s} = lpha \vec{J} + eta \vec{s}$$

• The Spin dependent part of the Hamiltonian becomes (schematically)

$$H_{1/m} = \int d^3 \vec{x} \, \frac{g_s}{2m_c} \bar{c} (\vec{\sigma} \cdot \vec{B}) c = g(\vec{J} \cdot \vec{\sigma}) + g'(\vec{s} \cdot \vec{\sigma})$$

• $|D^*(2^+)
angle$ and $|D(0^+)
angle$ are Eigenstates of H

$$egin{aligned} H|D^*(2^+)
angle &= \left(M_{3/2} + rac{3}{4}g + rac{1}{4}g'
ight)|D^*(2^+)
angle \ H|D(0^+)
angle &= \left(M_{1/2} - rac{3}{4}g + rac{1}{4}g'
ight)|D(0^+)
angle \end{aligned}$$

• There is a mixing between the two 1⁺ states:

$$egin{aligned} H|D(1^+)
angle &= \left(M_{1/2} + rac{1}{4}g - rac{1}{12}g'
ight)|D(1^+)
angle + rac{\sqrt{2}}{3}g'\,|D^*(1^+)
angle \ H|D^*(1^+)
angle &= \left(M_{3/2} - rac{5}{4}g - rac{5}{12}g'
ight)|D^*(1^+)
angle + rac{\sqrt{2}}{3}g'\,|D(1^+)
angle \end{aligned}$$

イロト イポト イヨト イヨト

ъ

- Parametrically, the mixing is g' ~ 1/m_c, however, it is numerically of the same order as Λ_{3/2} − Λ_{1/2}
- Expect a significant mixing!

F	$m_c = \infty$ $m_c = \text{finite}$			
F	$i = 3/2$ $D^*(2^+)$	State	Mass [MeV]	Width [MeV]
F	$D(1^+)$	$D(0^+)$	2318 ± 29	267 ± 40
F	$j = 1/2$ $D^*(1^+)$	$D(1^+)$	2421.4 ± 0.6	27.4 ± 2.5
F	D(0^+)	$D^{*}(1^{+})$	2427 ± 40	384 ± 120
F		$D^{*}(2^{+})$	2462.6 ± 0.6	49 ± 1.3

- Assignment of the states:
 - j = 1/2 are wide, j = 3/2 are narrow.

$$\begin{split} |D_1(1^+)\rangle &= \cos\theta \, |D(1^+)\rangle + \sin\theta \, |D^*(1^+)\rangle \\ |D_2(1^+)\rangle &= -\sin\theta \, |D(1^+)\rangle + \cos\theta \, |D^*(1^+)\rangle \end{split}$$

"Level Crossing": The mixing angle is larger than 45°

$B ightarrow D^{**} \ell ar{ u}$

Channel	GI	VD	CCCN	ISGW	
$m_c \rightarrow \infty$					
$\mathcal{B}(B^- \to D(0^+)\ell\bar{\nu})$	$4.7 \cdot 10^{-4}$	$1.8\cdot10^{-4}$	$3.7 \cdot 10^{-5}$	$1.0 \cdot 10^{-3}$	
$\mathcal{B}(B^- \to D(1^+)\ell\bar{\nu})$	$6.4 \cdot 10^{-4}$	$2.5\cdot 10^{-4}$	$4.9 \cdot 10^{-5}$	$1.4 \cdot 10^{-3}$	
$\mathcal{B}(B^- \to D^*(1^+)\ell\bar{\nu})$	$4.4 \cdot 10^{-3}$	$2.9\cdot 10^{-3}$	$4.0 \cdot 10^{-3}$	$4.7\cdot 10^{-3}$	
$\mathcal{B}(B^- \to D^*(2^+)\ell\bar{\nu})$	$7.4 \cdot 10^{-3}$	$4.9\cdot 10^{-3}$	$6.7\cdot 10^{-3}$	$8.0\cdot 10^{-3}$	
$\mathcal{B}(B^- \to D^{**} \ell \bar{\nu})$	1.3%	0.82%	1.1%	1.5%	
$\mathcal{B}(B^- \to D^*(1^+)\ell\bar{\nu})$	6.9	11	80	3.4	
$\mathcal{B}(B^- \to D(1^+)\ell\bar{\nu})$	0.0	11	00	0.1	
m_c finite					
$\mathcal{B}(B^- \to D_L \ell \bar{\nu})$	$3.0 \cdot 10^{-3}$	$2.1 \cdot 10^{-3}$	$3.0 \cdot 10^{-3}$	$3.2 \cdot 10^{-3}$	
$\mathcal{B}(B^- \to D_H \ell \bar{\nu})$	$2.3 \cdot 10^{-3}$	$1.3 \cdot 10^{-3}$	$1.3 \cdot 10^{-3}$	$3.1 \cdot 10^{-3}$	
$\mathcal{B}(B^- \to D_L \ell \bar{\nu})$	1.3	1.6	2.3	1.0	
$\mathcal{B}(B^- \to D_H \ell \bar{\nu})$	1.0	1.0	2.0	1.0	

