CP asymmetries in bottom and charm decays

Ulrich Nierste

Karlsruhe Institute of Technology

Federal Ministry of Education and Research

Particle Phenomenology from the Early Universe to High-energy Colliders Portorož, 7-10 April 2015

CP asymmetries in *B_{d,s}* decays to charmonium

2 CP asymmetries in D, D^+, D_s^+ decays to two pseudoscalars

 $B_d - \overline{B}_d$ and $B_s - \overline{B}_s$ mixing probe new physics from scales beyond 100 TeV.

Mixing-induced CP asymmetries (for q = d or s):

 $A_{\rm CP}^{B_q \to f}(t) = \frac{S_f \sin(\Delta m_q t) - C_f \cos(\Delta m_q t)}{\cosh(\Delta \Gamma_q t/2) + A_{\Delta \Gamma_q} \sinh(\Delta \Gamma_q t/2)}$

 Δm_q : mass difference $\Delta \Gamma_q$: width difference

 $S(B_q \to f) = \sin(\phi_q + \Delta \phi_q)$

If one neglects $\lambda_u = V_{ub} V_{us}^*$ in the decay amplitude, $S(B_q \to f)$ measures ϕ_q with

$$\begin{array}{ll} B_d \to J/\psi K^0 & \phi_d = 2\beta \\ B_s \to J/\psi \phi & \phi_s = -2\beta_s \end{array}$$

The penguin pollution $\Delta \phi_q$ is parametrically suppressed by $\epsilon \equiv \left| \frac{V_{us} V_{ub}}{V_{cs} V_{cb}} \right| = 0.02.$

New method to constrain $\Delta \phi_q$:

Ph. Frings, UN, M. Wiebusch, arXiv:1503.00859

Overview: Experimental and Theoretical Precision

$$\Delta S_{J/\psi K^0} = S_{J/\psi K^0} - \sin \phi_d \qquad S_{J/\psi K^0} = \sin \left(\phi_d + \Delta \phi_d\right)$$

HFAG 2014:

$$\sigma_{\mathcal{S}_{J/\psi K^0}} = 0.02$$
 $\sigma_{\phi_d} = 1.5^{\circ}$

Author	$\Delta \mathcal{S}_{J/\psi K^0}$	$\Delta \phi_{d}$	Method
De Bruyn, Fleischer 2014	-0.01 ± 0.01	$-\left(1.1^{\circ}{}^{+0.70}_{-0.85} ight)^{\circ}$	SU(3) flavor
Jung 2012	$ \Delta {\cal S} \lesssim 0.01$	$ \Delta \phi_{d} \lesssim 0.8^{\circ}$	SU(3) flavor
Ciuchini <i>et al.</i> 2011	0.00 ± 0.02	$0.0^\circ\pm1.6^\circ$	U-spin
Faller <i>et al.</i> 2009	[-0.05, -0.01]	[−3.9, −0.8]°	U-spin
Boos <i>et al.</i> 2004	$-(2\pm 2)\cdot 10^{-4}$	$0.0^\circ\pm0.0^\circ$	perturbative
			calculation

SU(3)

Extract penguin contribution from $b \to c\overline{c}d$ control channels such as $B_d \to J/\psi\pi^0$ or $B_s \to J/\psi K_s$, in which the penguin contribution is Cabibbo-unsuppressed.

Drawbacks:

- statistics in control channels smaller by factor of 20
- size of SU(3) breaking in penguin contributions to B_{d,s} → J/ψX decays unclear

SU(3) breaking can be large, e.g. a *b* quark fragments into a B_d four times more often than into a B_s .

SU(3)

Extract penguin contribution from $b \to c\overline{c}d$ control channels such as $B_d \to J/\psi\pi^0$ or $B_s \to J/\psi K_s$, in which the penguin contribution is Cabibbo-unsuppressed.

Drawbacks:

- statistics in control channels smaller by factor of 20
- size of SU(3) breaking in penguin contributions to B_{d,s} → J/ψX decays unclear

SU(3) breaking can be large, e.g. a *b* quark fragments into a B_d four times more often than into a B_s .

SU(3) does not help in B_s → J/ψφ, because φ is an equal mixture of octet and singlet.

Define $\lambda_q = V_{qb}V_{qs}^*$ and use $\lambda_t = -\lambda_u - \lambda_c$.

