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The idea is to provide general and yet 
simple parameterisation of New Physics 

(NP) effects in Higgs decays…



Outline

• “kappa” formalism and beyond 

• Pseudo-Observables (POs) in Higgs decays 

• Parameter counting 

• Symmetry limits 

• Higgs POs from LEP data in the linear EFT

3



“kappa” formalism

• Interim framework for the analysis of Higgs couplings 
(CERN Yellow Report 3, 1307.1347) 

• Single narrow resonance with a mass ~ 125 GeV 
• The production and decay kinematics are SM-like 
• Introduce “coupling strength” scaling factors κi, i.e.,  

• SM limit recovered for κi →1

4

when compared to the corresponding SM prediction. Table 36 lists all relevant cases. Taking the process
gg → H→ γγ as an example, one would use as cross section:

(σ · BR) (gg → H→ γγ) = σSM(gg → H) · BRSM(H→ γγ) ·
κ2g · κ2γ
κ2H

(93)

where the values and uncertainties for both σSM(gg → H) and BRSM(H→ γγ) are taken from Ref. [409]
for a given Higgs mass hypothesis.

By definition, the currently best available SM predictions for all σ · BR are recovered when all
κi = 1. In general, this means that for κi ̸= 1 higher-order accuracy is lost. Nonetheless, NLO QCD
corrections essentially factorize with respect to coupling rescaling, and are accounted for wherever pos-
sible. This approach ensures that for a true SM Higgs boson no artificial deviations (caused by ignored
NLO corrections) are found from what is considered the SM Higgs boson hypothesis. The functions
κ2VBF(κW, κZ,mH), κ2g(κb, κt,mH), κ2γ (κb, κt, κτ, κW,mH), κ2(Zγ)(κb, κt, κτ, κW,mH) and κ2H(κi,mH)
are used for cases where there is a non-trivial relationship between scale factors κi and cross sections or
(partial) decay widths, and are calculated to NLO QCD accuracy. The functions are defined in the fol-
lowing sections and all required input parameters as well as example code can be found in Ref. [409]. As
explained in Sec. 10.2.3 below, the notation in terms of the partial widths ΓWW(∗) and ΓZZ(∗) in Table 36
is meant for illustration only. In the experimental analysis the 4-fermion partial decay widths are taken
into account.

10.2.2.1 Scaling of the VBF cross section

κ2VBF refers to the functional dependence of the VBF46 cross section on the scale factors κ2W and κ2Z:

κ2VBF(κW, κZ,mH) =
κ2W · σWF (mH) + κ2Z · σZF (mH)

σWF (mH) + σZF (mH)
(110)

TheW- and Z-fusion cross sections, σWF and σZF , are taken from Refs. [112, 410]. The interference
term is < 0.1% in the SM and hence ignored [105].

In Table 37 one can find the approximate values to be inserted in Eq. (110) formH = 125 GeV.

10.2.2.2 Scaling of the gluon fusion cross section and of the H→ gg decay vertex

κ2g refers to the scale factor for the loop-induced production cross section σggH. The decay width Γgg is
not observable at the LHC, however its contribution to the total width is also considered.

Gluon fusion cross-section scaling
As NLO QCD corrections factorize with the scaling of the electroweak couplings with κt and κb, the
function κ2g(κb, κt,mH) can be calculated in NLO QCD:

κ2g(κb, κt,mH) =
κ2t · σ

tt
ggH(mH) + κ2b · σbbggH(mH) + κtκb · σ

tb
ggH(mH)

σttggH(mH) + σbbggH(mH) + σtbggH(mH)
(111)

Here, σttggH, σ
bb
ggH and σtbggH denote the square of the top-quark contribution, the square of the

bottom-quark contribution and the top-bottom interference, respectively. The interference term (σtbggH) is

46Vector Boson Fusion is also called Weak Boson Fusion, as only the weak bosonsW and Z contribute to the production.
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Figure 19: Results of fits for the generic model 2 (see text): the results indicated by a full box are obtained for
a benchmark model with e↵ective coupling strengths for loop processes allowing non-SM contributions, and a
floating BRi. ,u. allowing non-SM contributions to the total decay width. The fit results indicated by a full circle
represent a benchmark model where the total Higgs boson decay width is not modified with respect to the SM.
The hatched area indicates regions that are outside the defined parameter boundaries. The inner and outer bars
correspond to 68% CL and 95% CL intervals. The confidence intervals of BRi. ,u. and, in the benchmark model
with the constraints kW < 1 and |kZ | < 1, also kW and kZ , are estimated with respect to their physical boundaries
as described in the text. Numerical results are shown in Table 8.
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7.8 Constraints on BRBSM in a scenario with free couplings 39
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Figure 16: Likelihood scans for parameters in a model with coupling scaling factors for the
SM particles, one coupling at a time while profiling the remaining five together with all other
nuisance parameters; from top to bottom: kV (W and Z bosons), kb (bottom quarks), kt (tau
leptons), kt (top quarks), kg (gluons; effective coupling), and kg (photons; effective coupling).
The inner bars represent the 68% CL confidence intervals while the outer bars represent the
95% CL confidence intervals.
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Figure 17: Likelihood scans for parameters in a model without assumptions on the total width
and with six coupling modifier ratios, one parameter at a time while profiling the remaining
six together with all other nuisance parameters; from top to bottom: kgZ (= kgkZ/kH), lWZ
(= kW/kZ), lZg (= kZ/kg), lbZ (= kb/kZ), lgZ (= kg/kZ), ltZ (= kt/kZ), and ltg (= kt/kg).
The inner bars represent the 68% CL confidence intervals while the outer bars represent the
95% CL confidence intervals.
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“kappa” formalism



• Higgs physics is entering a precision era 

• LHC Run II: Precise measurements of the 
observed Higgs processes 

• O(100) events expected soon in h→4l 

• Exploit full kinematics of the events 
(not only the total rate) 

• Extended “kappa” formalism needed

6
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Pseudo-Observables

Experimental 
data

Lagrangian
parameters

Pseudo
Observables

Fiducial cross sections,
distributions,
…

Couplings,
bare masses,
Wilson coeff.,
…

Marzocca, HXSWG plenary 
meeting - Jan 2015

• POs are limited set of “idealised” observables defined from “on-shell” amplitudes 
• Ideally, POs should: 

1. provide general encoding of the experimental data 
2. be computable and encode all possible predictions of large set of theories



Assumptions:
• h(125) is a spin 0 particle 
• Zero width approximation, “on-shell” single Higgs processes  

(factorisation of new physics effects in production and decay) 

• No light New Physics  
Notion of an underlining Effective Field Theory (EFT), smooth kinematical distortions from the SM,  
Momentum expansion of the on-shell Higgs amplitudes. 

• Power counting based on the canonical dimension:  
(1) Higgs, gauge bosons, derivatives (momenta) ~ 1 
(2) Fermions ~ 3/2 

• Neglect contributions with dimension > 6 

• General enough to accommodate all the effect from next-to-leading 
order terms in the expansions of a generic linear and non-linear EFT 

• No assumptions on custodial symmetry, CP, flavour universality or 
SU(2)L properties of the Higgs, we rather want to test it from data!
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The most generic structure of the amplitude (helicity conserving):

Momentum expansion of the form factors around the physical poles
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Momentum expansion of the form factors around the physical poles
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Systematic inclusion of radiative QED corrections possible 
Isidori et al, work in progress

NLO EW - Prophecy4F code, hep-ph/0604011
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The most generic structure of the amplitude:

Momentum expansion of the form factors around the physical poles
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Parameter counting
Consider decays: h → WW*, h →ZZ*, h →Zγ, h →γγ

Neutral currents
h → e+e-μ+μ-

h → μ+μ-μ+μ-

h → e+e-e+e-

h → γe+e-

h → γμ+μ-

h → γγ

Charged currents
h → e+μ-νν
h → e-μ+νν

N. & C. interference
h → e+e-νν
h → μ-μ+νν
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5 Parameter counting and symmetry limits

We are now ready to identify the number of independent pseudo-observables necessary
to describe various sets of Higgs decay amplitudes, under the main assumption that only
terms arising at D  6 in a generic EFT expansion are kept. We focus our attention on
leptonic channels, which are more interesting from the experimental point of view.