- GI: Godfrey, Isgur (1985);
- VD: Veseli, Dunietz (1996);
- CCCN: Cea, Colangelo, Cosmai, Nardulli (1991);
- ISGW: Isgur, Scora, Grinstein, Wise (1989)

$$rac{\mathcal{B}(B^- o D^*(1^+)\ell
u)}{\mathcal{B}(B^- o D(1^+)\ell
u)}pprox 2.2$$

ヘロン 人間 とくほ とくほ とう

Heavy Flavour Conserving Decays

S. Faller, ThM, arXiv:1503.06088

Why Heavy Flavour Conserving Decays?

- Weak decays of light quarks inside heavy hadrons
- May be an interesting QCD lab: Light quarks moving in the color-background field of the heavy quark
- Unfortunately heavily phase-space suppressed:

$$w=v\cdot v'=\frac{M^2+m^2-q^2}{2Mm}\,,$$

and

$$1 \le w \le w_{\max} = rac{M^2 + m^2}{2Mm} = 1 + rac{(M-m)^2}{2Mm} \sim 1 \; ,$$

æ

Advances in inclusive V_{cb} Decays into D^{**} states Heavy Flavour Conserving Decays $\Lambda_b \rightarrow \Lambda_c$ form factors

Decay	$\Delta m [\text{MeV}]$	$J^{p} \rightarrow J'^{p'}$	$s_\ell \rightarrow s'_\ell$	Quark Transition
		Semi-electronic deca	ys	
$D^+ \rightarrow D^0 e^+ v$	4.8	$0^- \rightarrow 0^-$	$1/2 \rightarrow 1/2$	$d \rightarrow u$
$D_s^+ \rightarrow D^0 e^+ v$	103.5	$0^- \rightarrow 0^-$	$1/2 \rightarrow 1/2$	$s \rightarrow u$
$B_s^0 \rightarrow B^- e^+ v$	87.5	$0^- \rightarrow 0^-$	$1/2 \rightarrow 1/2$	$s \rightarrow u$
$B_s^0 \rightarrow B^{*-}e^+\nu$	41.6	$0^- \rightarrow 1^-$	$1/2 \rightarrow 1/2$	$s \rightarrow u$
$\Xi_c^0 \rightarrow \Lambda_c^+ e^- \bar{\nu}$	184.4	$1/2^+ \rightarrow 1/2^+$	$0 \rightarrow 0$	$s \rightarrow u$
$\Xi_c^0 \rightarrow \Sigma_c^+ e^- \bar{\nu}$	18.0	$1/2^+ \rightarrow 1/2^+$	$0 \rightarrow 0$	$s \rightarrow u$
$\Xi_c^+ \rightarrow \Sigma_c^{*++} e^- \bar{\nu}$	13.8	$1/2^+ \rightarrow 3/2^+$	$0 \rightarrow 1$	$s \rightarrow u$
$\Omega_c^0 \rightarrow \Xi_c^+ e^- \bar{\nu}$	227.4	$1/2^+ \to 1/2^+$	$1 \rightarrow 0$	$s \rightarrow u$
$\Omega_c^{0} \rightarrow \Xi_c^{\prime +} e^- \bar{\nu}$	119.7	$1/2^+ \to 1/2^+$	$1 \rightarrow 1$	$s \rightarrow u$
$\Omega_c^0 \rightarrow \Xi_c^{*+} e^- \bar{\nu}$	49.3	$1/2^+ \rightarrow 3/2^+$	$1 \rightarrow 1$	$s \rightarrow u$
$\Xi_h^- \rightarrow \Lambda_h^0 e^- \bar{\nu}$	175.4	$1/2^+ \rightarrow 1/2^+$	$0 \rightarrow 0$	$s \rightarrow u$
$\Omega_{h}^{-} \rightarrow \Xi_{h}^{0} e^{-} \bar{\nu}$	255.7	$1/2^+ \rightarrow 1/2^+$	$1 \rightarrow 0$	$s \rightarrow u$
$\Omega_b^{-} \rightarrow \Xi_b^{*0} e^- \bar{\nu}$	99.5	$1/2^+ \rightarrow 3/2^+$	$1 \rightarrow 1$	$s \rightarrow u$

