Introduction
0000000

Theoretical Error and Calculation

Results

A Precision Determination of the CKM Element V_{cb} An Inclusive Numerical Analysis at $\mathcal{O}(\alpha_s^2, \alpha_s \frac{\Lambda^2}{m_b^2})$

Kristopher J. Healey

with

Paolo Gambino, Andrea Alberti and Soumitra Nandi Published in Phys. Rev. Lett. 114, 061802 (2015)

Università degli Studi di Torino, INFN Torino Portoroz 2015 : Portoroz, Slovenia April 7, 2015

Introduction	
000000	

Theoretical Error and Calculation

Results

Motivation

- V_{cb} through $(B
 ightarrow X_c \ell ar{
 u}$) Important :
 - * Allows us to probe b
 ightarrow c transition
 - * Constrain NP through FV Processes
 - * Important role in UT Determination
 - $\frac{|V_{ub}|}{|V_{cb}|}$ ratio gives one of the sides of the CKM unitarity triangle
 - ϵ_k constraint on $\bar{\rho}, \bar{\eta}$ sensitive to $|V_{cb}|$

• Determined from both $B \to X_c \ell \bar{\nu}$ and $B \to D^{(*)} \ell \bar{\nu}$

$$\begin{split} |V_{cb}|_{inc} &= 42.42 \pm 0.86 \times 10^{-3} & \text{[P.G., C.S. Phys. Rev. D 89, 014022 (2014)]} \\ |V_{cb}|_{ex} &= 39.04 \pm 0.8 \times 10^{-3} & \text{[FNAL, MILC, Phys. Rev. D 89, 114504 (2014)]} \end{split}$$

• Near 3 σ discrepancy between inclusive and exclusive $B \rightarrow D^* \ell \bar{\nu}$ at zero recoil with form factors from lattice.

 Introduction
 Experimental Observables
 Theoretical Error and Calculation

 0•0000
 000
 0000
 0000

Results 00

Inclusive $B \to X_c \ell \bar{\nu}$ Determination of $|V_{cb}|$

Easy Concept

- Inclusive decays do not depend on the hadronic final state or long-distance dynamics of the B meson factorizes.
- We can perform an OPE to express observables in terms of matrix elements of these local operators.
- The Wilson-Coefficients are perturbative, while matrix elements parameterize the non-perturbative physics.

$$\langle B|\bar{b}(i\vec{D})^2b|B
angle_{\mu} = 2M_B\,\mu_{\pi}^2(\mu) \qquad \langle B|\bar{b}_{2}^{i}(\sigma\cdot G)b|B
angle_{\mu} = 2M_B\,\mu_{G}^2(\mu)$$

Experimental Observables

Theoretical Error and Calculation 00000

Results

Inclusive $B \to X_c \ell \bar{\nu}$ Determination of $|V_{cb}|$

Operator Product Expansion (OPE)

- Perturbative + Heavy Quark Expansion (HQET)
- Heavy Quark Limit \rightarrow partonic decay rate
 - * Corrections to Observables expressed as double expansion in $\mathcal{O}(\alpha_s)$ and $\mathcal{O}(\Lambda_{QCD}/m_b)$
- Express the observables

$$M_{i} = M_{i}^{(0)} + M_{i}^{(\pi,0)} \frac{\mu_{\pi}^{2}}{m_{b}^{2}} + M_{i}^{(G,0)} \frac{\mu_{G}^{2}}{m_{b}^{2}} + M_{i}^{(D,0)} \frac{\rho_{D}^{3}}{m_{b}^{3}} + M_{i}^{(LS,0)} \frac{\rho_{LS}^{3}}{m_{b}^{3}} + \left(\frac{\alpha_{s}}{\pi}\right) \left[M_{i}^{(1)} + M_{i}^{(\pi,1)} \frac{\mu_{\pi}^{2}}{m_{b}^{2}} + M_{i}^{(G,1)} \frac{\mu_{G}^{2}}{m_{b}^{2}} + M_{i}^{(D,1)} \frac{\rho_{D}^{3}}{m_{b}^{3}} + M_{i}^{(LS,1)} \frac{\rho_{LS}^{3}}{m_{b}^{3}} \right] + \left(\frac{\alpha_{s}}{\pi}\right)^{2} M_{i}^{(2)} + \mathcal{O}\left(m_{b}^{4,5}, \alpha_{s}^{3}\right)$$