The neutral current processes h ! e+e�µ+µ�, h ! e+e�e+e� and h ! µ+µ�µ+µ�,
together with the photon channels h ! �� and h ! `+`��, can be described in terms of
11 real parameters:

ZZ ,Z�,��, ✏ZZ , ✏
CP
ZZ , ✏

CP
Z� , ✏

CP
�� , ✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR (27)

(of which only the subset {��,Z�, ✏CP
�� , ✏CP

Z� , } is necessary to describe h ! �� and
h ! `+`��). The charged-current process h ! ⌫̄eeµ̄⌫µ needs 7 further independent real
parameters to be completely specified:

WW , ✏WW , ✏CP
WW (real) + ✏WeL , ✏WµL (complex) . (28)

Finally, the mixed processes h ! e±µ⌥⌫⌫̄ can be described by a subset of the coe�cients
already introduced plus 2 further real contact interactions coe�cients:

✏Z⌫e , ✏Z⌫µ . (29)

This brings the total number of (real) parameters to 20. In the following subsections
we introduce symmetry arguments which allow to reduce the number of free parameters
while remaining, at the same time, as model-independent as possible.

5.1 Flavor universality

A first simple restriction in the number of parameters is obtained by assuming flavor
universality (i.e. enlarging the flavor symmetry to the full U(3)5 flavor group). In our setup
this simply means assuming that the contact interactions coe�cients are independent of
the generations:

✏ZeL = ✏ZµL , ✏ZeR = ✏ZµR , ✏Z⌫e = ✏Z⌫µ , ✏WeL = ✏WµL . (30)

Since the last coe�cients are complex in general, these are five relations which allow to
reduce the number of parameters to 15. This assumption can be tested directly from data
by comparing the extraction of the contact terms from h ! 2e2µ, h ! 4e and h ! 4µ
modes (see e.g. Sect. 6.3 and Fig. 3).
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h decay modes Maximal Symmetry Flavor Non Univ. CPV

h ! ��, 2e�, 2µ� ZZ ,Z�,�� ✏ZµL , ✏ZµR ✏CP
ZZ , ✏

CP
Z� , ✏

CP
��4e, 4µ, 2e2µ ✏ZZ , ✏ZeL , ✏ZeR

h ! 2e2⌫, 2µ2⌫, e⌫µ⌫
WW ✏Z⌫µ , Re(✏WµL) ✏CP

WW , Im(✏WeL)
✏WW , ✏Z⌫e , Re(✏WeL) Im(✏WµL)

h ! ��, 2e�, 2µ�, 4e, 4µ,
2e2µ, 2e2⌫, 2µ2⌫, e⌫µ⌫

ZZ ,Z�,�� ✏ZµL , ✏ZµR ✏CP
ZZ , ✏

CP
Z� , ✏

CP
��✏ZZ , ✏ZeL , ✏ZeR

[with custodial symm.] Re(✏WeL)

Table 1: Summary of the pseudo-observables relevant to describe Higgs leptonic (and
��) decay modes. In the second column (“Maximal Symmetry”) we show the independent
pseudo-observables needed for a given set of decay modes, assuming both CP invariance
and flavor universality. The additional variables needed if we relax these symmetry hy-
potheses are reported in the third and fourth columns. In the bottom row we show the
independent pseudo-observables needed for a combined description of charged and neutral
modes, under the hypothesis of custodial symmetry.

Under these assumptions, we derive the following custodial-symmetry relations among
the pseudo-observables relevant to Higgs decays to four leptons

✏WW = c2w✏ZZ + 2cwsw✏Z� + s2w✏�� , (33)

✏CP
WW = c2w✏

CP
ZZ + 2cwsw✏

CP
Z� + s2w✏

CP
�� , (34)

WW � ZZ = �2

g

⇣p
2✏WeiL

+ 2cw✏ZeiL

⌘
, (35)

✏WeiL
=

cwp
2
(✏Z⌫iL

� ✏ZeiL
) , (36)

✏ZeiR
= ✏Z⌫iL

+ ✏ZeiL
[embedding B only] . (37)

The first two relations have been derived first in Ref. [21]; the complete derivation of all
the relations can be found in Appendix B. The first four are independent of the choice
of the fermion embedding, while the last one is specific only for the embedding B. We
stress that WW 6= ZZ is consistent with custodial symmetry, given Eq. (35). The
latter must be satisfied for any i and implies 3 independent relations in the case of flavor
non universality. Assuming both flavor universality and CP invariance, the embedding-
independent custodial symmetry relations lead to 3 independent constraints and allows
us to decrease to 7 the number of free real parameters relevant to leptonic channels. The
latter can be conveniently chosen as ��,Z�,ZZ , ✏ZZ , ✏ZeL , ✏ZeR ,Re(✏WeL), as indicated
in Table 1.

14

h decay modes Maximal Symmetry Flavor Non Univ. CPV

h ! ��, 2e�, 2µ� ZZ ,Z�,�� ✏ZµL , ✏ZµR ✏CP
ZZ , ✏

CP
Z� , ✏

CP
��4e, 4µ, 2e2µ ✏ZZ , ✏ZeL , ✏ZeR

h ! 2e2⌫, 2µ2⌫, e⌫µ⌫
WW ✏Z⌫µ , Re(✏WµL) ✏CP

WW , Im(✏WeL)
✏WW , ✏Z⌫e , Re(✏WeL) Im(✏WµL)

h ! ��, 2e�, 2µ�, 4e, 4µ,
2e2µ, 2e2⌫, 2µ2⌫, e⌫µ⌫

ZZ ,Z�,�� ✏ZµL , ✏ZµR ✏CP
ZZ , ✏

CP
Z� , ✏

CP
��✏ZZ , ✏ZeL , ✏ZeR

[with custodial symm.] Re(✏WeL)
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Symmetry limits
Consider decays: h → WW*, h →ZZ*, h →Zγ, h →γγ

Neutral currents
h → e+e-μ+μ-

h → μ+μ-μ+μ-

h → e+e-e+e-

h → γe+e-

h → γμ+μ-

h → γγ

Charged currents
h → e+μ-νν
h → e-μ+νν

N. & C. interference
h → e+e-νν
h → μ-μ+νν
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1

5 Parameter counting and symmetry limits

We are now ready to identify the number of independent pseudo-observables necessary
to describe various sets of Higgs decay amplitudes, under the main assumption that only
terms arising at D  6 in a generic EFT expansion are kept. We focus our attention on
leptonic channels, which are more interesting from the experimental point of view.

The neutral current processes h ! e+e�µ+µ�, h ! e+e�e+e� and h ! µ+µ�µ+µ�,
together with the photon channels h ! �� and h ! `+`��, can be described in terms of
11 real parameters:

ZZ ,Z�,��, ✏ZZ , ✏
CP
ZZ , ✏

CP
Z� , ✏

CP
�� , ✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR (27)

(of which only the subset {��,Z�, ✏CP
�� , ✏CP

Z� , } is necessary to describe h ! �� and
h ! `+`��). The charged-current process h ! ⌫̄eeµ̄⌫µ needs 7 further independent real
parameters to be completely specified:

WW , ✏WW , ✏CP
WW (real) + ✏WeL , ✏WµL (complex) . (28)

Finally, the mixed processes h ! e±µ⌥⌫⌫̄ can be described by a subset of the coe�cients
already introduced plus 2 further real contact interactions coe�cients:

✏Z⌫e , ✏Z⌫µ . (29)

This brings the total number of (real) parameters to 20. In the following subsections
we introduce symmetry arguments which allow to reduce the number of free parameters
while remaining, at the same time, as model-independent as possible.