Advances in inclusive V_{cb} Decays into D^{**} states Heavy Flavour Conserving Decays $\Lambda_b \rightarrow \Lambda_c$ form factors

Decay	$\Delta m [MeV]$	$J^{p} \rightarrow J'^{p'}$	$s_\ell \to s'_\ell$	Quark Transition
		Semi-muonic decays	5	
$\Xi_c^0 \rightarrow \Lambda_c^+ \mu^- \bar{\nu}$	151.2	$1/2^+ \rightarrow 1/2^+$	$0 \rightarrow 0$	$s \rightarrow u$
$\Omega_c^0 \rightarrow \Xi_c^+ \mu^- \bar{\nu}$	201.4	$1/2^+ \rightarrow 1/2^+$	$1 \rightarrow 0$	$s \rightarrow u$
$\Omega_c^0 \rightarrow \Xi_c'^+ e^- \bar{\nu}$	56.1	$1/2^+ \rightarrow 1/2^+$	$1 \rightarrow 1$	$s \rightarrow u$
$\Xi_b^- \rightarrow \Lambda_b^0 \mu^- \bar{\nu}$	140.0	$1/2^+ \rightarrow 1/2^+$	$0 \rightarrow 0$	$s \rightarrow u$
$\Omega_b^- \to \Xi_b^0 \mu^- \bar{\nu}$	232.8	$1/2^+ \rightarrow 1/2^+$	$1 \rightarrow 0$	$s \rightarrow u$
		Pionic decays		
$\Xi_c^0 \rightarrow \Lambda_c^+ \pi^-$	184.4	$1/2^+ \rightarrow 1/2^+$	$0 \rightarrow 0$	$s \rightarrow u$
$\Xi_c^+ \rightarrow \Lambda_c^+ \pi^0$	181.3	$1/2^+ \rightarrow 1/2^+$	$0 \rightarrow 0$	$s \rightarrow u$
$\Omega_c^0 \rightarrow \Xi_c^+ \pi^-$	227.4	$1/2^+ \rightarrow 1/2^+$	$1 \rightarrow 0$	$s \rightarrow u$
$\Omega_c^0 o \Xi_c^0 \pi^0$	224.3	$1/2^+ \rightarrow 1/2^+$	$1 \rightarrow 0$	$s \rightarrow u$
$\Xi_h^- \rightarrow \Lambda_h^0 \pi^-$	175.4	$1/2^+ \to 1/2^+$	$0 \rightarrow 0$	$s \rightarrow u$
$\Xi_b^0 \rightarrow \Lambda_b^0 \pi^0$	173.6	$1/2^+ \rightarrow 1/2^+$	$0 \rightarrow 0$	$s \rightarrow u$
$\tilde{\Omega_{b}^{-}} \rightarrow \Xi_{b}^{0} \pi^{-}$	255.7	$1/2^+ \rightarrow 1/2^+$	$1 \rightarrow 0$	$s \rightarrow u$
$\Omega_b^- \to \Xi_b^- \pi^0$	253.9	$1/2^+ \rightarrow 1/2^+$	$1 \rightarrow 0$	$s \rightarrow u$

