CP asymmetries in bottom and charm decays

Ulrich Nierste

Karlsruhe Institute of Technology

Karlsruhe Institute of Technology

Particle Phenomenology from the Early Universe to High-energy Colliders Portorož, 7-10 April 2015

Contents

(9) CP asymmetries in $B_{d, s}$ decays to charmonium
(2) CP asymmetries in D, D^{+}, D_{s}^{+}decays to two pseudoscalars
(3) Summary

$\mathrm{B}-\overline{\mathrm{B}}$ mixing

$\mathrm{B}_{\mathrm{d}}-\overline{\mathrm{B}}_{\mathrm{d}}$ and $\mathrm{B}_{\mathrm{s}}-\overline{\mathrm{B}}_{\mathrm{s}}$ mixing probe new physics from scales beyond 100 TeV .

Mixing-induced CP asymmetries (for $q=d$ or s):

$$
\begin{aligned}
A_{\mathrm{CP}}^{B_{G} \rightarrow f}(t) & = \\
& \frac{S_{f} \sin \left(\Delta m_{q} t\right)-C_{f} \cos \left(\Delta m_{q} t\right)}{\cosh \left(\Delta \Gamma_{q} t / 2\right)+A_{\Delta \Gamma_{q}} \sinh \left(\Delta \Gamma_{q} t / 2\right)}
\end{aligned}
$$

Δm_{q} : mass difference
$\Delta \Gamma_{q}$: width difference

Penguin pollution in $b \rightarrow c \bar{c} s$ decays

$$
S\left(B_{q} \rightarrow f\right)=\sin \left(\phi_{q}+\Delta \phi_{q}\right)
$$

If one neglects $\lambda_{u}=V_{u b} V_{u s}^{*}$ in the decay amplitude, $S\left(B_{q} \rightarrow f\right)$ measures ϕ_{q} with

$$
\begin{array}{ll}
B_{d} \rightarrow J / \psi K^{0}: & \phi_{d}=2 \beta \\
B_{s} \rightarrow J / \psi \phi: & \phi_{s}=-2 \beta_{s}
\end{array}
$$

The penguin pollution $\Delta \phi_{q}$ is parametrically suppressed by
$\epsilon \equiv\left|\frac{V_{u s} V_{u b}}{V_{c s} V_{c b}}\right|=0.02$.
New method to constrain $\Delta \phi_{q}$:
Ph. Frings, UN, M. Wiebusch, arXiv:1503.00859

Overview: Experimental and Theoretical Precision

$$
\Delta S_{J / \psi K^{0}}=S_{J / \psi K^{0}}-\sin \phi_{d} \quad S_{J / \psi K^{0}}=\sin \left(\phi_{d}+\Delta \phi_{d}\right)
$$

HFAG 2014:

$$
\sigma_{S_{J / \psi K^{0}}}=0.02 \quad \sigma_{\phi_{d}}=1.5^{\circ}
$$

Author	$\Delta S_{J / \psi K^{\circ}}$	$\Delta \phi_{d}$	Method
De Bruyn,	-0.01 ± 0.01	$-\left(1.1^{\circ+0.70}{ }_{-0.85}\right)^{\circ}$	$\mathrm{SU}(3)$ flavor
\quad Fleischer 2014	$\|\Delta S\| \lesssim 0.01$	$\left\|\Delta \phi_{d}\right\| \lesssim 0.8^{\circ}$	$\mathrm{SU}(3)$ flavor
Jung 2012	0.00 ± 0.02	$0.0^{\circ} \pm 1.6^{\circ}$	U-spin
Ciuchini et al. 2011	$[-0.05,-0.01]$	$[-3.9,-0.8]^{\circ}$	U-spin Faller et al. 2009
Boos et al. 2004	$-(2 \pm 2) \cdot 10^{-4}$	$0.0^{\circ} \pm 0.0^{\circ}$	perturbative calculation

SU(3)

Extract penguin contribution from $b \rightarrow c \bar{c} d$ control channels such as $B_{d} \rightarrow J / \psi \pi^{0}$ or $B_{s} \rightarrow J / \psi K_{S}$, in which the penguin contribution is Cabibbo-unsuppressed.