5.1 Flavor universality

A first simple restriction in the number of parameters is obtained by assuming flavor
universality (i.e. enlarging the flavor symmetry to the full U(3)5 flavor group). In our setup
this simply means assuming that the contact interactions coe�cients are independent of
the generations:

✏ZeL = ✏ZµL , ✏ZeR = ✏ZµR , ✏Z⌫e = ✏Z⌫µ , ✏WeL = ✏WµL . (30)

Since the last coe�cients are complex in general, these are five relations which allow to
reduce the number of parameters to 15. This assumption can be tested directly from data
by comparing the extraction of the contact terms from h ! 2e2µ, h ! 4e and h ! 4µ
modes (see e.g. Sect. 6.3 and Fig. 3).
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by comparing the extraction of the contact terms from h ! 2e2µ, h ! 4e and h ! 4µ
modes (see e.g. Sect. 6.3 and Fig. 3).

5.2 CP conservation

The assumption that CP is a good approximate symmetry of the BSM sector and that
the Higgs is a CP-even state, allows us to set to zero six independent (real) coe�cients:

✏CP
ZZ = ✏CP

Z� = ✏CP
�� = ✏CP

WW = Im✏WeL = Im✏WµL = 0 . (32)

Assuming, at the same time, flavor universality, the number of free real parameters reduces
to 10.

5.3 Custodial symmetry

We now present the relations among the pseudo-observables introduced in Sect. 3 fol-
lowing from the assumption that the BSM sector is invariant under the custodial sym-
metry group G = SU(2)L ⇥ SU(2)R ⇥ U(1)X , spontaneously broken to the diagonal
H = SU(2)L+R ⇥ U(1)X . This symmetry is explicitly broken by the fact that only the
subgroup GSM = SU(2)L ⇥ U(1)Y is gauged and by the fact that SM fermions are not
in complete G representations.8 In the following we assume that these are the only two
sources of breaking of custodial symmetry. In order to determine the structure of the
contact interactions, we need to specify the embedding of the SM fermions into represen-
tations of G. Focussing on leptons, we consider two minimal cases: (A) Li

L 2 (2,1)� 1
2
,

eiR 2 (1,2)� 1
2
and (B) Li

L 2 (2,2)�1, eiR 2 (1,1)�1.9

8 The U(1)X factor is needed only to assign the correct hypercharge Y = T 3
R +X to the SM fermions.

9 Here and in the following we label by the index i = 1...3 the three lepton generations and we denote
by Li

L the lepton doublet (eiL, ⌫
i
L)

T .
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h decay modes Maximal Symmetry Flavor Non Univ. CPV

h ! ��, 2e�, 2µ� ZZ ,Z�,�� ✏ZµL , ✏ZµR ✏CP
ZZ , ✏

CP
Z� , ✏

CP
��4e, 4µ, 2e2µ ✏ZZ , ✏ZeL , ✏ZeR

h ! 2e2⌫, 2µ2⌫, e⌫µ⌫
WW ✏Z⌫µ , Re(✏WµL) ✏CP

WW , Im(✏WeL)
✏WW , ✏Z⌫e , Re(✏WeL) Im(✏WµL)

h ! ��, 2e�, 2µ�, 4e, 4µ,
2e2µ, 2e2⌫, 2µ2⌫, e⌫µ⌫

ZZ ,Z�,�� ✏ZµL , ✏ZµR ✏CP
ZZ , ✏

CP
Z� , ✏

CP
��✏ZZ , ✏ZeL , ✏ZeR

[with custodial symm.] Re(✏WeL)

Table 1: Summary of the pseudo-observables relevant to describe Higgs leptonic (and
��) decay modes. In the second column (“Maximal Symmetry”) we show the independent
pseudo-observables needed for a given set of decay modes, assuming both CP invariance
and flavor universality. The additional variables needed if we relax these symmetry hy-
potheses are reported in the third and fourth columns. In the bottom row we show the
independent pseudo-observables needed for a combined description of charged and neutral
modes, under the hypothesis of custodial symmetry.

Under these assumptions, we derive the following custodial-symmetry relations among
the pseudo-observables relevant to Higgs decays to four leptons

✏WW = c2w✏ZZ + 2cwsw✏Z� + s2w✏�� , (33)

✏CP
WW = c2w✏

CP
ZZ + 2cwsw✏

CP
Z� + s2w✏

CP
�� , (34)

WW � ZZ = �2

g

⇣p
2✏WeiL

+ 2cw✏ZeiL

⌘
, (35)

✏WeiL
=

cwp
2
(✏Z⌫iL

� ✏ZeiL
) , (36)

✏ZeiR
= ✏Z⌫iL

+ ✏ZeiL
[embedding B only] . (37)

The first two relations have been derived first in Ref. [21]; the complete derivation of all
the relations can be found in Appendix B. The first four are independent of the choice
of the fermion embedding, while the last one is specific only for the embedding B. We
stress that WW 6= ZZ is consistent with custodial symmetry, given Eq. (35). The
latter must be satisfied for any i and implies 3 independent relations in the case of flavor
non universality. Assuming both flavor universality and CP invariance, the embedding-
independent custodial symmetry relations lead to 3 independent constraints and allows
us to decrease to 7 the number of free real parameters relevant to leptonic channels. The
latter can be conveniently chosen as ��,Z�,ZZ , ✏ZZ , ✏ZeL , ✏ZeR ,Re(✏WeL), as indicated
in Table 1.
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Symmetry limits
Consider decays: h → WW*, h →ZZ*, h →Zγ, h →γγ

Neutral currents
h → e+e-μ+μ-

h → μ+μ-μ+μ-

h → e+e-e+e-
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Charged currents
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N. & C. interference
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µ⌫ h"µ⌫⇢�Vµ⌫V⇢� hZµf̄�
µf (2)

ZZ ,Z� ,�� , ✏ZZ ,

✏CP
Z� , ✏

CP
�� , ✏CP

ZZ ,

✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR

(3)

WW , ✏WW , ✏CP
WW ,

✏We, ✏Wµ, (complex)

(4)

1

5 Parameter counting and symmetry limits

We are now ready to identify the number of independent pseudo-observables necessary
to describe various sets of Higgs decay amplitudes, under the main assumption that only
terms arising at D  6 in a generic EFT expansion are kept. We focus our attention on
leptonic channels, which are more interesting from the experimental point of view.

The neutral current processes h ! e+e�µ+µ�, h ! e+e�e+e� and h ! µ+µ�µ+µ�,
together with the photon channels h ! �� and h ! `+`��, can be described in terms of
11 real parameters:

ZZ ,Z�,��, ✏ZZ , ✏
CP
ZZ , ✏

CP
Z� , ✏

CP
�� , ✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR (27)

(of which only the subset {��,Z�, ✏CP
�� , ✏CP

Z� , } is necessary to describe h ! �� and
h ! `+`��). The charged-current process h ! ⌫̄eeµ̄⌫µ needs 7 further independent real
parameters to be completely specified:

WW , ✏WW , ✏CP
WW (real) + ✏WeL , ✏WµL (complex) . (28)

Finally, the mixed processes h ! e±µ⌥⌫⌫̄ can be described by a subset of the coe�cients
already introduced plus 2 further real contact interactions coe�cients:

✏Z⌫e , ✏Z⌫µ . (29)

This brings the total number of (real) parameters to 20. In the following subsections
we introduce symmetry arguments which allow to reduce the number of free parameters
while remaining, at the same time, as model-independent as possible.

5.1 Flavor universality

A first simple restriction in the number of parameters is obtained by assuming flavor
universality (i.e. enlarging the flavor symmetry to the full U(3)5 flavor group). In our setup
this simply means assuming that the contact interactions coe�cients are independent of
the generations:

✏ZeL = ✏ZµL , ✏ZeR = ✏ZµR , ✏Z⌫e = ✏Z⌫µ , ✏WeL = ✏WµL . (30)

Since the last coe�cients are complex in general, these are five relations which allow to
reduce the number of parameters to 15. This assumption can be tested directly from data
by comparing the extraction of the contact terms from h ! 2e2µ, h ! 4e and h ! 4µ
modes (see e.g. Sect. 6.3 and Fig. 3).
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this simply means assuming that the contact interactions coe�cients are independent of
the generations:
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Since the last coe�cients are complex in general, these are five relations which allow to
reduce the number of parameters to 15. This assumption can be tested directly from data
by comparing the extraction of the contact terms from h ! 2e2µ, h ! 4e and h ! 4µ
modes (see e.g. Sect. 6.3 and Fig. 3).