Mesonic Decays

• We need the matrix elements close to v = v'

 $\begin{array}{l} \langle H_f(p') | \overline{q}' \gamma_\mu q | H_i(p) \rangle = \sqrt{Mm} \, (v+v')_\mu \Phi_+(w) + \dots \ , \\ \langle H_f^*(p',\epsilon) | \overline{q}' \gamma_\mu \gamma_5 q | H_i(p) \rangle = i \sqrt{Mm} \, (w+1) \epsilon_\mu^* \Phi_{A_1}(w) + \dots \ , \end{array}$

 Normalization statement from light quark flavor symmetry

$$\Phi_+(w=1)=1$$

 No normalization for the axial current, but we assume that Φ_{A1}(1) is also close to unity

Total rates for semi-electonic decays

$$\begin{split} \Gamma^{0^- \to 0^- e \bar{\nu}} &= \frac{G_F^2}{60 \pi^3} |V_{\rm CKM}|^2 (M-m)^5 \\ \Gamma^{0^- \to 1^- e \bar{\nu}} &= \frac{G_F^2}{20 \pi^3} |V_{\rm CKM}|^2 (M-m)^5 |\Phi_A(1)|^2 \end{split}$$

• Strong phase space supression $(M - m)^5/M^5$

Mode	Decay Rate [GeV]	Branching Ratio
$D^+ ightarrow D^0 e^+ u$	$1.72 imes 10^{-25}$	2.71×10^{-13}
$D^+_{ m s} ightarrow D^0 e^+ u$	$4.40 imes10^{-20}$	$3.34 imes10^{-8}$
$B^{ar 0}_{f s} o B^- e^+ u$	$1.90 imes 10^{-20}$	$4.37 imes10^{-8}$
$B_{s}^{0} ightarrow B^{st-}e^{+} u$	$1.38 imes10^{-21}$	$3.17 imes10^{-9}$

ヘロト 人間 ト イヨト イヨト

ъ

Baryonic Decays

- What are the form factors close to v = v'?
- Heavy Quark Limit:
 - Heavy Quark = "cannon ball": Velocity is unchanged
 - Heavy Quark spin decouples: Spin is unchanged
- "Λ-like" Baryons: Light degrees of freedom are 0⁺

$$\begin{split} \langle \Xi_{H}(\boldsymbol{v},\boldsymbol{s}) \, | \bar{\boldsymbol{s}} \gamma_{\mu} \boldsymbol{u} | \, \Lambda_{H}(\boldsymbol{v}',\boldsymbol{s}') \rangle &= \bar{\boldsymbol{u}}_{\Xi}(\boldsymbol{v},\boldsymbol{s}) \boldsymbol{u}_{\Lambda}(\boldsymbol{v}',\boldsymbol{s}') \boldsymbol{B}(\boldsymbol{w})(\boldsymbol{v}+\boldsymbol{v}')_{\mu} + \dots , \\ \langle \Xi_{H}(\boldsymbol{v},\boldsymbol{s}) \, | \bar{\boldsymbol{s}} \gamma_{\mu} \gamma_{5} \boldsymbol{u} | \, \Lambda_{H}(\boldsymbol{v}',\boldsymbol{s}') \rangle &= 0 + \dots \end{split}$$

- B(w): Vector form factor of the $0^+ \rightarrow 0^+$ transition
- B(w = 1) = 1 from light quark symmetries
- No axial vector form factors for the $0^+_{-} \rightarrow 0^+$ transition

