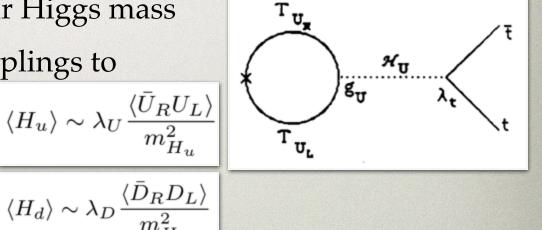
HIGGS IN BOSONIC TECHNICOLOR

JURE ZUPAN U. OF CINCINNATI

based on A. Kagan, A. Martin, P. Uttayarat, S. J. Lee, JZ, 150m.nnnnn

Portoroz 2015: Particle Phenomenology From the Early Universe to High Energy Colliders

OUTLINE


disclaimer: heavily borrowed from A. Kagan's talk at Naturalness 2014

- bosonic technicolor
- higgs phenomenology in BTC
- electroweak precision tests, resonance searches,...

BOSONIC TECHNICOLOR

- Bosonic TC= SUSY+Technicolor Dine, Kagan, Samuel, 1990
 - TC condensates trigger EW symmetry breaking
 - H_{μ} , H_d from MSSM give masses to quarks and leptons
 - SUSY stabilizes scalar Higgs mass
 - Higgs vevs from couplings to TC condensates $\langle H_u \rangle \sim \lambda_U \frac{\langle \bar{U}_R U_L \rangle}{m^2}$

 $\left| \lambda_U \bar{U}_R T_L H_u + \lambda_D \bar{D}_R T_L H_d \right| =$

• Higgs mass params. taken positive $m_{H_u}^2$, $m_{H_d}^2 > 0$

● ⇒ no EW symmetry breaking without TC

J. Zupan Higgs in BTC

EW BREAKING IN BTC

 W, Z masses receive contribs from both TC condensates and the H_w, H_d vevs

$$v_W^2 = (246 \text{ GeV})^2 \approx f_{\text{TC}}^2 + f_u^2 + f_d^2$$

$$\langle H_{u,d} \rangle \equiv f_{u,d}/\sqrt{2}$$

- this breaks direct correlation between m_Z and m_h
- unlike MSSM $m_h > m_Z$ possible, in fact is generic
- perturbative top Yukawa requires

$$v_W^2 \approx f_u^2 + f_d^2 \gg f_{\rm TC}^2$$
, e.g. $f_{\rm TC} \lesssim 100 \; {\rm GeV}$

- bulk of *W*,*Z* mass comes from Higgs vev
- but TC triggers EW symmetry breaking Azatov, Galloway, Luty, 1106.3346, 1106.4815
 - the MSSM Higgs potential assumed not to break EW symmetry by itself $m_{H_u}^2 m_{H_d}^2 > (B\mu)^2, \quad m_{H_u}^2 + m_{H_d}^2 > 0$

J. Zupan Higgs in BTC

Portoroz 2015, Apr 4 2015, Portoroz

Kagan, KITP08;

MINIMAL BTC

• minimal BTC= MSSM+SU(2)_{TC} techni-fermion fields

 $\hat{T}_L(2_{\mathrm{TC}}, 1_C, 2_L, 0), \quad \hat{U}_R(2_{\mathrm{TC}}, 1_C, 1_L, -1/2), \quad \hat{D}_R(2_{\mathrm{TC}}, 1_L, +1/2),$

• Yukawa superpotential couples TC and MSSM

 $W_{\rm Y} = \lambda_U \hat{U}_R \hat{T}_L \hat{H}_u + \lambda_D \hat{D}_R \hat{T}_L \hat{H}_d$

- technigluino, technisquarks acquire masses > Λ_{TC}
- at lower energies only techni-fermions
 - acquire masses from the Higgs vev

$$m_U = \lambda_U f_u / \sqrt{2}$$
 $m_D = \lambda_D f_d / \sqrt{2}$

- QCD-like TC theory at low energies
 - can use chiral perturbation theory+experimental+lattice knowledge of nonperturbative QCD