5.2 CP conservation

The assumption that CP is a good approximate symmetry of the BSM sector and that
the Higgs is a CP-even state, allows us to set to zero six independent (real) coe�cients:

✏CP
ZZ = ✏CP

Z� = ✏CP
�� = ✏CP

WW = Im✏WeL = Im✏WµL = 0 . (32)

Assuming, at the same time, flavor universality, the number of free real parameters reduces
to 10.

5.3 Custodial symmetry

We now present the relations among the pseudo-observables introduced in Sect. 3 fol-
lowing from the assumption that the BSM sector is invariant under the custodial sym-
metry group G = SU(2)L ⇥ SU(2)R ⇥ U(1)X , spontaneously broken to the diagonal
H = SU(2)L+R ⇥ U(1)X . This symmetry is explicitly broken by the fact that only the
subgroup GSM = SU(2)L ⇥ U(1)Y is gauged and by the fact that SM fermions are not
in complete G representations.8 In the following we assume that these are the only two
sources of breaking of custodial symmetry. In order to determine the structure of the
contact interactions, we need to specify the embedding of the SM fermions into represen-
tations of G. Focussing on leptons, we consider two minimal cases: (A) Li

L 2 (2,1)� 1
2
,

eiR 2 (1,2)� 1
2
and (B) Li

L 2 (2,2)�1, eiR 2 (1,1)�1.9

8 The U(1)X factor is needed only to assign the correct hypercharge Y = T 3
R +X to the SM fermions.

9 Here and in the following we label by the index i = 1...3 the three lepton generations and we denote
by Li

L the lepton doublet (eiL, ⌫
i
L)

T .
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h decay modes Maximal Symmetry Flavor Non Univ. CPV

h ! ��, 2e�, 2µ� ZZ ,Z�,�� ✏ZµL , ✏ZµR ✏CP
ZZ , ✏

CP
Z� , ✏

CP
��4e, 4µ, 2e2µ ✏ZZ , ✏ZeL , ✏ZeR

h ! 2e2⌫, 2µ2⌫, e⌫µ⌫
WW ✏Z⌫µ , Re(✏WµL) ✏CP

WW , Im(✏WeL)
✏WW , ✏Z⌫e , Re(✏WeL) Im(✏WµL)

h ! ��, 2e�, 2µ�, 4e, 4µ,
2e2µ, 2e2⌫, 2µ2⌫, e⌫µ⌫

ZZ ,Z�,�� ✏ZµL , ✏ZµR ✏CP
ZZ , ✏

CP
Z� , ✏

CP
��✏ZZ , ✏ZeL , ✏ZeR

[with custodial symm.] Re(✏WeL)

Table 1: Summary of the pseudo-observables relevant to describe Higgs leptonic (and
��) decay modes. In the second column (“Maximal Symmetry”) we show the independent
pseudo-observables needed for a given set of decay modes, assuming both CP invariance
and flavor universality. The additional variables needed if we relax these symmetry hy-
potheses are reported in the third and fourth columns. In the bottom row we show the
independent pseudo-observables needed for a combined description of charged and neutral
modes, under the hypothesis of custodial symmetry.

Under these assumptions, we derive the following custodial-symmetry relations among
the pseudo-observables relevant to Higgs decays to four leptons

✏WW = c2w✏ZZ + 2cwsw✏Z� + s2w✏�� , (33)

✏CP
WW = c2w✏

CP
ZZ + 2cwsw✏

CP
Z� + s2w✏

CP
�� , (34)

WW � ZZ = �2

g

⇣p
2✏WeiL

+ 2cw✏ZeiL

⌘
, (35)

✏WeiL
=

cwp
2
(✏Z⌫iL

� ✏ZeiL
) , (36)

✏ZeiR
= ✏Z⌫iL

+ ✏ZeiL
[embedding B only] . (37)

The first two relations have been derived first in Ref. [21]; the complete derivation of all
the relations can be found in Appendix B. The first four are independent of the choice
of the fermion embedding, while the last one is specific only for the embedding B. We
stress that WW 6= ZZ is consistent with custodial symmetry, given Eq. (35). The
latter must be satisfied for any i and implies 3 independent relations in the case of flavor
non universality. Assuming both flavor universality and CP invariance, the embedding-
independent custodial symmetry relations lead to 3 independent constraints and allows
us to decrease to 7 the number of free real parameters relevant to leptonic channels. The
latter can be conveniently chosen as ��,Z�,ZZ , ✏ZZ , ✏ZeL , ✏ZeR ,Re(✏WeL), as indicated
in Table 1.
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independent custodial symmetry relations lead to 3 independent constraints and allows
us to decrease to 7 the number of free real parameters relevant to leptonic channels. The
latter can be conveniently chosen as ��,Z�,ZZ , ✏ZZ , ✏ZeL , ✏ZeR ,Re(✏WeL), as indicated
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Symmetry limits
Consider decays: h → WW*, h →ZZ*, h →Zγ, h →γγ

Neutral currents
h → e+e-μ+μ-

h → μ+μ-μ+μ-

h → e+e-e+e-

h → γe+e-

h → γμ+μ-

h → γγ

Charged currents
h → e+μ-νν
h → e-μ+νν

N. & C. interference
h → e+e-νν
h → μ-μ+νν

A =i
2m2

Z

vF

X

e=eL,eR

X

µ=µL,µR

(ē�µe)(µ̄�⌫µ)⇥
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geZg
µ
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+
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m2
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◆
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✏ZZ
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µ
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✓
eQµgeZ
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eQeg
µ
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q21PZ(q22)

◆
+ ✏��

e2QeQµ

q21q
2
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q1 · q2 gµ⌫ � q2µq1⌫

m2
Z

+

+
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✏CP
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+ ✏CP
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eQµgeZ
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eQeg
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q21q
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◆
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m2
Z

�
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hZµZ
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µ⌫ h"µ⌫⇢�Vµ⌫V⇢� hZµf̄�
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✏CP
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5 Parameter counting and symmetry limits

We are now ready to identify the number of independent pseudo-observables necessary
to describe various sets of Higgs decay amplitudes, under the main assumption that only
terms arising at D  6 in a generic EFT expansion are kept. We focus our attention on
leptonic channels, which are more interesting from the experimental point of view.

The neutral current processes h ! e+e�µ+µ�, h ! e+e�e+e� and h ! µ+µ�µ+µ�,
together with the photon channels h ! �� and h ! `+`��, can be described in terms of
11 real parameters:

ZZ ,Z�,��, ✏ZZ , ✏
CP
ZZ , ✏

CP
Z� , ✏

CP
�� , ✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR (27)

(of which only the subset {��,Z�, ✏CP
�� , ✏CP

Z� , } is necessary to describe h ! �� and
h ! `+`��). The charged-current process h ! ⌫̄eeµ̄⌫µ needs 7 further independent real
parameters to be completely specified:

WW , ✏WW , ✏CP
WW (real) + ✏WeL , ✏WµL (complex) . (28)

Finally, the mixed processes h ! e±µ⌥⌫⌫̄ can be described by a subset of the coe�cients
already introduced plus 2 further real contact interactions coe�cients:

✏Z⌫e , ✏Z⌫µ . (29)

This brings the total number of (real) parameters to 20. In the following subsections
we introduce symmetry arguments which allow to reduce the number of free parameters
while remaining, at the same time, as model-independent as possible.