- "Σ-like" Baryons: Light degrees of freedom are 1⁺
- $\Sigma \rightarrow \Lambda$ transition: $1^+ \rightarrow 0^+$

$$\begin{split} \langle \Xi_{H}(\boldsymbol{v},\boldsymbol{s}) \, | \bar{\boldsymbol{s}} \gamma_{\mu} \gamma_{5} \boldsymbol{u} | \, \Sigma_{H}(\boldsymbol{v}',\boldsymbol{s}') \rangle &= \bar{\boldsymbol{u}}_{i}(\boldsymbol{v},\boldsymbol{s}) \boldsymbol{u}_{f}(\boldsymbol{v}',\boldsymbol{s}') \boldsymbol{\epsilon}_{\mu} \boldsymbol{A}(\boldsymbol{w}) + \dots , \\ \langle \Xi_{H}(\boldsymbol{v},\boldsymbol{s}) \, | \bar{\boldsymbol{s}} \gamma_{\mu} \boldsymbol{u} | \, \Sigma_{H}(\boldsymbol{v}',\boldsymbol{s}') \rangle &= \boldsymbol{0} + \dots , \end{split}$$

- A(w): Axial vector form factor of $1^+ \rightarrow 0^+$
- Vector form factor vanishes
- Decompose $1/2 \otimes 1$ into 1/2 and 3/2

$$\begin{split} \psi_{\mu}^{(3/2)} &= \epsilon_{\nu}' \bigg[\delta_{\mu}^{\nu} - \frac{1}{3} (\gamma_{\mu} + \mathbf{v}_{\mu}') \gamma^{\nu} \bigg] u_{f}(\mathbf{v}', \mathbf{s}') = R_{\mu}^{\Sigma, 3/2}(\mathbf{v}', \mathbf{s}') \;, \\ \psi_{\mu}^{(1/2)} &= \epsilon_{\nu}' \bigg[\frac{1}{3} (\gamma_{\mu} + \mathbf{v}_{\mu}') \gamma^{\nu} \bigg] u_{f}(\mathbf{v}', \mathbf{s}') = \frac{1}{\sqrt{3}} (\gamma_{\mu} + \mathbf{v}_{\mu}') \gamma_{5} u^{\Sigma, 1/2}(\mathbf{v}', \mathbf{s}') \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Finally: $\Sigma \to \Sigma$ transitions: $1^+ \to 1^+$

$$\begin{split} \left\langle \Omega_{H}(\boldsymbol{v},\boldsymbol{s}) \left| \bar{\boldsymbol{s}} \gamma_{\mu} \boldsymbol{u} \right| \Xi_{H}^{(\prime,\ast)}(\boldsymbol{v}',\boldsymbol{s}') \right\rangle = \\ \bar{\boldsymbol{u}}_{i}(\boldsymbol{v},\boldsymbol{s}) \boldsymbol{u}_{f}(\boldsymbol{v}',\boldsymbol{s}')(\epsilon^{\ast} \cdot \epsilon')(\boldsymbol{v}_{\mu} + \boldsymbol{v}_{\mu}') \boldsymbol{C}(\boldsymbol{w}) + \dots , \\ \left\langle \Omega_{H}(\boldsymbol{v},\boldsymbol{s}) \left| \bar{\boldsymbol{s}} \gamma_{\mu} \gamma_{5} \boldsymbol{u} \right| \Xi_{H}^{(\prime,\ast)}(\boldsymbol{v}',\boldsymbol{s}') \right\rangle = 0 + \dots . \end{split}$$

- C(w) Vector Form factor for the $1^+ \rightarrow 1^+$ transition
- C(w = 1) = 1 due to light quark symmetries
- No axial vector form factor
- ... Decompose into the 1/2 and 3/2 components ...

Total rates for semi electronic decays

$$\begin{split} & \Gamma_{0^+ \to 1^+}^{1/2^+ \to 3/2^+} = \frac{G_F^2 |V_{\rm CKM}|^2}{30\pi^3} (M-m)^5 |A(1)|^2 , \\ & \Gamma_{0^+ \to 1^+}^{1/2^+ \to 1/2^+} = \frac{1}{2} \Gamma_{0^+ \to 1^+}^{1/2^+ \to 3/2^+} \\ & \Gamma_{1^+ \to 1^+}^{1/2^+ \to 1/2^+} = \frac{G_F^2 |V_{\rm CKM}|^2}{15\pi^3} (M-m)^5 , \\ & \Gamma_{1^+ \to 1^+}^{1/2^+ \to 3/2^+} = \mathcal{O}([M-m]^7) \end{split}$$