Generic *B* decay amplitude:

$$A(B
ightarrow f) = \lambda_c t_f + \lambda_u p_f$$

Terms $\propto \lambda_u = V_{ub}V_{us}^*$ lead to the penguin pollution. Useful: color singlet and color octet operators

 $\begin{array}{rcl} Q_0^c &\equiv & (\bar{s}b)_{V-A}(\bar{c}c)_{V-A} & & C_0 \equiv & C_1 + \frac{1}{N_c}C_2 &= 0.13 \\ Q_8^c &\equiv & (\bar{s}T^ab)_{V-A}(\bar{c}T^ac)_{V-A} & & C_8 \equiv & 2C_2 &= 2.2 \end{array}$

What contributes to the penguin pollution p_t ?

Penguin operators:

 $\langle f|\sum_{i=3}^{6}C_{i}Q_{i}|B
angle pprox C_{8}^{t}\langle f|Q_{8V}|B
angle$

with

$$\begin{array}{rcl} C_8^t &\equiv& 2(C_4+C_6)\\ Q_{8V} &\equiv& (\bar{s}T^ab)_{V-A}(\bar{c}T^ac)_V \end{array}$$

b s c Q_{3...6} c Tree-level operator insertion:

 $\langle f|C_0Q_0^u+C_8Q_8^u|B\rangle$

Idea: employ an operator product expansion,

to factorise the *u*-quark loop into a perturbative coefficient and matrix elements of local operators:

Perturbative approach is due to Bander Soni Silverman (1979) (BSS). Boos, Mannel and Reuter (2004) applied this method to $B_d \rightarrow J/\psi K_S$. Our study:

- Investigate soft and collinear infrared divergences to prove factorization.
- Analyse spectator scattering.
- Organise matrix elements by 1/N_c counting, no further assumptions on magnitudes and strong phases.

or are individually infrared-safe if considered in a physical gauge.

Spectator scattering diagrams...

... are power-suppressed.

Operator product expansion works!

- Soft divergences factorise.
- Collinear divergences cancel or factorise.
- Spectator scattering is power-suppressed.
 - \Rightarrow Up-quark penguin can be absorbed into a Wilson coefficient C_8^{ν} !

Local operators:

$1/N_c$ counting

For example: $B_d \rightarrow J/\psi K^0$

$$V_0 = \langle J/\psi K^0 | Q_{0V} | B_d
angle = 2 f_\psi m_B
ho_{cm} F_1^{BK} \left[1 + \mathcal{O} \left(rac{1}{N_c^2}
ight)
ight]$$

 $1/N_c$ counting for $V_8, A_8 \equiv \langle J/\psi K^0 | Q_{8V,8A} | B_d \rangle$:

- Octet matrix elements are suppressed by 1/N_c w.r.t. singlet V₀
- Motivated by $1/N_c$ counting set the limits: $|V_8|, |A_8| \le V_0/3$

$1/N_c$ counting

For example: $B_d \rightarrow J/\psi K^0$

 $V_0 = \langle J/\psi K^0 | Q_{0V} | B_d
angle = 2 f_{\psi} m_B p_{cm} F_1^{BK} \left[1 + \mathcal{O}\left(rac{1}{N_c^2}
ight)
ight]$

 $1/N_c$ counting for $V_8, A_8 \equiv \langle J/\psi K^0 | Q_{8V,8A} | B_d \rangle$:

- Octet matrix elements are suppressed by 1/N_c w.r.t. singlet V₀
- Motivated by $1/N_c$ counting set the limits: $|V_8|, |A_8| \le V_0/3$

Does the $1/N_c$ expansion work?

 $\frac{BR(B_d \to J/\psi K^0)|_{\text{th}}}{BR(B_d \to J/\psi K^0)|_{\text{exp}}} = 1 \quad \Rightarrow \quad 0.06|V_0| \le |V_8 - A_8| \le 0.19|V_0|$

Numerics

Analytic result for the penguin pollution:

$$\frac{p_f}{t_f} = \frac{(C_8^{\mu} + C_8^t)V_8}{C_0V_0 + C_8(V_8 - A_8)}$$

$$\tan(\Delta\phi) \approx 2\epsilon \sin(\gamma) \operatorname{Re}\left(\frac{p_f}{t_f}\right) \qquad \quad \epsilon \equiv \left|\frac{V_{us}V_{ub}}{V_{cs}V_{cb}}\right|$$

Scan for largest value of $\Delta \phi$ using

 $V_0 = 2f_{\psi}m_Bp_{cm}F_1^{BK}$

and varying all input quantities within their experimental and theoretical uncertainties.