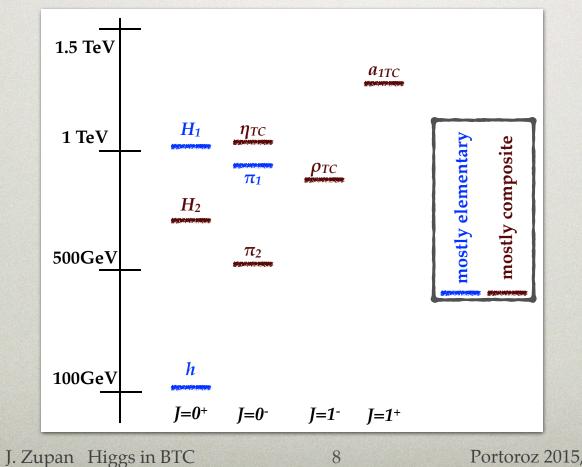
5

for future reference define also:

$$\hat{m} = \frac{m_U + m_D}{2}$$

LOW ENG LAGRANGIAN

- in the limit λ_{D,U} → 0 TC sector has SU(4) global symmetry
 (Ū_R^C, D_R^C, U_I, D_I) form fund. repres.
 - $\langle \bar{U}_R U_L \rangle$, $\langle \bar{D}_R D_L \rangle$ break $SU(4) \rightarrow Sp(4)$
- 5 pseudo Nambu Goldstone bosons
 - 2 "baryonic" states π_{UD} , $\pi_{\bar{U}\bar{D}}$, potential dark matter candidates
 - 3 usual pions from $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$
 - these are relevant for Higgs phenomenology, suffice to consider this subgroup
 - can describe their interactions using the usual ChPT


6

LOW ENG STATES

- in addition there are MSSM Higgs sector fields
- we also include σ_{TC} , the $\bar{T}T$ bound state
 - unlike in QCD this is a narrow state
 - $\sigma_{TC} \rightarrow \pi_{TC} \pi_{TC}$ channel not kinem. allowed
- for Higgs sector we have 9 physical states $m_i \ll \Lambda_{TC}$
 - one light Higgs, *h*, two heavy Higgses, *H*_{1,2}
 - two charged pions π_1^{\pm}, π_2^{\pm}
 - two neutral pions π_1^0, π_2^0
- in addition TC resonances with $m_i \sim \Lambda_{TC}$
 - η_{TC} , ρ_{TC} , a_{1TC} ,...

TYPICAL SPECTRUM

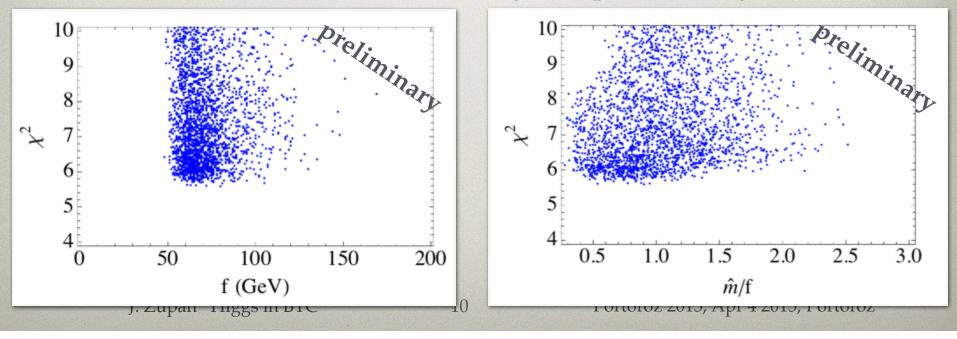
• a typical spectrum

Portoroz 2015, Apr 4 2015, Portoroz

SCAN

- rescale QCD ChPT constants to TC scale
 - use latticeQCD, include N_C rescaling $3 \rightarrow 2$
 - gluonic content of η_{TC} from data on η - η' mixing
- scan over TC parameters and compare to Higgs data