5.1 Flavor universality

A first simple restriction in the number of parameters is obtained by assuming flavor
universality (i.e. enlarging the flavor symmetry to the full U(3)5 flavor group). In our setup
this simply means assuming that the contact interactions coe�cients are independent of
the generations:

✏ZeL = ✏ZµL , ✏ZeR = ✏ZµR , ✏Z⌫e = ✏Z⌫µ , ✏WeL = ✏WµL . (30)

Since the last coe�cients are complex in general, these are five relations which allow to
reduce the number of parameters to 15. This assumption can be tested directly from data
by comparing the extraction of the contact terms from h ! 2e2µ, h ! 4e and h ! 4µ
modes (see e.g. Sect. 6.3 and Fig. 3).
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h decay modes Maximal Symmetry Flavor Non Univ. CPV

h ! ��, 2e�, 2µ� ZZ ,Z�,�� ✏ZµL , ✏ZµR ✏CP
ZZ , ✏

CP
Z� , ✏

CP
��4e, 4µ, 2e2µ ✏ZZ , ✏ZeL , ✏ZeR

h ! 2e2⌫, 2µ2⌫, e⌫µ⌫
WW ✏Z⌫µ , Re(✏WµL) ✏CP

WW , Im(✏WeL)
✏WW , ✏Z⌫e , Re(✏WeL) Im(✏WµL)

h ! ��, 2e�, 2µ�, 4e, 4µ,
2e2µ, 2e2⌫, 2µ2⌫, e⌫µ⌫

ZZ ,Z�,�� ✏ZµL , ✏ZµR ✏CP
ZZ , ✏

CP
Z� , ✏

CP
��✏ZZ , ✏ZeL , ✏ZeR

[with custodial symm.] Re(✏WeL)

Table 1: Summary of the pseudo-observables relevant to describe Higgs leptonic (and
��) decay modes. In the second column (“Maximal Symmetry”) we show the independent
pseudo-observables needed for a given set of decay modes, assuming both CP invariance
and flavor universality. The additional variables needed if we relax these symmetry hy-
potheses are reported in the third and fourth columns. In the bottom row we show the
independent pseudo-observables needed for a combined description of charged and neutral
modes, under the hypothesis of custodial symmetry.

Under these assumptions, we derive the following custodial-symmetry relations among
the pseudo-observables relevant to Higgs decays to four leptons

✏WW = c2w✏ZZ + 2cwsw✏Z� + s2w✏�� , (33)

✏CP
WW = c2w✏

CP
ZZ + 2cwsw✏

CP
Z� + s2w✏

CP
�� , (34)

WW � ZZ = �2

g

⇣p
2✏WeiL

+ 2cw✏ZeiL

⌘
, (35)

✏WeiL
=

cwp
2
(✏Z⌫iL

� ✏ZeiL
) , (36)

✏ZeiR
= ✏Z⌫iL

+ ✏ZeiL
[embedding B only] . (37)

The first two relations have been derived first in Ref. [21]; the complete derivation of all
the relations can be found in Appendix B. The first four are independent of the choice
of the fermion embedding, while the last one is specific only for the embedding B. We
stress that WW 6= ZZ is consistent with custodial symmetry, given Eq. (35). The
latter must be satisfied for any i and implies 3 independent relations in the case of flavor
non universality. Assuming both flavor universality and CP invariance, the embedding-
independent custodial symmetry relations lead to 3 independent constraints and allows
us to decrease to 7 the number of free real parameters relevant to leptonic channels. The
latter can be conveniently chosen as ��,Z�,ZZ , ✏ZZ , ✏ZeL , ✏ZeR ,Re(✏WeL), as indicated
in Table 1.
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latter must be satisfied for any i and implies 3 independent relations in the case of flavor
non universality. Assuming both flavor universality and CP invariance, the embedding-
independent custodial symmetry relations lead to 3 independent constraints and allows
us to decrease to 7 the number of free real parameters relevant to leptonic channels. The
latter can be conveniently chosen as ��,Z�,ZZ , ✏ZZ , ✏ZeL , ✏ZeR ,Re(✏WeL), as indicated
in Table 1.
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*The BSM sector 
is invariant under 
the custodial 
symmetry group 
  

spontaneously 
broken to 

5.1 Flavor universality

A first simple restriction in the number of parameters is obtained by assuming flavor
universality (i.e. enlarging the flavor symmetry to the full U(3)5 flavor group). In our setup
this simply means assuming that the contact interactions coe�cients are independent of
the generations:

✏ZeL = ✏ZµL , ✏ZeR = ✏ZµR , ✏Z⌫e = ✏Z⌫µ , ✏WeL = ✏WµL . (31)

Since the last coe�cients are complex in general, these are five relations which allow to
reduce the number of parameters to 15. This assumption can be tested directly from data
by comparing the extraction of the contact terms from h ! 2e2µ, h ! 4e and h ! 4µ
modes (see e.g. Sect. 6.3 and Fig. 3).

5.2 CP conservation

The assumption that CP is a good approximate symmetry of the BSM sector and that
the Higgs is a CP-even state, allows us to set to zero six independent (real) coe�cients:

✏CP
ZZ = ✏CP

Z� = ✏CP
�� = ✏CP

WW = Im✏WeL = Im✏WµL = 0 . (32)

Assuming, at the same time, flavor universality, the number of free real parameters reduces
to 10.

5.3 Custodial symmetry

We now present the relations among the pseudo-observables introduced in Sect. 3 fol-
lowing from the assumption that the BSM sector is invariant under the custodial sym-
metry group G = SU(2)L ⇥ SU(2)R ⇥ U(1)X , spontaneously broken to the diagonal
H = SU(2)L+R ⇥ U(1)X . This symmetry is explicitly broken by the fact that only the
subgroup GSM = SU(2)L ⇥ U(1)Y is gauged and by the fact that SM fermions are not
in complete G representations.8 In the following we assume that these are the only two
sources of breaking of custodial symmetry. In order to determine the structure of the
contact interactions, we need to specify the embedding of the SM fermions into represen-
tations of G. Focussing on leptons, we consider two minimal cases: (A) Li

L 2 (2,1)� 1
2
,

eiR 2 (1,2)� 1
2
and (B) Li

L 2 (2,2)�1, eiR 2 (1,1)�1.9

8 The U(1)X factor is needed only to assign the correct hypercharge Y = T 3
R +X to the SM fermions.

9 Here and in the following we label by the index i = 1...3 the three lepton generations and we denote
by Li

L the lepton doublet (eiL, ⌫
i
L)

T .
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Linear vs Non-linear EFT

• Non-linear EFT:  
An effective decoupling of the Higgs boson 
from the Goldstone-boson components of the 
SU(2)L × U(1)Y / U(1)em symmetry breaking. 

• EW symmetry is non-linearly realised, 
derivative expansion over the cutoff 

• All Higgs POs independent

• Linear EFT:  
Higgs boson is part of an SU(2)L doublet field H. Higher-
dimensional operators are constructed in terms of the H 
field. The physical Higgs boson appears in operators 
contributing also to non-Higgs processes. 

• (1) Some Higgs POs constrained from LEP data 

• (2) Relations among Higgs POs due to the 
accidental custodial symmetry present in some 
of the D = 6 operators 
 
 

h decay modes Maximal Symmetry Flavor Non Univ. CPV

h ! ��, 2e�, 2µ� ZZ ,Z�,�� ✏ZµL , ✏ZµR ✏CP
ZZ , ✏

CP
Z� , ✏

CP
��4e, 4µ, 2e2µ ✏ZZ , ✏ZeL , ✏ZeR

h ! 2e2⌫, 2µ2⌫, e⌫µ⌫
WW ✏Z⌫µ , Re(✏WµL) ✏CP

WW , Im(✏WeL)
✏WW , ✏Z⌫e , Re(✏WeL) Im(✏WµL)

h ! ��, 2e�, 2µ�, 4e, 4µ,
2e2µ, 2e2⌫, 2µ2⌫, e⌫µ⌫

ZZ ,Z�,�� ✏ZµL , ✏ZµR ✏CP
ZZ , ✏

CP
Z� , ✏

CP
��✏ZZ , ✏ZeL , ✏ZeR

[with custodial symm.] Re(✏WeL)

Table 1: Summary of the pseudo-observables relevant to describe Higgs leptonic (and
��) decay modes. In the second column (“Maximal Symmetry”) we show the independent
pseudo-observables needed for a given set of decay modes, assuming both CP invariance
and flavor universality. The additional variables needed if we relax these symmetry hy-
potheses are reported in the third and fourth columns. In the bottom row we show the
independent pseudo-observables needed for a combined description of charged and neutral
modes, under the hypothesis of custodial symmetry.