Drawbacks:

- statistics in control channels smaller by factor of 20
- size of $S U(3)$ breaking in penguin contributions to $B_{d, s} \rightarrow J / \psi X$ decays unclear
$S U(3)$ breaking can be large, e.g. a b quark fragments into a B_{d} four times more often than into a B_{s}.

Extract penguin contribution from $b \rightarrow c \bar{c} d$ control channels such as $B_{d} \rightarrow J / \psi \pi^{0}$ or $B_{s} \rightarrow J / \psi K_{S}$, in which the penguin contribution is Cabibbo-unsuppressed.

Drawbacks:

- statistics in control channels smaller by factor of 20
- size of $\operatorname{SU}(3)$ breaking in penguin contributions to $B_{d, s} \rightarrow J / \psi X$ decays unclear
$S U(3)$ breaking can be large, e.g. a b quark fragments into a B_{d} four times more often than into a B_{s}.
- $\operatorname{SU}(3)$ does not help in $B_{S} \rightarrow J / \psi \phi$, because ϕ is an equal mixture of octet and singlet.

Tree and Penguin

Define $\lambda_{q}=V_{q b} V_{q s}^{*}$ and use $\lambda_{t}=-\lambda_{u}-\lambda_{c}$.
Generic B decay amplitude:

$$
A(B \rightarrow f)=\lambda_{c} t_{f}+\lambda_{u} p_{f}
$$

Terms $\propto \lambda_{u}=V_{u b} V_{u s}^{*}$ lead to the penguin pollution.
Useful: color singlet and color octet operators

$$
\begin{array}{lll}
Q_{0}^{c} \equiv(\bar{s} b)_{V-A}(\bar{c} c)_{V-A} & C_{0} \equiv C_{1}+\frac{1}{N_{c}} C_{2}=0.13 \\
Q_{8}^{c} \equiv\left(\bar{s} T^{a} b\right)_{V-A}\left(\bar{c} T^{a} c\right)_{V-A} & C_{8} \equiv 2 C_{2} & =2.2
\end{array}
$$

What contributes to the penguin pollution p_{f} ?

Penguin operators:

$$
\langle f| \sum_{i=3}^{6} C_{i} Q_{i}|B\rangle \approx C_{8}^{t}\langle f| Q_{8 v}|B\rangle
$$

with

$$
\begin{aligned}
& C_{8}^{t} \equiv 2\left(C_{4}+C_{6}\right) \\
& Q_{8 V} \equiv\left(\bar{s} T^{a} b\right)_{V-A}\left(\bar{c} T^{a} C\right)_{V}
\end{aligned}
$$

Tree-level operator insertion:

$$
\langle f| C_{0} Q_{0}^{u}+C_{8} Q_{8}^{u}|B\rangle
$$

Feared and respected: the up-quark loop

Idea: employ an operator product expansion,
to factorise the u-quark loop into a perturbative coefficient and matrix elements of local operators:

Is this Bander Soni Silverman?

Perturbative approach is due to Bander Soni Silverman (1979) (BSS). Boos, Mannel and Reuter (2004) applied this method to $B_{d} \rightarrow J / \psi K_{S}$. Our study:

- Investigate soft and collinear infrared divergences to prove factorization.
- Analyse spectator scattering.
- Organise matrix elements by $1 / N_{C}$ counting, no further assumptions on magnitudes and strong phases.

Infrared Structure - Collinear Divergences

Collinear divergent diagrams

are infrared-safe if summed over

or are individually infrared-safe if considered in a physical gauge.

Infrared Structure - Soft Divergences

Soft divergent diagrams ...

... factorise.

Infrared Structure - Spectator Scattering

Spectator scattering

 diagrams...
$\longrightarrow \quad$... are power-suppressed.

Operator product expansion works!