- Need information on non-perturbative parameters
- $|V_{cb}|$ extracted from width after HQE parameter fit
- At order $1/m_b^{2,3}$ 6 non-perturbative parameters $(m_{b,c}, \mu_{\pi,G}, \rho_{D,LS})$

Introduction	
0000000	

Theoretical Error and Calculation

Results 00

Higher Order Corrections

- The accuracy and reliability of the inclusive method depends our ability to control higher order corrections
- Perturbative $\mathcal{O}(\alpha_s^n)$ corrections are known completely to NNLO [Melnikov, Biswas, Czarnecki, Pak, Gambino]
- \bullet Higher order non-perturbative power corrections are also calculated $\mathcal{O}(1/m_b^{4,5})$ $_{\rm [Mannel,Turczyk,Uraltsev, 2010]}$
- Cross-terms from the expansions are complete to $\mathcal{O}(\alpha_s/m_b^2)$ [Becher, Boos, Lunghi, Alberti, Ewerth, Nandi, Gambino]
- $\mathcal{O}(lpha_s/m_b^3)$ corrections are currently being calculated

Experimental Observables

Theoretical Error and Calculation

Results 00

Higher Order Corrections : $\mathcal{O}(1/m_b^{4,5})$

- $\mathcal{O}(1/m_b^{4,5})$ [Mannel, Turczyk, Uraltsev 2010/2012, Heinonen, Mannel 2014]
- ...too many parameters for fit

$$\begin{array}{ll} 2M_B m_1 = \langle ((\vec{p})^2)^2 \rangle & (...) \\ 2M_B m_2 = \langle g^2 \vec{E}^2 \rangle & 2M_B m_8 = \langle (\vec{S} \cdot \vec{B}) (\vec{p})^2) \rangle \\ 2M_B m_3 = \langle g^2 \vec{B}^2 \rangle & 2M_B m_9 = \langle \Delta (\vec{\sigma} \cdot \vec{B}) \rangle \end{array}$$

Small changed in $|V_{cb}|$ though, $rac{\delta V_{cb}}{V_{cb}}\simeq -0.35\%$ [Turczyk, Gambino PRELIM]

• LLSA Corrections have been found, but allowing 80% gaussian deviations from LLSA seem to leave V_{cb} unaffected.

Experimental Observables

Theoretical Error and Calculation 00000

Results 00

Higher Order Corrections : $\mathcal{O}(\alpha_s/m_b^2)$

[Boos,Becher,Lunghi 2007][Ewerth,Nandi, PG 2009][Alberti,Ewerth,Nandi,PG 2012][Alberti,Nandi,PG 2013]

Concerned most with the Hadronic Tensor :

$$W^{\mu
u} = rac{(2\pi)^3}{2m_B}\sum_{X_c} \delta^4(p_b - q - p_X) \langle B|J_L^{\dagger\mu}X_c
angle \langle X_c|J_L^{
u}|B
angle$$

This can be decomposed into :

$$m_b W^{\mu\nu} = -W_1 g^{\mu\nu} + W_2 v^{\mu} v^{\nu} + i W_3 \epsilon^{\mu\nu\rho\sigma} v_{\rho} \hat{q}_{\sigma} + (...)$$

Where each W_i can be double-expanded :

$$W_{i} = W_{i}^{(0)} + \frac{\mu_{\pi,G}^{2}}{2m_{b}^{2}}W_{i}^{(\pi,G,0)} + \frac{C_{F}\alpha_{s}}{\pi} \left[W_{i}^{(1)} + \frac{\mu_{\pi,G}^{2}}{2m_{b}^{2}}W_{i}^{(\pi,G,1)}\right]$$
A useful check are the RPI relations [Manohar 2010] for $W_{i}^{\pi,n}$, for example to all orders :

$$W_3^{(\pi,n)} = rac{5}{3} \hat{q}_0 rac{dW_3^{(n)}}{d\hat{q}_0} - rac{\hat{q}^2 - \hat{q}_0^2}{3} rac{dW_3^{(n)}}{d\hat{q}_0}$$

Experimental Observables

Theoretical Error and Calculation

Results

Matching at $\mathcal{O}(\alpha_s)$

 Diagrams contributing to O(α_s/m²_b), (x) denotes a gluon insertion for symmetrization of HQET operators (split μ_π, μ_G)

$$\frac{2i}{\pi} \int d^4x \, e^{-iq \cdot x} \, T[J_L^{\dagger \mu}(x) J_L^{\nu}(0)] = \sum_i c^{(i)\mu\nu}_{\{\alpha\}}(v,q) \, O_i^{\{\alpha\}}(0)$$

- Expansion around on-shell b-quark matched onto HQET local operators
- Analytic formulae obtained, RPI satisfied, but unlike μ_{π} , μ_{G} gets ren.