Ulrich Nierste (KIT)

Results

$$A_{\rm CP}^{B_q \to f}(t) = \frac{S_f \sin(\Delta m_q t) - C_f \cos(\Delta m_q t)}{\cosh(\Delta \Gamma_q t/2) + A_{\Delta \Gamma_q} \sinh(\Delta \Gamma_q t/2)}$$

B_d decays:

Final State:	$J/\psi K_S$	$\psi(2S)K_S$	$(J/\psi K^*)^0$	$(J/\psi K^*)^\parallel$	$({m J}/\psi{m K}^*)^\perp$
$\max(\Delta \phi_d) [^\circ]$	0.68	0.75	0.85	1.13	0.93
$\max(\Delta S_f) [10^{-2}]$	0.86	0.96	1.09	1.45	1.19
$\max(C_f) [10^{-2}]$	1.33	1.35	1.65	2.19	1.80
					and more.
B _s decays:					
Final State	$(J/\psi\phi)^0$	$(J/\psi\phi)$	$)^{\parallel} = (J/\psi a)$	$\phi)^{\perp}$	
$\max(\Delta \phi_{s}) [^{\circ}]$	1.09	1.18	1.0	3	
$\max(\Delta S_f) [10^{-2}]$	1.91	2.06	1.8	0	
$\max(C_f) [10^{-2}]$	2.12	2.27	2.0	0	

We can also constrain p_f/t_f in $b \rightarrow c\overline{c}d$ decays:

B_d decays: $J/\psi\pi^0$ $(J/\psi
ho)^0$ $(J/\psi
ho)^\parallel$ $(J/\psi
ho)^\perp$ Final State $\max(|\Delta S_t|) [10^{-2}]$ 18 22 27 22 $\max(|C_f|)$ [10⁻²] 29 35 41 36 B_s decays: Final State $J/\psi K_S$ $\max(|\Delta S_f|) [10^{-2}]$ 25 $\max(|C_f|)$ [10⁻²] 26

Our results:

$$egin{aligned} -0.86 \leq S_{J/\psi\pi^0} \leq -0.50 \ -0.29 \leq C_{J/\psi\pi^0} \leq 0.29 \end{aligned}$$

 \rightarrow Belle favoured

Goal: Get the most out of the measurements of the branching fractions of $D^0 \rightarrow K^+K^-$, $D^0 \rightarrow \pi^+\pi^-$, $D^0 \rightarrow K_SK_S$, $D^0 \rightarrow \pi^0\pi^0$, $D^+ \rightarrow \pi^0\pi^+$, $D^+ \rightarrow K_SK^+$, $D_s^+ \rightarrow K_S\pi^+$, $D_s^+ \rightarrow K^+\pi^0$, $D^0 \rightarrow K^-\pi^+$, $D^0 \rightarrow K_S\pi^0$, $D^0 \rightarrow K_L\pi^0$, $D^+ \rightarrow K_S\pi^+$, $D^+ \rightarrow K_L\pi^+$, $D_s^+ \rightarrow K_SK^+$, $D^0 \rightarrow K^+\pi^-$, $D^+ \rightarrow K^+\pi^0$, and the $K^+\pi^-$ strong phase difference $\delta_{K\pi} = 6.45^\circ \pm 10.65^\circ$ to predict CP asymmetries in these decays.

S. Müller, UN, St. Schacht, arXiv:1503.06759:

Combine topological amplitudes (Chau 1980,1982; Zeppenfeld 1981) with linear $SU(3)_F$ breaking (Gronau 1995).

tree (T) color-suppressed tree (C) exchange (E) annihilation (A)

SU(3)_F beaking

Feynman rule from $H_{SU(3)_F} = (m_s - m_d)\overline{ss}$: dot on *s*-quark line. Find 14 new topological amplitudes such as

Steps:

i) Invoke colour counting to justify factorisation of tree and annihilation amplitudes à la

$$T = T^{\text{fac}} \left[1 + \mathcal{O} \left(\frac{1}{N_c^2} \right) \right]$$

with T^{fac} expressed in terms of decay constants and form factors.

- ii) Null hypothesis of a Frequentist analysis: Global fit to data permitting up to 50% SU(3)_{*F*}-breaking and $\frac{1}{N_c^2}$ -corrections of up to 15%. \rightarrow find multi-dimensional valley with perfect $\chi^2 = 0$.
- iii) Perform likelihood tests for various hypothesis. Race horse: *my*Fitter, M. Wiebusch 2012

Example: Quantify SU(3)_F-breaking

 $\Delta \chi^2$ profile of the parameter $\delta_{\chi}^{\prime,\text{topo}}$ which quantifies the overall size of SU(3)_{*F*}-breaking:

Results:

i) The SU(3)_F limit $\delta_X'^{\text{topo}} = 0$ is ruled out by more than 5σ . ii) At 68% CL there is at least 28% of SU(3)_F breaking. The theory community has delivered a perfect service to the experimental colleagues:

The theory community has delivered a perfect service to the experimental colleagues:

Every measurement hinting at some non-zero CP asymmetry was successfully postdicted offering interpretations both

The theory community has delivered a perfect service to the experimental colleagues:

Every measurement hinting at some non-zero CP asymmetry was successfully postdicted offering interpretations both

- within the Standard Model and
- as evidence for new physics!