- Soft divergences factorise.
- Collinear divergences cancel or factorise.
- Spectator scattering is power-suppressed.
\Rightarrow Up-quark penguin can be absorbed into a Wilson coefficient C_{8}^{u} !

$$
C_{8}^{u} Q_{8 V}
$$

Local operators:

$$
\begin{array}{ll}
Q_{0 V} \equiv(\bar{s} b)_{V-A}(\bar{c} c)_{V} & Q_{0 A} \equiv(\bar{s} b)_{V-A}(\bar{c} c)_{A} \\
Q_{8 V} \equiv\left(\bar{s} T^{a} b\right)_{V-A}\left(\bar{c} T^{a} c\right)_{V} & Q_{8 A} \equiv\left(\bar{s} T^{a} b\right)_{V-A}\left(\bar{c} T^{a} c\right)_{A}
\end{array}
$$

$1 / N_{c}$ counting

For example: $B_{d} \rightarrow J / \psi K^{0}$

$$
V_{0}=\left\langle J / \psi K^{0}\right| Q_{0 V}\left|B_{d}\right\rangle=2 f_{\psi} m_{B} p_{c m} F_{1}^{B K}\left[1+\mathcal{O}\left(\frac{1}{N_{c}^{2}}\right)\right]
$$

$1 / N_{c}$ counting for $V_{8}, A_{8} \equiv\left\langle J / \psi K^{0}\right| Q_{8 V, 8 A}\left|B_{d}\right\rangle$:

- Octet matrix elements are suppressed by $1 / N_{c}$ w.r.t. singlet V_{0}
- Motivated by $1 / N_{c}$ counting set the limits: $\left|V_{8}\right|,\left|A_{8}\right| \leq V_{0} / 3$

$1 / N_{c}$ counting

For example: $B_{d} \rightarrow J / \psi K^{0}$

$$
V_{0}=\left\langle J / \psi K^{0}\right| Q_{0 V}\left|B_{d}\right\rangle=2 f_{\psi} m_{B} p_{c m} F_{1}^{B K}\left[1+\mathcal{O}\left(\frac{1}{N_{c}^{2}}\right)\right]
$$

$1 / N_{c}$ counting for $V_{8}, A_{8} \equiv\left\langle J / \psi K^{0}\right| Q_{8 V, 8 A}\left|B_{d}\right\rangle$:

- Octet matrix elements are suppressed by $1 / N_{c}$ w.r.t. singlet V_{0}
- Motivated by $1 / N_{c}$ counting set the limits: $\left|V_{8}\right|,\left|A_{8}\right| \leq V_{0} / 3$

Does the $1 / N_{c}$ expansion work?

$$
\frac{\left.B R\left(B_{d} \rightarrow J / \psi K^{0}\right)\right|_{\text {th }}}{\left.B R\left(B_{d} \rightarrow J / \psi K^{0}\right)\right|_{\exp }}=1 \Rightarrow 0.06\left|V_{0}\right| \leq\left|V_{8}-A_{8}\right| \leq 0.19\left|V_{0}\right|
$$

Numerics

Analytic result for the penguin pollution:

$$
\begin{gathered}
\frac{p_{f}}{t_{f}}=\frac{\left(C_{8}^{u}+C_{8}^{t}\right) V_{8}}{C_{0} V_{0}+C_{8}\left(V_{8}-A_{8}\right)} \\
\tan (\Delta \phi) \approx 2 \epsilon \sin (\gamma) \operatorname{Re}\left(\frac{p_{f}}{t_{f}}\right) \quad \epsilon \equiv\left|\frac{V_{u s} V_{u b}}{V_{c s} V_{c b}}\right|
\end{gathered}
$$

Scan for largest value of $\Delta \phi$ using

$$
\begin{array}{ll}
V_{0}=2 f_{\psi} m_{B} p_{c m} F_{1}^{B K} \\
0 \leq \quad\left|V_{8}\right| & \leq V_{0} / 3 \\
0 \leq \arg \left(V_{8}\right) & <2 \pi \\
0 \leq \quad\left|A_{8}\right| & \leq V_{0} / 3 \\
0 \leq \arg \left(A_{8}\right) & <2 \pi
\end{array}
$$

and varying all input quantities within their experimental and theoretical uncertainties.