- rescale ρ , a_1 masses from QCD
- vary $m_{\sigma TC}^{2} \in [0.4, 1.4] m_{\rho TC}^{2}$
- derived λ_D need to be pert., $\lambda_D \leq 4$
- in addition vary a set of constants that parametrize p^{*} and higher effects, and errors in extrapolations


9

ETM 0911.5061

Kroll, hep-ph/0409141

SCAN

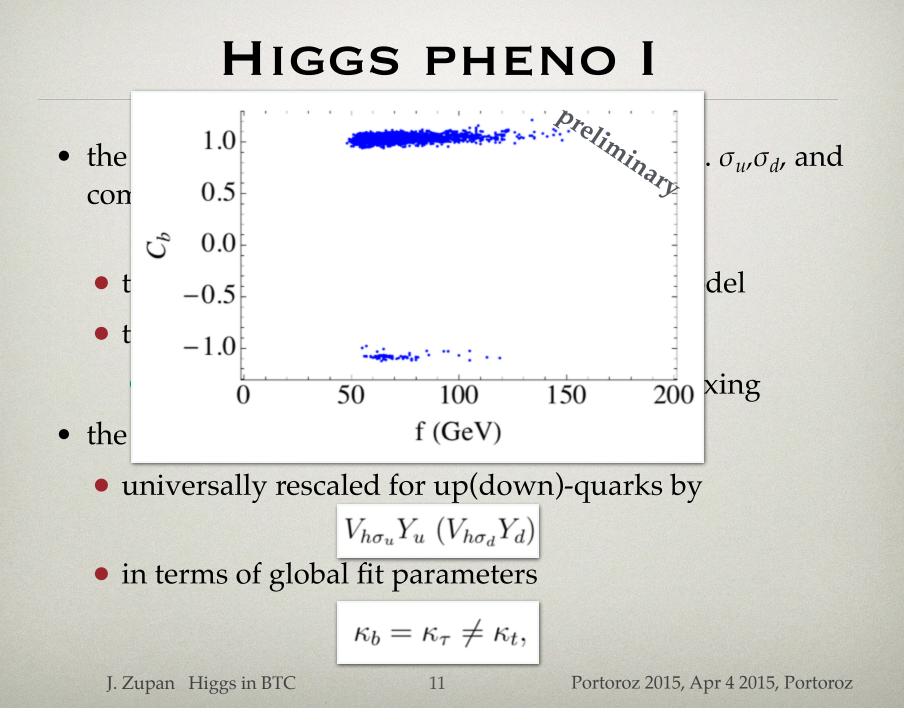
- the minimal χ^2 : for SM $(\chi^2)_{min}=5.6$, for BTC $(\chi^2)_{min}=5.8$
- we show points within 1 σ coverage probability for estimating 5 parameters (f_{TC} , \hat{m}/f_{TC} , tan β , λ_U , $m_{\sigma TC}^2$)
 - i.e. demand $(\chi^2) < (\chi^2)_{min} + 5.9$ (keeps ~72% of points)
- Note: \hat{m}/f much bigger than in QCD
 - since $m_U \neq m_D \Rightarrow$ in TC also large isospin breaking

HIGGS PHENO I

• the light Higgs is a mixture of three states, elem. σ_u, σ_d , and composite σ_{TC}

$$h = \sum_{i} V_{hi} \sigma_i,$$

- to some extent similar to 3 Higgs doublet model
- the mixing satisfy $\sum_i V_{hi}^2 \approx 1$
 - the relation approximate due to kinetic mixing
- the Higgs coupling to fermions only to MSSM
 - universally rescaled for up(down)-quarks by