Generic problem: CP asymmetries involve new hadronic quantities which are not constrained by branching fractions. E.g. new SU(3) representations or, in our analysis, new topological-amplitudes.

Prominent example:

Penguins P_s and P_d appear in other combinations than $P_{break} = P_s - P_d$. Therefore we also need $P_s + P_d$. Strategy: Build combinations out of several CP asymmetries containing only those topological amplitudes which can be extracted from the global fit to the branching ratios.

 \rightarrow sum rules among CP asymmetries.

Our finding: Two sum rules each correlating three direct CP asymmetries in

I
$$D^0 \rightarrow K^+ K^-$$
, $D^0 \rightarrow \pi^+ \pi^-$, and $D^0 \rightarrow \pi^0 \pi^0$,
and

II
$$D^+ o \overline{K}{}^0K^+, D^+_s o K^0\pi^+$$
, and $D^+_s o K^+\pi^0$.

Unfortunately: only works to zeroth order in $SU(3)_F$ breaking. Still: theoretical accuracy of new-physics tests only limited by the assumed size of $SU(3)_F$ breaking; great progress compared to the O(1000%) spread of past predictions. Use the measured values of $D^+ \to \overline{K}{}^0K^+$ and $D_s^+ \to K^0\pi^+$ to predict $a_{CP}^{dir}(D_s^+ \to K^+\pi^0)$:

Blue: prediction from $a_{CP}^{dir}(D^+ \rightarrow \overline{K}{}^0K^+)$, $a_{CP}^{dir}(D_s^+ \rightarrow K^0\pi^+)$, and global fit to branching ratios. Red: measurement. Dotted: 1σ , solid: 2σ , dot-dashed: 3σ .

Not shown: error from $SU(3)_F$ breaking in P_s+P_d .

 \Rightarrow yet another successful postdiction.

For an $SU(3)_F$ analysis with new physics see:

G. Hiller, M. Jung, St. Schacht, PRD87 (2013) 014024.

But: Assuming better measurements of the branching ratios by a factor of $\sqrt{50}$ changes the picture:

Blue: prediction from $a_{CP}^{dir}(D^+ \to \overline{K}{}^0K^+)$, $a_{CP}^{dir}(D_s^+ \to K^0\pi^+)$, and global fit to branching ratios. Red: measurement. Dotted: 1σ , solid: 2σ , dot-dashed: 3σ . Not shown: error from SU(3)_F breaking in P_s+P_d.

Summary

- OPE works for the penguin pollution in *B_{d,s}* decays to charmonium
- no mysterious long-distance enhancement of up-quark penguins
- matrix elements are the dominant source of uncertainty
- Belle measurement of $S_{J/\psi\pi^0}$ is theoretically favoured

HFAG 2014	$\sigma_{\mathcal{S}_{J/\psi K^0}}=$ 0.02	$\sigma_{\phi_{d}}=$ 1.5°	
Analysis	$\Delta S_{J/\psi K^0}$	$\Delta \phi_{d}$	Method
Our study	$ \Delta S < 0.01$	$ \Delta \phi_{d} < 0.68^{\circ}$	OPE
De Bruyn, Fleischer 2014	-0.01 ± 0.01	$-\left(1.1^{\circ}^{+0.70}_{-0.85} ight)^{\circ}$	SU(3) _F
Jung 2012	$ \Delta {\cal S} \lesssim 0.01$	$ \Delta \phi_d \lesssim 0.8^\circ$	SU(3) _F
			•••
Dur study: $ \Delta S_{J/\psi\phi}^{\parallel} $	\leq 0.02, $ \Delta$	$\phi^{\parallel}_{m{s}} \leq 1.3^{\circ}$	

(

 Global fit of D → PP' branching ratios to topological amplitudes including linear SU(3)_F breaking gives multiply degenerate best-fit solutions.

The method permits likelihood ratio test to quantify e.g. the size of $SU(3)_F$ breaking.

- CP asymmetries involve topological amplitudes not constrained by the fit. These can be eliminated by forming judicious combinations of several CP asymmetries \rightarrow sum rules.
- The sum rules test the quality of SU(3)_F in penguin amplitudes and/or new physics.