Portoroz 2015

Experimental Observables

Relevant Observables

Leptonic Moments

$$\langle E_{\ell}^{n} \rangle_{E_{\ell} > E_{cut}} = \frac{\int_{E_{cut}}^{E_{max}} E_{\ell}^{n} \frac{d\Gamma}{dE_{\ell}} dE_{\ell}}{\int_{E_{cut}}^{E_{max}} dE_{\ell} \frac{d\Gamma}{dE_{\ell}}} R^{*}(E_{cut}) = \frac{\int_{E_{cut}}^{E_{max}} \frac{d\Gamma}{dE_{\ell}} dE_{\ell}}{\int_{0}^{E_{max}} \frac{d\Gamma}{dE_{\ell}} dE_{\ell}}$$

 $\langle E_\ell^1\rangle, \langle E_\ell^2\rangle, \langle E_\ell^3\rangle$ Highly Correlated

Central Leptonic Moments

$$\begin{split} \ell_{1}(E_{cut}) &= \langle E_{\ell} \rangle_{E_{\ell} > E_{cut}} \\ \ell_{2,3}(E_{cut}) &= \langle (E_{\ell} - \langle E_{\ell} \rangle)^{2,3} \rangle_{E_{\ell} > E_{cut}} \end{split}$$

Hadronic Moments

$$\langle (M_X^2)^n \rangle_{E_\ell > E_{cut}} = \frac{\int_{E_{cut}}^{E_{max}} (M_X^2)^n \frac{d\Gamma}{dM_X^2} dM_x^2}{\int_{E_{cut}}^{E_{max}} \frac{d\Gamma}{dM_X^2} dM_x^2}$$

Theoretical	Error	and	Calculation
00000			

$$h_1(E_{cut}) = \langle M_X^2 \rangle_{E_\ell > E_{cut}}$$
$$h_{2,3}(E_{cut}) = \langle (M_X^2 - \langle M_X^2 \rangle)^{2,3} \rangle_{E_\ell > E_{cut}}$$

1.

Experimental Observables

Theoretical Error and Calculation

Results

Experimental Observables

- Observables as $F_x(E_{cut}, m_c^2/m_b^2)$
- Express $m_b, \mu_{\pi,G}, \rho_{D,LS}$ in the "kinetic scheme" with a cutoff $\mu_{kin} = 1 \text{GeV}$
- Additionally employ both kinetic and $\overline{\mathrm{MS}}$ definitions for m_c
- $\alpha_s(m_b = 4.6 GeV) = 0.22$ $\alpha_s \pm 0.005 \rightarrow \delta m_b < 1 MeV$
- Additional Constraints:

Hyperfine Splitting

$$M_{B^*} - M_B = \frac{2}{3} \frac{\mu_G^2}{m_b} + O\left(\frac{\alpha_s \mu_G^2}{m_b}, \frac{1}{m_b^2}\right)$$
$$\mu_G^2 = (0.35 \pm 0.07) \,\text{GeV}^2$$

Heavy Quark Sum Rules

$$ho_{LS}^3 = (-0.15 \pm 0.10) \, {
m GeV^3}$$

	Experiment	Values of $E_{cut}(\text{GeV})$
R^*	BaBar	0.6, 1.2, 1.5
ℓ_1	BaBar	0.6, 0.8, 1, 1.2, 1.5
ℓ_2	BaBar	0.6, 1, 1.5
ℓ_3	BaBar	0.8, 1.2
h_1	BaBar	0.9, 1.1, 1.3, 1.5
h_2	BaBar	0.8, 1, 1.2, 1.4
h ₃	BaBar	0.9, 1.3
R*	Belle	0.6, 1.4
ℓ_1	Belle	1, 1.4
ℓ_2	Belle	0.6, 1.4
ℓ_3	Belle	0.8, 1.2
h_1	Belle	0.7, 1.1, 1.3, 1.5
h_2	Belle	0.7, 0.9, 1.3
$h_{1,2}$	CDF	0.7
$h_{1,2}$	CLEO	1, 1.5
$\ell_{1,2,3}$	DELPHI	0
$h_{1,2,3}$	DELPHI	0