H = SU(2)L+R ⇥ U(1)X . This symmetry is explicitly broken by the fact that only the
subgroup GSM = SU(2)L ⇥ U(1)Y is gauged and by the fact that SM fermions are not
in complete G representations.6 In the following we assume that these are the only two
sources of breaking of custodial symmetry. In order to determine the structure of the
contact interactions, we need to specify the embedding of the SM fermions into represen-
tations of G. Focussing on leptons, we consider two minimal cases: (A) Li

L 2 (2,1)� 1
2
,

eiR 2 (1,2)� 1
2
and (B) Li

L 2 (2,2)�1, eiR 2 (1,1)�1.7

Under these assumptions, we derive the following custodial-symmetry relations among
the pseudo-observables relevant to Higgs decays to four leptons:

✏WW = c2w✏ZZ + 2cwsw✏Z� + s2w✏�� , (32)

✏CP
WW = c2w✏

CP
ZZ + 2cwsw✏

CP
Z� + s2w✏

CP
�� , (33)

WW � ZZ = �2

g

⇣p
2✏WeiL

+ 2cw✏ZeiL

⌘
, (34)

✏WeiL
=

cwp
2
(✏Z⌫iL

� ✏ZeiL
) , (35)

✏ZeiR
= ✏Z⌫iL

+ ✏ZeiL
[embedding B only]. (36)

6 The U(1)X factor is needed only to assign the correct hypercharge Y = T 3
R +X to the SM fermions.

7 Here and in the following we label by the index i = 1...3 the three lepton generations and we denote
by Li

L the lepton doublet (eiL, ⌫
i
L)

T .
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Violation of (1) and (2) would point towards 
non-linear realisation of EW symmetry!

Test from Higgs data!!!



17

Higgs POs from LEP data
Assuming linear EFT with dimension 6 operators:

Gonzalez-Alonso, AG, 
Isidori, Marzocca, 
work in progress

2

we will present results both for this case and for the case
where lZ is fixed to zero, which is a common condition in
many interesting explicit UV models.

The remaining 9 Higgs pseudo-observables kZZ and e(CP)
ZZ,WW,Zg,gg

are not constrained by EW data alone. However, only five of
them are independent in the linear EFT due to the following
relations

deZZ = degg +
c2q

sq cq
deZg �

1
c2

q
dkg , (2)

eWW = c2
q eZZ +2cq sq eZg + s2

q egg , (3)

and likewise for their CP counterparts (see also Refs. [5, 7,
14]). Notice however that no LEP bound is available on the
CP-violating TGC d k̃g , and thus eCP

ZZ is in practice indepen-
dent.3 Here with deX we denote the new-physics contribu-
tion to the pseudo-observable eX once the 1-loop SM con-
tribution is removed: deX = eX � eSM�1L

X . All in all, we are
left with 3 CP-conserving couplings, kZZ and egg,Zg , and 3
CP-violating ones, egg,Zg,ZZ .

In principle, measurements of the branching ratios h !
gg,Zg allow to set strong bounds on e(CP)

gg,Zg , which combined
with the TGC bounds, sets also strong limits on eZZ,WW through
Eqs. (2) and (3). However, only measurements of the so-
called signal strengths are available, which include also non-
standard effects affecting Higgs production and the total Higgs
width (e.g. via kZZ 6= 1). We benefit from various global fits
available in the literature [3, 11], which imply per-mil level
limits on e(CP)

gg and per-cent level limits on e(CP)
Zg , namely

[11]

kgg = 0.90±0.15, |kZg |. 3.18 (95%CL) , (4)

where kgg,Zg ⌘ egg,Zg/eSM�1L
gg,Zg and eSM�1L

gg ' 3.8⇥10�3,
eSM�1L

Zg ' 6.7⇥10�3. On the other hand, very weak bounds
are obtained for kZZ and eCP

ZZ , although we stress that they
should be close to their SM values in the linear EFT limit.

Eq. (1) allows us to obtain constraints on the contact
terms. In particular, since the LEP-I bounds on the devia-
tions in the Z couplings to fermions are much stronger than
the aTGC bounds, we can set to zero all the coefficients dgZ`

and dm, and study only the constraints arising from the TGC
(which are also obtained in the same limit). In particular this
implies that flavour non-universal effects are strongly sup-
pressed. In Fig. 1 we present the bounds on the eZeL and
eZeR pseudo-observables (relevant for h ! 2e2µ,4e,4µ de-
cays) both in the general case where lZ is marginalised, and
3Let us notice that future LHC data could provide strong bounds of
d k̃g [13].

for the lZ = 0 case. It is interesting to notice that, even
for the generic case, only the direction eZeR ' 0.48eZeL is
loosely bounded, and that sizeable positive values of the con-
tact terms are excluded by TGC data. The particular flat di-
rection in the contact terms can be understood analytically
by the fact that dkg is much more constrained than dg1,z,
therefore in Eq. (1) we can set also dkg ' 0, which implies
(up to a ⇠ 10% accuracy) eZeR ' 2s2

weZeL' 0.46eZeL .

Including also the bounds on kgg,Zg from current Higgs
data shown in Eq. (4) we have:

0

BBBB@

eZeL

eZeR

eZZ
eZg
egg

1

CCCCA
=

0

BBBB@

�0.32(13)
�0.17(7)
�0.19(7)
0.000(11)
0.003(1)

1

CCCCA

lZ 6=0

=

0

BBBB@

�0.029(14)
�0.024(12)
�0.087(54)
0.000(11)
0.003(1)

1

CCCCA

lZ=0

, (5)

r =

0

BBBB@

1 0.996 0.72 0 0
· 1 0.77 0 0
· · 1 0.19 0.01
· · · 1 0
· · · · 1

1

CCCCA

lZ 6=0

=

0

BBBB@

1 0.92 0.70 0 0
· 1 0.90 0 0
· · 1 0.25 0.01
· · · 1 0
· · · · 1

1

CCCCA

lZ=0

.

As explained before, the constraints on eCP
gg,Zg are equivalent

to those shown above for their CP-conserving counterparts
egg,Zg , whereas no strong bounds are available for kZZ and
eCP

ZZ .

In the rest this work we study the implications of these
constraints for h ! 4` (` = e,µ) observables, namely the
total widths and invariant mass distributions. More specifi-
cally, we will propagate the above-shown errors and analyze
the allowed room for non-standard effects.

We include quadratic terms in all the pseudo-observables,
which in general should represent subleading corrections in
the EFT expansion. However, this is not always the case in
the general scenario lZ 6= 0, since values as large as 0.4 are
allowed for some of the pseudo-observables. The subsequent
predictions for h ! 4` observables should be taken with care
in this case, and interpreted as the room for New Physics tak-
ing into account that very little is known on certain pseudo-
observables.

LEP II

Electroweak bounds on Higgs pseudo-observables
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Abstract Insert your abstract here.

1 Introduction

By assuming that the Higgs particle is part of a SU(2)L dou-
blet, some of the Higgs pseudo-observables (PO) introduced
in Ref. [1] can be expressed in terms of coefficients which
contribute to Electroweak (EW) precision observables. This
allows us to obtain the electroweak constraints on Higgs PO.
We show the impact of allowed values of these observables
on invariant mass distributions in h ! 4` decays.