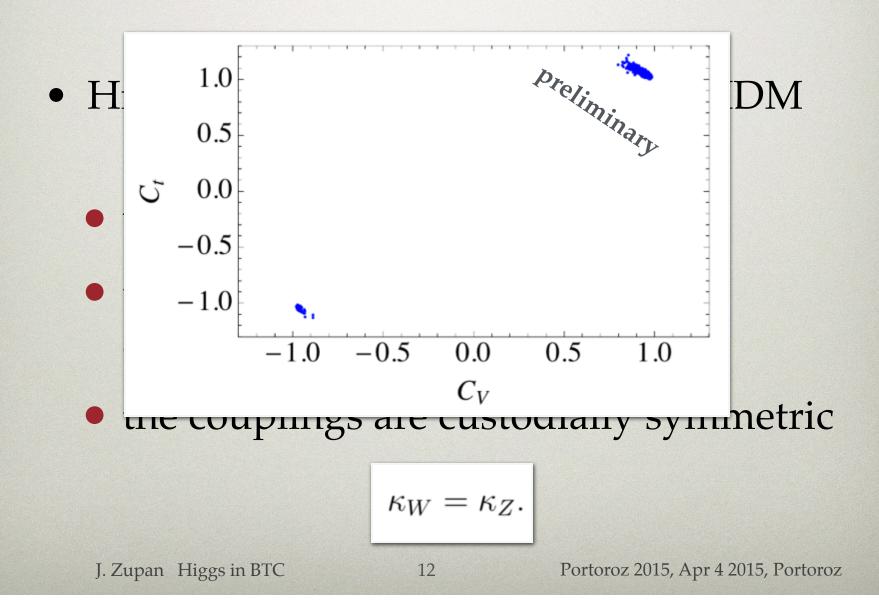

$$V_{h\sigma_u}Y_u \ (V_{h\sigma_d}Y_d)$$

• in terms of global fit parameters

$$\kappa_b = \kappa_\tau \neq \kappa_t,$$

J. Zupan Higgs in BTC

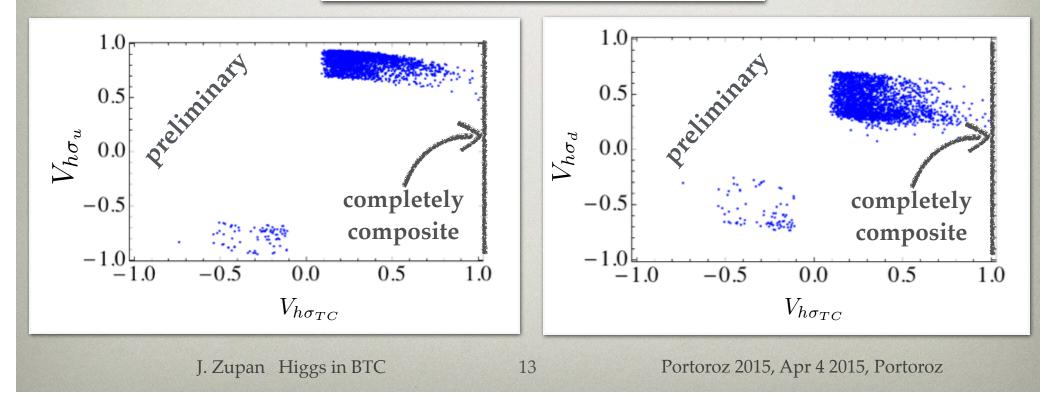
Portoroz 2015, Apr 4 2015, Portoroz

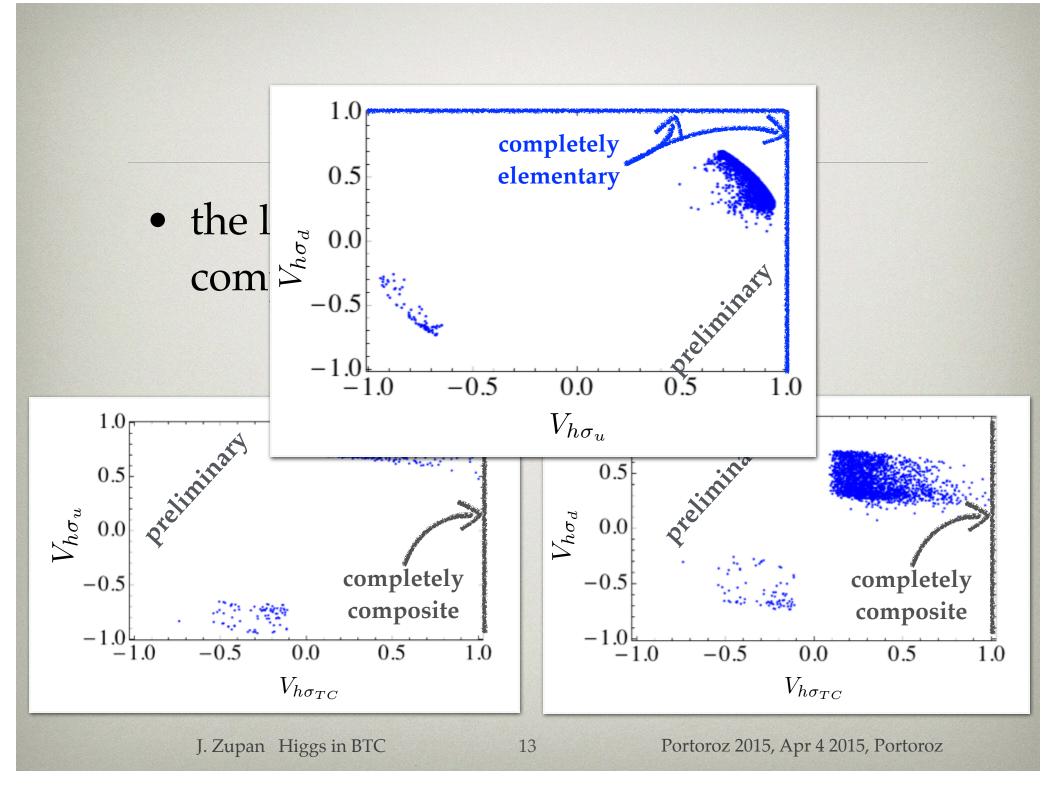


HIGGS PHENO II

- Higgs coupling to *W*,*Z* similar to 3HDM $g_{h_iWW} \propto \langle h_i \rangle / v_W$
 - were one to take $\langle \sigma_{TC} \rangle = f_{TC}$
 - the composite contrib. thus gets corrected at *O*(*1*), the rest at *O*(*p*⁴)
 - the couplings are custodially symmetric