Introduction	
0000000	

Experimental	Observables
000	

Note:

- Semileptonic moments are sensitive to a linear combination of m_c and m_b: poor individual accuracy
- Generally use photon energy moments in $B o X_s \gamma$
- Much better m_c determination from e^+e^- sum rules, Lattice QCD

New Contributions:

$$M_{i} = (...) + \left(\frac{\alpha_{s}}{\pi}\right) \left[M_{i}^{(\pi,1)} \frac{\mu_{\pi}^{2}}{m_{b}^{2}} + M_{i}^{(G,1)} \frac{\mu_{G}^{2}}{m_{b}^{2}} \right]$$

A. Alberti, P. Gambino and S. Nandi A. Alberti, T. Ewerth, P. Gambino and S. Nandi T. Becher, H. Boos, E. Lunhgi

[JHEP, 1 (2014)] [Nucl. Phys. B 870, 16 (2013)] [JHEP 0712 (2007) 062]

Large cancellation in ℓ_1,ℓ_2,ℓ_3 Requires high precision : Avoid divergences

Experimental Observables

Theoretical Error and Calculation

Results

 $O[\Lambda^2/m_b^2]$

 $O[\Lambda^3/m_h^3]$

 $O[\alpha_s/\pi]$

 $O[(\alpha_s/\pi)^2]$

 $O[\alpha_s/m_b^2]$

New Contributions $\mathcal{O}(\alpha_s/m_b^2)$: I1, I2 ,I3

Kristopher J. Healey

12/18

Introduction	
0000000	

Theoretical Error and Correlation Issues

- Perform High-Precision fits for use in HFAG Fortran Routine
- Functional dependence on E_{cut} is important
- Theoretical uncertainty assigned :

 $M_i(1\,{\rm GeV})$ and $M_i(1.1\,{\rm GeV})$ are very close and highly correlated

- * Previous fits assumed 100% correlation : too strong
- * Dependence of observable on E_{cut} would be free from theoretical uncertainty

Standard Global Fit Theoretical Correlation Scenarios

- **A** : 100% Correlation between M_i at different E_{cut}
- B : Correlations from varying theoretical parameters
- C : Constant scale factor (0.97/100 MeV Steps)
- ${f D}$: Functional Scale Factor ($E_0pprox 1.75\,{
 m GeV},\Deltapprox 0.25\,{
 m GeV})^*$

$$\xi(E_{cut}) = 1 - \frac{1}{2} \exp^{-\frac{E_0 - E_{cut}}{\Delta}}$$

Introduction
0000000

Theoretical Error and Calculation	Results
0000	00

Residual Scale Dependence

- Renormalization of $\mu_G(\mu)$ and $\mathcal{O}(\alpha_s \mu_G^2/m_b^2)$ lead to residual scale dependence
- Relative NLO correction to the coefficients of $\mu_G(\mu)$ in the width (blue), first (red) and second central (yellow) leptonic moments as a function of the renormalization scale μ .
- The lower the scale, the smaller the corrections

Introduction
0000000

Theoretical B	Error and	Calculation	
00000			

Theoretical Errors

- Theoretical errors are generally *dominant* in the fits.
- Estimated in a conservative way by mimicking higher orders, varying the parameters by fixed amounts.
- **Quark-Hadron duality violation**, expected to be suppressed, would appear as an inconsistency in the fit.

Introduction	
0000000	

Theoretical Error and Calculation

Results

Parameter Fits and Correlations

Two-dimensional projections of the fits performed with different assumptions for the theoretical correlations. The orange, magenta, blue, light blue 1-sigma regions correspond to scenarios A,B,C,D ($\Delta = 0.25$ GeV), respectively. The red corresponds to scenario D with $O(\alpha_s/m_h^2)$ corrections.