Results

$$
A_{\mathrm{CP}}^{B_{G} \rightarrow f}(t)=\frac{S_{f} \sin \left(\Delta m_{q} t\right)-C_{f} \cos \left(\Delta m_{q} t\right)}{\cosh \left(\Delta \Gamma_{q} t / 2\right)+A_{\Delta \Gamma_{q}} \sinh \left(\Delta \Gamma_{q} t / 2\right)}
$$

B_{d} decays:

Final State:	$J / \psi K_{S}$	$\psi(2 S) K_{S}$	$\left(J / \psi K^{*}\right)^{0}$	$\left(J / \psi K^{*}\right)^{\\|}$	$\left(J / \psi K^{*}\right)^{\perp}$
$\max \left(\left\|\Delta \phi_{d}\right\|\right)\left[{ }^{0}\right]$	0.68	0.75	0.85	1.13	0.93
$\max \left(\left\|\Delta S_{f}\right\|\right)\left[10^{-2}\right]$	0.86	0.96	1.09	1.45	1.19
$\max \left(\left\|C_{f}\right\|\right)\left[10^{-2}\right]$	1.33	1.35	1.65	2.19	1.80

B_{s} decays:

Final State	$(J / \psi \phi)^{0}$	$(J / \psi \phi)^{\\|}$	$(J / \psi \phi)^{\perp}$
$\max \left(\left\|\Delta \phi_{s}\right\|\right)\left[^{0}\right]$	1.09	1.18	1.03
$\max \left(\left\|\Delta S_{f}\right\|\right)\left[10^{-2}\right]$	1.91	2.06	1.80
$\max \left(\left\|C_{f}\right\|\right)\left[10^{-2}\right]$	2.12	2.27	2.00

Cabibbo-unsuppressed p_{f} / t_{f}

We can also constrain p_{f} / t_{f} in $b \rightarrow c \bar{c} d$ decays:
B_{d} decays:

Final State	$J / \psi \pi^{0}$	$(J / \psi \rho)^{0}$	$(J / \psi \rho)^{\\|}$	$(J / \psi \rho)^{\perp}$
$\max \left(\left\|\Delta S_{f}\right\|\right)\left[10^{-2}\right]$	18	22	27	22
$\max \left(\left\|C_{f}\right\|\right)\left[10^{-2}\right]$	29	35	41	36

B_{s} decays:
Final State $\quad J / \psi K_{S}$
$\max \left(\left|\Delta S_{f}\right|\right)\left[10^{-2}\right] \quad 25$
$\max \left(\left|C_{f}\right|\right)\left[10^{-2}\right] \quad 26$

$B_{d} \rightarrow J / \psi \pi^{0}:$ Belle or BaBar?

	$S_{J / \psi \pi^{0}}$	$C_{J / \psi \pi^{0}}$
BaBar (Aubert 2008)	-1.23 ± 0.21	-0.20 ± 0.19
Belle (Lee 2007)	-0.65 ± 0.22	-0.08 ± 0.17

Our results:

$$
\begin{gathered}
-\mathbf{0 . 8 6} \leq \mathbf{S}_{\mathbf{J} / \psi \pi^{0}} \leq-\mathbf{0 . 5 0} \\
-0.29 \leq \mathbf{C}_{\mathbf{J} / \psi \pi^{0}} \leq 0.29
\end{gathered}
$$

\rightarrow Belle favoured

D, D^{+}, D_{s}^{+}decays to two pseudoscalars

Goal: Get the most out of the measurements of the branching fractions of $D^{0} \rightarrow K^{+} K^{-}, D^{0} \rightarrow \pi^{+} \pi^{-}, D^{0} \rightarrow K_{S} K_{S}, D^{0} \rightarrow \pi^{0} \pi^{0}, D^{+} \rightarrow \pi^{0} \pi^{+}$, $D^{+} \rightarrow K_{S} K^{+}, D_{S}^{+} \rightarrow K_{S} \pi^{+}, D_{S}^{+} \rightarrow K^{+} \pi^{0}, D^{0} \rightarrow K^{-} \pi^{+}, D^{0} \rightarrow K_{S} \pi^{0}$, $D^{0} \rightarrow K_{L} \pi^{0}, D^{+} \rightarrow K_{S} \pi^{+}, D^{+} \rightarrow K_{L} \pi^{+}, D_{s}^{+} \rightarrow K_{S} K^{+}, D^{0} \rightarrow K^{+} \pi^{-}$, $D^{+} \rightarrow K^{+} \pi^{0}$,
and the $K^{+} \pi^{-}$strong phase difference $\delta_{K \pi}=6.45^{\circ} \pm 10.65^{\circ}$ to predict CP asymmetries in these decays.
S. Müller, UN, St. Schacht, arXiv:1503.06759:

Topological amplitudes

Combine topological amplitudes (Chau 1980,1982; Zeppenfeld 1981) with linear $\operatorname{SU}(3)_{F}$ breaking (Gronau 1995).
$\mathrm{SU}(3)_{F}$ limit:

tree (T) color-suppressed tree (C) exchange (E) annihilation (A)

$\mathrm{SU}(3)_{F}$ beaking

Feynman rule from $H_{S U(3)_{F}}=\left(m_{s}-m_{d}\right) \bar{s} s$: dot on s-quark line. Find 14 new topological amplitudes such as

Important:

penguin ($\mathrm{P}_{\text {break }}$)

Steps:

i) Invoke colour counting to justify factorisation of tree and annihilation amplitudes à la

$$
T=T^{\mathrm{fac}}\left[1+\mathcal{O}\left(\frac{1}{N_{c}^{2}}\right)\right]
$$

with $T^{\text {fac }}$ expressed in terms of decay constants and form factors.
ii) Null hypothesis of a Frequentist analysis: Global fit to data permitting up to $50 \% \mathrm{SU}(3)_{F}$-breaking and $\frac{1}{N_{c}^{2}}$-corrections of up to 15\%. \rightarrow find multi-dimensional valley with perfect $\chi^{2}=0$.
iii) Perform likelihood tests for various hypothesis.

Race horse: myFitter, M. Wiebusch 2012

Example: Quantify $\operatorname{SU}(3)_{F}$-breaking

$\Delta \chi^{2}$ profile of the parameter $\delta_{X}^{\prime \prime \text { topo }}$ which quantifies the overall size of $\mathrm{SU}(3)_{F}$-breaking:

Results:
i) The $\operatorname{SU}(3)_{F}$ limit $\delta_{X}^{\prime \text {,topo }}=0$ is ruled out by more than 5σ.
ii) At 68% CL there is at least 28% of $\operatorname{SU}(3)_{F}$ breaking.

Predict CP asymmetries in D decays

The theory community has delivered a perfect service to the experimental colleagues:

Predict CP asymmetries in D decays

The theory community has delivered a perfect service to the experimental colleagues: Every measurement hinting at some non-zero CP asymmetry was successfully postdicted offering interpretations both

Predict CP asymmetries in D decays

The theory community has delivered a perfect service to the experimental colleagues:
Every measurement hinting at some non-zero CP asymmetry was successfully postdicted offering interpretations both

- within the Standard Model and
- as evidence for new physics!

CP asymmetries

Generic problem: CP asymmetries involve new hadronic quantities which are not constrained by branching fractions. E.g. new SU(3) representations or, in our analysis, new topological-amplitudes.

Prominent example:

Penguins P_{s}
appear in other combinations than $P_{\text {break }}=P_{s}-P_{d}$. Therefore we also need $\mathrm{P}_{s}+\mathrm{P}_{d}$.

Correlate CP asymmetries

Strategy: Build combinations out of several CP asymmetries containing only those topological amplitudes which can be extracted from the global fit to the branching ratios.
$\rightarrow \quad$ sum rules among CP asymmetries.
Our finding: Two sum rules each correlating three direct CP asymmetries in

$$
\begin{aligned}
& \text { I } D^{0} \rightarrow K^{+} K^{-}, D^{0} \rightarrow \pi^{+} \pi^{-} \text {, and } D^{0} \rightarrow \pi^{0} \pi^{0} \text {, } \\
& \text { and }
\end{aligned}
$$

$$
\text { II } D^{+} \rightarrow \bar{K}^{0} K^{+}, D_{s}^{+} \rightarrow K^{0} \pi^{+} \text {, and } D_{s}^{+} \rightarrow K^{+} \pi^{0} \text {. }
$$

Unfortunately: only works to zeroth order in $\mathrm{SU}(3)_{F}$ breaking.
Still: theoretical accuracy of new-physics tests only limited by the assumed size of $\mathrm{SU}(3)_{F}$ breaking; great progress compared to the $\mathcal{O}(1000 \%)$ spread of past predictions.