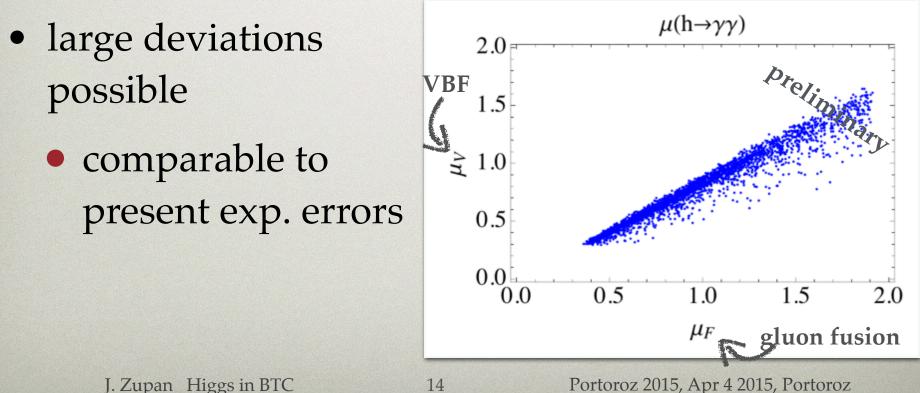
$$\kappa_W = \kappa_Z.$$

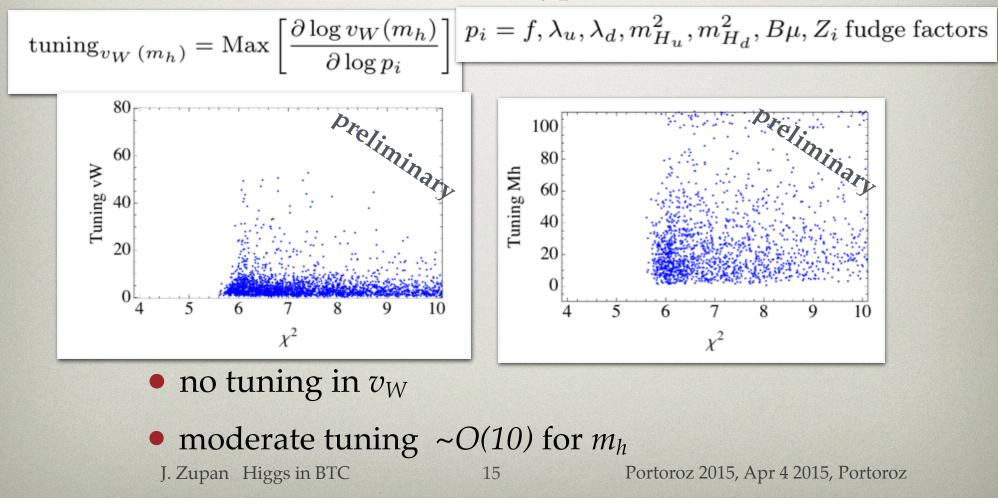

HIGGS PHENO II



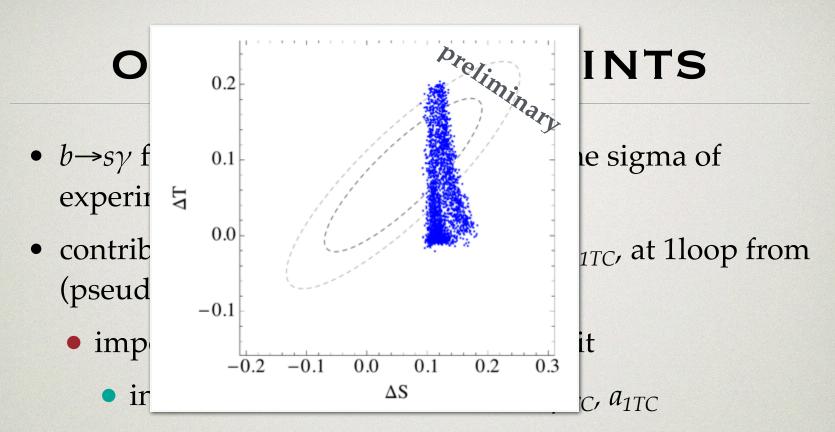
HIGGS PHENO III

• the light Higgs can have sizeable composite component


$$h = V_{h\sigma_u}\sigma_u + V_{h\sigma_d}\sigma_d + V_{h\sigma_{TC}}\sigma_{TC}$$


HIGGS PHENO IV

- couplings to photons, $h \rightarrow \gamma \gamma$, not calculable
- use NDA to estimate it

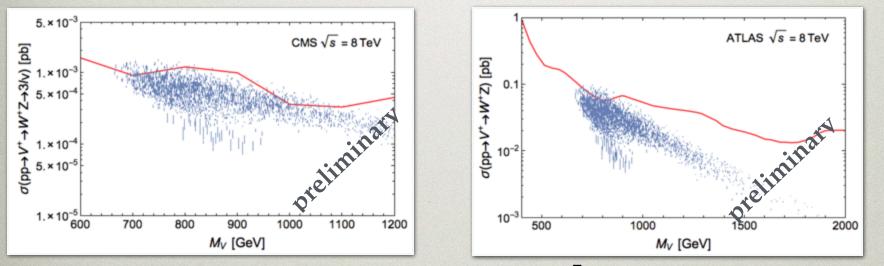

FINE-TUNING

- tuning from low energy scale perspective
- consider Barbieri-Giudice type measure

OTHER CONSTRAINTS

- *b→sγ* from pion loop, mostly within one sigma of experiment
- contribs. to *S*, *T* at tree level from ρ_{TC}, *a*_{1TC}, at 1loop from (pseudo)scalars
 - important that away from chiral limit
 - increased cancellation between ρ_{TC} , a_{1TC}
- BTC: a technicolor example satisfying S and T at 1σ via QCD-like dynamics
 - no need to invoke unproven conjectures about exotic strong interactions, e.g., conformal or walking dynamics