Portoroz 2015

Introduction	Experimental Observables	Theoretical Error and Calculation
000000	000	00000

Results ●○

Numerical Results : Bottom Mass

• Gives $m_b^{kin}(1 \text{GeV}) = 4.553(20) \text{GeV}$, independent of theoretical error

• Scheme translation error : $m_b^{kin}(1 GeV) = m_b(m_b) + 0.37(3) GeV$

Introduction	Experimental Observables	Theoretical Error and Calculation
0000000	000	00000

Numerical Results

	m _b ^{kin}	m _c	μ_{π}^2	ρ_D^3	μ_G^2	ρ_{LS}^3	$BR_{c\ell\nu}(\%)$	$10^3 V_{cb} $
$\mathcal{O}(\alpha_s^2, m_b^{-2})$	4.541	0.987	0.414	0.154	0.340	-0.147	10.65	42.42
$\overline{m}_c(3 \text{GeV})$	0.023	0.013	0.078	0.045	0.066	0.098	0.16	0.86
	m _b ^{kin}	m _c	μ_{π}^2	ρ_D^3	μ_G^2	ρ_{LS}^3	$BR_{c\ell\nu}(\%)$	$10^3 V_{cb} $
$\mathcal{O}(\alpha_s^2, \alpha_s m_b^{-2})$	4.553	0.987	0.465	0.170	0.332	-0.150	10.65	42.21
$\overline{m}_c(3 \text{GeV})$	0.020	0.013	0.068	0.038	0.062	0.096	0.16	0.78

New Inclusive Fit : $|V_{cb}|_{inc} = (42.21 \pm 0.78) \times 10^{-3}$

- Significant increase $\mu_{\pi}^2,$ decrease in $\mu_{\mathcal{G}}^2$
- Decreased theoretical error on inclusive $|V_{cb}|$ [Schwanda, Gambino, 1307.4551]
- Result reinforces our confidence in the inclusive method

Results

Introduction	Experimental Observables	Theoretical Error and Calculation
0000000	000	00000

Numerical Results

	m _b ^{kin}	m _c	μ_{π}^2	ρ_D^3	μ_G^2	ρ_{LS}^3	$BR_{c\ell\nu}(\%)$	$10^3 V_{cb} $
$\mathcal{O}(\alpha_s^2, m_b^{-2})$	4.541	0.987	0.414	0.154	0.340	-0.147	10.65	42.42
$\overline{m}_c(3 \text{GeV})$	0.023	0.013	0.078	0.045	0.066	0.098	0.16	0.86
	m _b ^{kin}	m _c	μ_{π}^2	ρ_D^3	μ_G^2	ρ_{LS}^3	$BR_{c\ell\nu}(\%)$	$10^3 V_{cb} $
$\mathcal{O}(\alpha_s^2, \alpha_s m_b^{-2})$	4.553	0.987	0.465	0.170	0.332	-0.150	10.65	42.21
$\overline{m}_c(3 \text{GeV})$	0.020	0.013	0.068	0.038	0.062	0.096	0.16	0.78

New Inclusive Fit : $|V_{cb}|_{inc} = (42.21 \pm 0.78) \times 10^{-3}$

- Significant increase $\mu_{\pi}^2,$ decrease in μ_{G}^2
- Decreased theoretical error on inclusive $|V_{cb}|$ [Schwanda, Gambino, 1307.4551]
- Result reinforces our confidence in the inclusive method

Progress Aim :

- Incorporate $\mathcal{O}(\alpha_s/m_b^3)$: calculation currently in progress
- Review of *higher power corrections*, unlikely to shift V_{cb} , but should be understood
- No closer to solving exclusive vs. inclusive 3σ (8%) tension.

Results

Introduction	Experimental Observables	Theoretical Error and Calc
000000	000	00000

Results ○●

Numerical Results

	m ^{kin} b	m _c	μ_{π}^2	ρ_D^3	μ_G^2	ρ_{LS}^3	$BR_{c\ell\nu}(\%)$	$10^3 V_{cb} $
$\mathcal{O}(\alpha_s^2, m_b^{-2})$	4.541	0.987	0.414	0.154	0.340	-0.147	10.65	42.42
$\overline{m}_c(3 \text{GeV})$	0.023	0.013	0.078	0.045	0.066	0.098	0.16	0.86
	m ^{kin} b	m _c	μ_{π}^2	ρ_D^3	μ_G^2	ρ_{LS}^3	$BR_{c\ell\nu}(\%)$	$10^3 V_{cb} $
$\mathcal{O}(\alpha_s^2, \alpha_s m_b^{-2})$	4.553	0.987	0.465	0.170	0.332	-0.150	10.65	42.21
$\overline{m}_c(3 \text{GeV})$	0.020	0.013	0.068	0.038	0.062	0.096	0.16	0.78

New Inclusive Fit : $|V_{cb}|_{inc} = (42.21 \pm 0.78) \times 10^{-3}$

Thank You.

Kristopher J. Healey Portoroz 2015

April 7, 2015