Use the measured values of $D^{+} \rightarrow \bar{K}^{0} K^{+}$and $D_{s}^{+} \rightarrow K^{0} \pi^{+}$to predict $a_{C P}^{\mathrm{dir}}\left(D_{S}^{+} \rightarrow K^{+} \pi^{0}\right)$:

Blue: prediction from $a_{C P}^{\mathrm{dir}}\left(D^{+} \rightarrow \overline{K^{0} K^{+}}\right), a_{C P}^{\text {dir }}\left(D_{s}^{+} \rightarrow K^{0} \pi^{+}\right)$, and global fit to branching ratios.
Red: measurement. Dotted: 1σ, solid: 2σ, dot-dashed: 3σ.
Not shown: error from $\mathrm{SU}(3)_{F}$ breaking in $\mathrm{P}_{S}+\mathrm{P}_{d}$.
\Rightarrow yet another successful postdiction.
For an $\mathrm{SU}(3)_{F}$ analysis with new physics see:
G. Hiller,M. Jung,St. Schacht, PRD87 (2013) 014024.

Future scenario

But: Assuming better measurements of the branching ratios by a factor of $\sqrt{50}$ changes the picture:

Blue: prediction from $a_{C P}^{\text {dir }}\left(D^{+} \rightarrow \overline{K^{0}} K^{+}\right), a_{C P}^{\text {dir }}\left(D_{s}^{+} \rightarrow K^{0} \pi^{+}\right)$, and global fit to branching ratios.
Red: measurement. Dotted: 1σ, solid: 2σ, dot-dashed: 3σ. Not shown: error from $\mathrm{SU}(3)_{F}$ breaking in $\mathrm{P}_{s}+\mathrm{P}_{d}$.

Summary

- OPE works for the penguin pollution in $B_{d, s}$ decays to charmonium
- no mysterious long-distance enhancement of up-quark penguins
- matrix elements are the dominant source of uncertainty
- Belle measurement of $S_{J / \psi \pi^{0}}$ is theoretically favoured

HFAG 2014

$$
\sigma_{S_{J / \psi K^{0}}}=0.02 \quad \sigma_{\phi_{d}}=1.5^{\circ}
$$

Analysis	$\Delta S_{J / \psi K^{0}}$	$\Delta \phi_{d}$	Method
Our study	$\|\Delta S\|<0.01$	$\left\|\Delta \phi_{d}\right\|<0.68^{\circ}$	OPE
De Bruyn, Fleischer 2014	-0.01 ± 0.01	$-\left(1.1^{\circ}{ }_{-0.75}^{+0.70}\right)^{\circ}$	$\mathrm{SU}(3)_{F}$
Jung 2012	$\|\Delta S\| \lesssim 0.01$	$\left\|\Delta \phi_{d}\right\| \lesssim 0.8^{\circ}$	$\mathrm{SU}(3)_{F}$

Our study: $\quad\left|\Delta S_{J / \psi \phi}^{\|}\right| \leq 0.02, \quad\left|\Delta \phi_{s}^{\|}\right| \leq 1.3^{\circ}$

Summary

- Global fit of $D \rightarrow P P^{\prime}$ branching ratios to topological amplitudes including linear $\operatorname{SU}(3)_{F}$ breaking gives multiply degenerate best-fit solutions.
The method permits likelihood ratio test to quantify e.g. the size of $S U(3)_{F}$ breaking.
- CP asymmetries involve topological amplitudes not constrained by the fit. These can be eliminated by forming judicious combinations of several CP asymmetries \rightarrow sum rules.
- The sum rules test the quality of $S U(3)_{F}$ in penguin amplitudes and/or new physics.