イロン 不同 とくほ とくほ とう

ъ

Mode	Decay Rate [GeV]	Branching Ratio
$\Xi_c^0 \rightarrow \Lambda_c^+ e^- \bar{\nu}$	$7.91 imes 10^{-19}$	$1.35 imes 10^{-7}$
$\Xi_c^0 ightarrow \Sigma_c^+ e^- ar{ u}$	$6.97 imes10^{-24}$	$1.19 imes 10^{-12}$
$\Xi_c^+ ightarrow \Sigma_c^{++} e^- \bar{ u}$	$3.74 imes10^{-24}$	$1.26 imes 10^{-12}$
$\Omega^{0}_{c} ightarrow \Xi^{+}_{c} e^{-} ar{ u}$	$2.26 imes10^{-18}$	$2.36 imes10^{-7}$
$\Omega^0_c ightarrow \Xi_c^{\prime +} e^- ar{ u}$	$3.63 imes10^{-19}$	$3.81 imes 10^{-8}$
$\Omega^0_c ightarrow \Xi^{*+}_c e^- ar{ u}$	$1.49 imes10^{-29}$	$1.57 imes 10^{-18}$
$\Xi_b^- ightarrow \Lambda_b^0 e^- \bar{\nu}$	$6.16 imes 10^{-19}$	$1.46 imes 10^{-6}$
$\Omega_{b}^{-} ightarrow \Xi_{b}^{0} e^{-} ar{ u}$	$4.05 imes10^{-18}$	$6.78 imes10^{-6}$
$\Omega_b^- o \Xi_b^{*0} e^- \bar{\nu}$	$3.27 imes10^{-28}$	5.47×10^{-16}

Mode	Decay Rate [GeV]	Branching Ratio
$\Xi_c^0 \to \Lambda_c^+ \mu^- \bar{\nu}$	$1.3 imes 10^{-19}$	$2.3 imes 10^{-8}$
$\Omega_c^0 ightarrow \Xi_c^+ \mu^- \bar{ u}$	$7.1 imes 10^{-19}$	$7.4 imes10^{-8}$
$\Omega^0_c ightarrow \Xi^{+\prime}_c \mu^- ar{ u}$	$1.0 imes 10^{-21}$	$1.1 imes 10^{-10}$
$\Xi_b^- \to \Lambda_b^0 \mu^- \bar{\nu}$	9.1 × 10 ⁻²⁰	$2.2 imes 10^{-7}$
$\Omega_b^- \to \Xi_b^0 \mu^- \bar{\nu}$	$1.7 imes 10^{-18}$	$2.8 imes10^{-6}$

- There are also pionic decays possible
- ... may as well be an interesting QCD lab.

$\Lambda_b \rightarrow \Lambda_c$ Form Factors

ThM, D. van Dyk, SI-HEP-2015-14

(all numbers preliminary)

$\Lambda_b \rightarrow \Lambda_c$ form factors

- Recent V_{ub} determination from LHCb based on $\Lambda_b \rightarrow p \ell \bar{\nu}$ is normalized to $\Lambda_b \rightarrow \Lambda_c \ell \bar{\nu}$
- Relies heavily on Lattice QCD Form Factors for both $\Lambda_b \to p$ and $\Lambda_b \to \Lambda_c$ (W. Detmold, C. Lehner, S. Meinel (2015))
- Can we say something using continuum methods?
- $\bullet \ \rightarrow$ Zero Recoil Sum Rule for $\Lambda_b \rightarrow \Lambda_c$ form factors

Zero Recoil Sum Rule

• Start from

$$egin{aligned} \mathcal{T}(\omega) &= rac{1}{3} \int d^4 x \, m{e}^{i \, (v \cdot x) \omega} \ &\langle \Lambda_b(m{P}) | \mathcal{T}ig\{ ar{b}_
u(x) \gamma_\mu \gamma_5 m{c}_
u(x) \, ar{m{c}}_
u(0) \gamma^\mu \gamma_5 m{b}_
u(0) ig\} | \Lambda_b(m{P})
angle \end{aligned}$$