2 Relating Higgs pseudo-observables to LEP
observables

Assuming that the Higgs particle h(125) is part of a SU(2)L
doublet implies that it enters interactions through the com-
bination (v+ h)n, where v ' 246GeV is the Higgs vacuum
expectation value. This means that interactions involving the
Higgs can be related to vertices which do not include it. This
fact allows to relate Higgs physics to, for example, elec-
troweak precision tests performed at LEP-I, or to e+e� !
W+W� processes studied at LEP-II. The only exception be-
ing those dimension-6 operators constructed by multiplying
a H†H factor to the dimension-4 SM Lagrangian. In pro-
cesses where no h particle is present, these terms only rede-
fine the SM adimensional couplings in an unphysical way,
therefore the only effects sensitive to them are the ones in
which the physical Higgs h is involved, and thus can be
tested only from Higgs physics [9].

Given any EFT basis, the new-physics (NP)contribution
to Higgs pseudo-observables {ki,ei} can be expressed as a
linear combination of Wilson coefficients ca . Analogously,
one can express EW pseudo-observables, such as LEP-1 Z-
pole pseudo-observables dgZ f , the W mass, and anomalous

Triple Gauge Couplings (aTGC), as other linear combina-
tions of coefficients. By inverting these relations one can ex-
change some of the Wilson coefficients in favor of EW ob-
servables and express the Higgs pseudo-observables in terms
of these last ones.

In doing so, one realizes that the Higgs contact terms eZ f
and eW f [1] can be expressed in a closed form in terms of
quantities already strongly constrained by LEP [3, 7], such
as the Z and W couplings to fermions and anomalous Triple
Gauge Couplings (aTGC):

eZ f =
2mZ

v

�
dgZ f � (c2

q T 3
f + s2

qYf )13dg1,z + t2
qYf 13dkg

�
,

eW f =

p
2mW

v

�
dgW f � c2

q 13dg1,z
�
, (1)

where eZ f ,eW f ,dgZ f and dgW f are 3⇥ 3 real matrices, and
13 is the identity matrix.1 The parameters dgZ f and dgW f

correspond to the Z and W couplings to the fermion f , see
Appendix Appendix A for their definition. In particular, the
ones relevant for this work are the leptonic Z couplings, which
have been constrained at the per-mil level at LEP-I [2–4],
even in the most generic flavour scenario [8]. The parame-
ters dg1,z and dkg are aTGCs and the constraints deriving
from LEP-II studies of the e+e� !W+W� process and sin-
gle W production, obtained in Ref. [4], are collected in Ap-
pendix Appendix A. It should be stressed here that the aTGC
fit for LEP-II depends on a third aTGC parameter lZ . In par-
ticular, a flat direction is present when all three aTGC are
included at the linear level, which reflects on a very loose
bound on dg1,z when lZ is marginalized.2 In the following

1Let us stress that the pseudo-observables eW f and dgW f , which in gen-
eral are complex, are real in the linear EFT scenario [1].
2This flat direction is also lifted if quadratic corrections are included in
the cross section. In Ref. [4] it is argued that this is still consistent with
the EFT expansion since higher-dimension operators give a suppressed
contribution. In this case the constraints are analogous to the lZ = 0
case.

LEP I LEP II
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Fig. 1 68%, 95% and 99.7% CLs bounds on the contact terms eZeL ,eZeR obtained from the TGC constraints, where lZ has been marginalised (left
plot) or set to zero (right plot).

3 Higgs to four lepton phenomenology under LEP
constraints

3.1 Total decay rates

We compute the modification of the total h ! 4` decay rates
due to the non-standard pseudo-observables. In order to reg-
ulate the IR photon pole and simultaneously resemble the
realistic present analysis [11,12], we employ a minimum in-
variant mass cut on the opposite sign same flavour lepton
pairs to be 12 GeV. We get

G4`

G SM
4`

= Â
i, j

X4`
i j kik j , (6)

where

k ⌘
�
kZZ ,eZeL ,eZeR ,eZµL ,eZµR ,eZZ ,eZg ,egg ,eCP

ZZ ,eCP
Zg ,eCP

gg
�⇥T

and X2e2µ ,X4e are given in Eq. (8) – X4µ is trivially obtained
from X4e.

A measurement of the total rate would, in full gener-
ality, only constrain this particular combination of pseudo-
observables.

Let us make some observations concerning these results.
First, it is easy to see that the contributions from the CP-

violating terms eCP
ZZ,Zg,gg can safely be neglected.4 Thus, these

h ! 4` partial widths are expressed as functions of kZZ and
the 5 pseudo-observables bounded by Eq. (5).

The generic fit of Ref. [11] allows approximately for
30% non-standard contributions in the partial width G (h !
4`) that, via Eq. (6), can in principle be used to obtain a
bound on the pseudo-observable kZZ . However, it is impor-
tant to notice that the error in the contact terms gets signif-
icantly enhanced when propagated to the total rate, which
makes difficult to set a meaningful bound on kZZ at this
point.5,6

In other words, the partial widths G (h ! 4`) are very
sensitive to the contact terms. This is shown in Fig. 2, which
presents the predictions for h! 2e2µ and h! 4e decay rates
normalized to their SM values, assuming the corrections are

4We stress that this is still true for IR cuts as low as 1 GeV. Notice that,
despite the lack of bounds on eCP

ZZ , its contribution is below 4% even for
order 1 values of this pseudo-observable.
5QUESTION: From Fig.2b I infere that we could set a 15�20% bound
on kZZ in the lZ = 0 case... shall we show it here? In principle we could
not only show it, but also to use it in the remaining lZ = 0 plots...
6Moreover, the generic fit of Ref. [11] assumes SM angular distribu-
tions and spectra in h ! 4`, which in principle could be significantly
distorted given the weak bounds on the contact terms shown in Eq. (5)
(lZ 6= 0 case). We will get back to this issue later.
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Using the EW fits from Falkowski, Riva and Efrati, Falkowski, Soreq we find:

Flavour 
universality 

5.1 Flavor universality

A first simple restriction in the number of parameters is obtained by assuming flavor
universality (i.e. enlarging the flavor symmetry to the full U(3)5 flavor group). In our setup
this simply means assuming that the contact interactions coe�cients are independent of
the generations:

✏ZeL = ✏ZµL , ✏ZeR = ✏ZµR , ✏Z⌫e = ✏Z⌫µ , ✏WeL = ✏WµL . (31)

Since the last coe�cients are complex in general, these are five relations which allow to
reduce the number of parameters to 15. This assumption can be tested directly from data
by comparing the extraction of the contact terms from h ! 2e2µ, h ! 4e and h ! 4µ
modes (see e.g. Sect. 6.3 and Fig. 3).

5.2 CP conservation

The assumption that CP is a good approximate symmetry of the BSM sector and that
the Higgs is a CP-even state, allows us to set to zero six independent (real) coe�cients:

✏CP
ZZ = ✏CP

Z� = ✏CP
�� = ✏CP

WW = Im✏WeL = Im✏WµL = 0 . (32)

Assuming, at the same time, flavor universality, the number of free real parameters reduces
to 10.