- BTC: a technicolor example satisfying S and T at 1σ via QCD-like dynamics
 - no need to invoke unproven conjectures about exotic strong interactions, e.g., conformal or walking dynamics

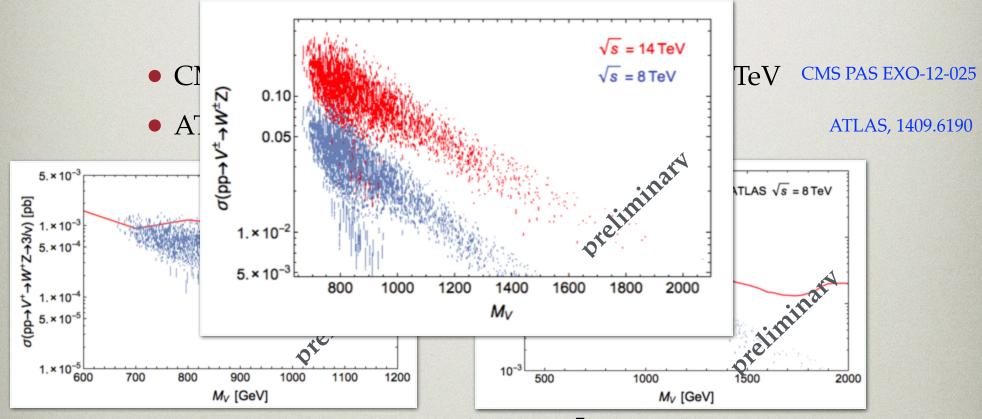

VECTOR PHENOMENOLOGY

• LHC bounds on vector resonances from Drell-Yan production

$$\sigma(pp\to\rho^\pm\to W^\pm Z)$$

- CMS 19.6 fb-1 W' \rightarrow WZ trilepton search @ 8 TeV CMS PAS EXO-12-025
- ATLAS 20 fb–1 W' \rightarrow W Z lljj search @ 8 TeV

ATLAS, 1409.6190


• the di-jet bounds evaded since $\rho_{TC}f\bar{f}$ coupl. « $\rho_{TC}WW$ coupl.

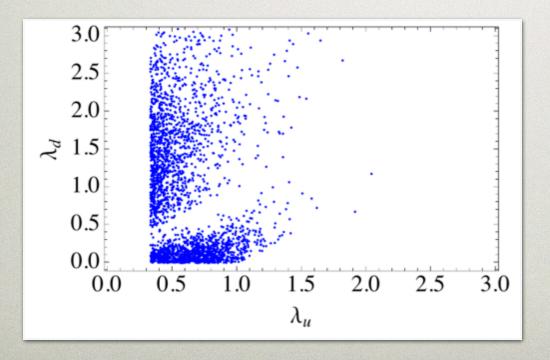
•
$$\Rightarrow Br(\rho_{TC} \rightarrow jj) \ll Br(\rho_{TC} \rightarrow WW, WZ)$$

J. Zupan Higgs in BTC

VECTOR PHENOMENOLOGY

• LHC bounds on vector resonances from Drell-Yan production

- the di-jet bounds evaded since $\rho_{TC}f\bar{f}$ coupl. $\ll \rho_{TC}WW$ coupl.
 - $\Rightarrow Br(\rho_{TC} \rightarrow jj) \ll Br(\rho_{TC} \rightarrow WW, WZ)$


J. Zupan Higgs in BTC

CONCLUSIONS

- covered low scale (*f*_{TC}~70 GeV) minimal bosonic technicolor = MSSM+ SU(2) technicolor sector
- Higgs can have significant composite component and still be phenomenologically viable

BACKUP SLIDES

ISOSPIN BREAKING

J. Zupan Higgs in BTC

20

Portoroz 2015, Apr 4 2015, Portoroz