• compute the contour integral $I_0(\mu) = -\frac{1}{2\pi i} \oint T(\varepsilon) d\varepsilon$

- Inserting a complete set of states: Lowest state is Λ_c
- Form factor definition: (T. Feldmann , M. Yip (2011))

$$\begin{split} \langle \Lambda_c(v',s') | \bar{c} \gamma_5 \gamma_\mu b | \Lambda_b(v,s) \rangle &= \bar{u}_{\Lambda_c}(v',s') \gamma_5 \left[g_0(w) (M_{\Lambda_b} + M_{\Lambda_c}) \frac{q^\mu}{q^2} \right. \\ &+ g_+(w) \frac{M_{\Lambda_b} - M_{\Lambda_c}}{s_-} \left(M_{\Lambda_b} v_\mu + M_{\Lambda_c} v'_\mu - (M_{\Lambda_b}^2 - M_{\Lambda_c}^2) \frac{q^\mu}{q^2} \right) \\ &+ g_\perp(w) \left(\gamma_\mu - \frac{2M_{\Lambda_c} M_{\Lambda_b}}{s_+} (v_\mu - v'_\mu) \right) \right] u_{\Lambda_b}(v,s) \end{split}$$

• Zero Recoil Sum Rule:

$$egin{aligned} &I_0(\epsilon_M) = rac{1}{3} \left[2 |g_\perp(1)|^2 + |g_+(1)|^2
ight] + ext{ inelastic} \ &= \xi^{ ext{pert}}(\epsilon_M,\mu) - \Delta_{1/m^2}(\epsilon_M,\mu) - \Delta_{1/m^3}(\epsilon_M,\mu) + \cdots \end{aligned}$$

イロン イボン イヨン イヨン

ъ

Perturbative Contribution

($\mathcal{O}(\alpha_s)$, computed in Wilsonian Cut Off Scheme)

$$\xi^{\text{pert}}(\epsilon_M = \mu = 0.75 \,\text{GeV}) = 0.970 \pm 0.02$$

Nonperturbative Contributions

$$\Delta_{1/m^2} = \frac{\mu_{\pi}^2(\Lambda_b)}{4} \left(\frac{1}{m_c^2} + \frac{1}{m_b^2} + \frac{2}{3m_bm_c} \right)$$
$$\Delta_{1/m^3} = \frac{\rho_D^3(\Lambda_b)}{4m_c^3} + \frac{\rho_D^3(\Lambda_b)}{12m_b} \left(\frac{1}{m_c^2} + \frac{3}{m_b^2} + \frac{1}{m_bm_c} \right)$$

• Note $\mu_{G} = \rho_{LS} = 0$ and $\mu_{\pi}^{2}(\Lambda_{b}) \sim \mu_{\pi}^{2}(B)$

ヘロン 人間 とくほ とくほ とう

• ... or as an inequality

$$\frac{1}{3} \left[2|g_{\perp}(1)|^2 + |g_{+}(1)|^2 \right] \leq \xi^{\text{pert}}(\epsilon_M, \mu) - \Delta_{1/m^2}(\epsilon_M, \mu) - \Delta_{1/m^3}(\epsilon_M, \mu) + \cdots$$

• Numerically we have (Preliminary)

$$\frac{1}{3}\left[2|g_{\perp}(1)|^2+|g_{+}(1)|^2\right]\leq 0.86$$

• ... to be compared to the lattice number (W. Detmold, C. Lehner, S. Meinel (2015))

$$rac{1}{3}\left[2|g_{\perp}(1)|^2+|g_{+}(1)|^2
ight]=0.824\pm0.020$$

イロト イポト イヨト イヨト

æ

Conclusions

- The V_{ub} Problem seems to remain with us
 - Scrutinize the inclusive methodology
 - Can it be BSM physics?
- There is also a "tension" in *V_{cb}*, but not as severe (personal view!)
- Λ_b semileptonic decays become important.