5.3 Custodial symmetry

We now present the relations among the pseudo-observables introduced in Sect. 3 fol-
lowing from the assumption that the BSM sector is invariant under the custodial sym-
metry group G = SU(2)L ⇥ SU(2)R ⇥ U(1)X , spontaneously broken to the diagonal
H = SU(2)L+R ⇥ U(1)X . This symmetry is explicitly broken by the fact that only the
subgroup GSM = SU(2)L ⇥ U(1)Y is gauged and by the fact that SM fermions are not
in complete G representations.8 In the following we assume that these are the only two
sources of breaking of custodial symmetry. In order to determine the structure of the
contact interactions, we need to specify the embedding of the SM fermions into represen-
tations of G. Focussing on leptons, we consider two minimal cases: (A) Li

L 2 (2,1)� 1
2
,

eiR 2 (1,2)� 1
2
and (B) Li

L 2 (2,2)�1, eiR 2 (1,1)�1.9

8 The U(1)X factor is needed only to assign the correct hypercharge Y = T 3
R +X to the SM fermions.

9 Here and in the following we label by the index i = 1...3 the three lepton generations and we denote
by Li

L the lepton doublet (eiL, ⌫
i
L)

T .
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(a) (b)

Fig. 2 (a) Predictions for h ! 4e versus h ! 2e2µ decay rates implied by TGC constraints with generic lZ . Here we choose eZeL and eZeR to be
within the 68% and 95% CLs bounds from Fig. 1 left. (b) h ! 4e versus h ! 2e2µ decay rates implied by TGC constraints for lZ = 0. Shown in
green and yellow are 68% and 95% CLs regions, respectively. Here we assume that eZeL , eZeR and eZZ are modified via dg1,z and dkg only. Instead,
shown in grey are the corresponding CLs regions if we allow eZg to vary within LHC limits. Also, kZZ = 1 in both plots.

observe that, although the effect of the contact terms on the
total rate is very large (order 100% in the lZ 6= 0 case) as
shown in Fig. 3, the difference in the shape with respect to
the SM is much smaller, namely . 15% for lZ 6= 0. Such
cancellation is also present in the lZ = 0 case, but not so
pronounced. Let us notice that this cancellation is, at least
in part, a consequence of the strong positive correlation be-
tween eZeL and eZeR . 8

In Fig. 4 we study the effect of the eZZ,Zg,gg POs on
the invariant mass distribution. Here it is important to no-
tice that the sensitivity to eZg,gg depends strongly on the in-
frared cutoff imposed on the dilepton invariant masses, as
expected due to the associated photon pole(s). While the
present cut used by the experimental collaborations is of
12GeV, Ref. [16] showed that relaxing it to 4GeV substan-
tially improves the sensitivity to these couplings, even ex-
cluding the [8.8� 10.8]GeV region due to the ° resonance.
In principle even looser cuts could be applied by the exper-

8COMMENT: I have played with the TGC numbers and it’s incredibly
difficult to obtain a negative correlation...

imental collaborations, and the QCD resonances could be
taken into account with enough accuracy [15, 16].

For these reasons we show the differential decay rate in
Fig. 4 with a 4 GeV IR cut. One observes that, contrary
to what happens with the contact terms, the effect of the
pseudo-observables eZZ,Zg,gg is similar in the total rate and
the shape, except for the low-energy region of the shape
where the sensitivity is significantly enhanced.

Finally, in Fig. 5 we show the same plots but letting
vary all five Higgs POs egg,Zg,ZZ,ZeL,ZeR within their allowed
bounds, i.e. Eq. (??). We also impose the total rate to be
within 40% of the SM value, and we study the effect of a
50% variation in the remaining pseudo-observable kZZ .

Therefore, this figure shows the room for non-standard
effects in the h ! 4` shape within the linear EFT scenario.
On one hand, it represents a goal to be reached by the exper-
imental collaborations in order to make this studies compet-
itive and able to tell us something about the Higgs pseudo-
observables, which encode the New Physics information avail-
able in Higgs decays. Notice in particular that the difference
between Fig. 5(a) and 5(b) could eventually be used to im-
prove indirectly the current bound on lZ .

Assuming linear EFT with dimension 6 operators:
Gonzalez-Alonso, AG, 

Isidori, Marzocca, 
work in progress

Flavour 
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Fig. 3 Single differential distributions in electron pair invariant mass for h ! e+e�µ+µ� (top row) and h ! 4e (bottom row) decay obtained by
varying eZeL and eZeR within the 68% and 95% CLs bound from TGC (Fig. 1) with lZ generic in Fig. (a,c), and lZ = 0 in Fig. (b,d). The green and
yellow regions represent the allowed modifications in the decays due to contact terms implied by TGC constraints from Fig. 1.

Assuming linear EFT with dimension 6 operators: 9

Fig. 4 Single differential distributions in electron pair invariant mass
for h ! e+e�µ+µ� decay obtained by varying egg , eZg and eZZ inside
the 95% CL bounds obtained from Eq. (5) (lZ = 0 case). We apply an
IR cut on both lepton pair’s invariant masses of 4 GeV. In the upper plot
the rate is normalized to the total rate while in the lower one we take
the ratio of this quantity to the one obtained in the SM at tree level.

where the dependent couplings dcw,cww,cw⇤,cg⇤ are given,
in terms of the independent ones, by [5]

dcw = dcz +4dm ,

cww = czz +2s2
wczg + s4

wcgg ,

cw⇤ =
1

g2 �g02
⇥
g2cz⇤+g02czz � e2s2

wcgg � (g2 �g02)s2
wczg

⇤
,

cg⇤ =
1

g2 �g02
⇥
2g2cz⇤+(g2 +g02)czz � e2cgg � (g2 �g02)czg

⇤
.

(A.3)

We would like to stress here that the choice of keeping cz⇤
as an independent coupling instead of dcw implies that the
pseudo-observables kZZ and kWW are no longer in one-to-
one correspondence with the dcz and dcw couplings, and
also the contact terms eV f are no longer in one-to-one cor-
respondence with the cV f coefficients defined in [5]. Even
though this choice is not optimal for our purposes, the rela-

tions between observables presented in Sec. 2 are of course
independent on this basis choice.

The CP-conserving aTGC can be defined by the Lagrangian

L TGC = iedkg AµnW+µW�n + igcwdkzZµnW+
µ W�

n

+ igcwdg1,z(W+
µnW�µ �W�

µnW+µ)Zn+

+ i
gcw

m2
W

lZW+
µnW�nr Zµ

r + i
e

m2
W

lgW+
µnW�nr Aµ

r .

(A.4)

In general, at dimension-6 in the linear EFT, dkz = dg1,z �
t2
wdkg and lg = lZ . Moreover, in this basis also dg1,z and

dkg are dependent:

dg1,z =
1

2(g2 �g02)

⇥
�g2(g2 +g02)cz⇤�g02(g2 +g02)czz+

+ e2g02cgg +g02(g2 �g02)czg
⇤
,

dkg =�g2

2

✓
cgg

e2

g2 +g02
+ czg

g2 �g02

g2 +g02
� czz

◆
,

(A.5)

while only lZ is an independent coupling. Since we are in-
terested in studying the constraints from TGC on Higgs ob-
servables it is convenient for us to exchange the two indepen-
dent Higgs couplings cz⇤ and czz in favour of these aTGC
using Eq. (A.5). By doing so and substituting the result in
Eq. (A.2) we obtain the relations of Sec. 2. We also checked
independently those relations by employing a different basis
of SU(2)L ⇥ U(1)Y invariant operators. The physical con-
straints on the Higgs pseudo-observables is of course inde-
pendent on the basis used.

Once the per-mil constraints from LEP-1 measurements
have been imposed, the aTGC can be constrained from a fit
to LEP-2 WW data and single W production. We use the
results of the fit performed in Ref. [4]:
0

@
dg1Z
dkg
lZ

1

A=

0

@
�0.83±0.34
0.14±0.05
0.86±0.38

1

A , r =

0

@
1 �0.71 �0.997
. 1 0.69
. . 1

1

A .

(A.6)

The large allowed range for dg1,z and lZ is due to an approx-
imately blind direction in LEP-2 WW data corresponding to
lZ ' �dg1,z []. This implies a very loose bound on dg1,z
upon marginalising on lZ . Since most UV models predict
lZ to be generated at the loop-level only, while dg1,z and
dkg can be generated at tree-level, it is also interesting to

Small deviations in the shape expected.



• We propose a set of POs to characterise NP in Higgs decays 
A. General encoding of the experimental results 
B. Easily computable in large set of theories  
C. Not a substitute (or competition) to EFT approach, rather an intermediate step 
D. Dressing with QED radiation possible  

• FU, CP, custodial symmetry, linear or non-linear EFT not 
assumed!  
We should keep our eyes open. 

• Linear EFT > firm predictions on h→4l  shape & LFU 
(possibility to falsify them with Higgs data would be a "double discovery":  NP + h(125) 
non-pure SU(2)L doublet) 

• Work to do: compute the projections for LHC run 2  
(in collaboration with experimental groups)
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Conclusions


