L N V H i g g s C o l l i d e r

Fabrizio Nesti Institut Ruđer Bošković, Zagreb

w/ A. Maiezza, M. Nemevšek

HRZZ project PhysMaB @ IRB

Bringing together

• Quest for neutrino mass origin

(New physics)

Lepton Number Violation

(Majorana)

In Higgs decays

(test generation of masses)

Connection at LHC run II

The last triumph of the SM

H→ττ ATLAS-CONF-2013-108 H→bb ATLAS-HIGG-2013-23-003 H→ττ CMS arXiv:1401.5041 H→bb CMS arXiv:1310.3687 CMS PAS HIG-14-009

Anything similar for neutrino masses?

• We measure neutrino mass differences (oscillations) ...thus nonzero neutrino mass.

• SM has only LH neutrinos... ...no Higgs coupling

 $M_{\nu} = 0$

Need to go Beyond the SM but a surprise: still Higgs may probe the mechanism

The Theory of Neutrino Mass and Parity BreakingLeft-Right symmetry[Pati, Salam '74] [Mohapatra, Pati '75][Senjanović, Mohapatra '75]

- $SU(2)_L SU(2)_R U(I)_{B-L}$ Spectrum is symmetric $W_L \quad L_L = \begin{pmatrix} \nu \\ \ell_L \end{pmatrix} \quad L_R = \begin{pmatrix} N \\ \ell_R \end{pmatrix} \quad W_R$
- Spontaneous parity breaking

$$\Phi = \begin{pmatrix} \boldsymbol{v} + \phi_1^0 & \phi_2^+ \\ \phi_1^- & \phi_2^0 \end{pmatrix} \quad \Delta_R = \begin{pmatrix} \delta_R^+ / \sqrt{2} & \delta_R^{++} \\ \boldsymbol{v_R} + \delta_R^0 & -\delta_R^+ / \sqrt{2} \end{pmatrix}$$

The Theory of Neutrino Mass and Parity BreakingLeft-Right symmetry[Pati, Salam '74] [Mohapatra, Pati '75][Senjanović, Mohapatra '75]

• $SU(2)_L SU(2)_R U(I)_{B-L}$ Spectrum is symmetric $W_L \quad L_L = \begin{pmatrix} \nu \\ \ell_L \end{pmatrix} \quad L_R = \begin{pmatrix} N \\ \ell_R \end{pmatrix} \quad W_R$

• Spontaneous parity breaking

$$\Phi = \begin{pmatrix} \mathbf{v} + \phi_1^0 & \phi_2^+ \\ \phi_1^- & \phi_2^0 \end{pmatrix} \quad \Delta_R = \begin{pmatrix} \delta_R^+ / \sqrt{2} & \delta_R^{++} \\ \mathbf{v_R} + \delta_R^0 & -\delta_R^+ / \sqrt{2} \end{pmatrix}$$

• Now, neutral higgses mix: $h = \phi_1^0 \cos \theta - \delta_R^0 \sin \theta$ $\Delta = \phi_1^0 \sin \theta + \delta_R^0 \cos \theta$

SM Higgs couplings reduced...

 $\begin{aligned} \mathcal{V} &= -\,\mu_1^2(\Phi^{\dagger}\Phi) - \mu_2^2(\widetilde{\Phi}\Phi^{\dagger} + \widetilde{\Phi}^{\dagger}\Phi) - \mu_3^2(\Delta_R^{\dagger}\Delta_R) \\ &+ \lambda\,(\Phi^{\dagger}\Phi)^2 + \rho\,(\Delta_R^{\dagger}\Delta_R)^2 + \alpha(\Phi^{\dagger}\Phi)(\Delta_R^{\dagger}\Delta_R) \end{aligned}$

$$m_h^2 = 4\lambda v^2 - \alpha^2 v^2 / \rho \qquad m_\Delta^2 = 4\rho v_R^2$$
$$\theta \simeq \left(\frac{\alpha}{2\rho}\right) \left(\frac{v}{v_R}\right)$$

...allowed Higgs mixing?

[CMS PAS HIG-14-009]

Yesterday's Lebedev talk

Figure 3: Left: Parameter space (for $m_{H_2} \leq 2m_{H_1}$) excluded at 95 % CL by direct searches (red), precision tests (gray), and H_1 couplings measurements (yellow). For

[Pruna+ PRD '13; Profumo+ PRD '15; Chen+ PRD '15; Robens+ EPJC '15 Martin-Lozano+ 1501.03799; Falkowski Gross Lebedev 1502.01361; Godunov+ 1503.01618]

and Higgs probing neutrino masses

 $\mathcal{L}_{yuk} = y_\Delta L_R L_R \Delta_R$

• gives Majorana neutrino mass, to check by Δ decay $M_N = y_\Delta v_R \qquad \Gamma(\Delta \to NN) \propto y_\Delta^2$

• with Δ -*h* mixing, now the Higgs can decay to NN

a new SM Higgs decay, checks RH neutrino mass

 $h \rightarrow NN$ - large decay rate

$$\frac{\Gamma_{NN}}{\Gamma_{b\bar{b}}} \simeq \frac{\theta^2}{3} \left(\frac{m_N}{m_b}\right)^2 \left(\frac{M_W}{M_{W_R}}\right)^2 \left(1 - \frac{4m_N^2}{m_h^2}\right)^{\frac{3}{2}}$$

h to *NN* first proposed by Graesser as effective operators: [M.L. Graesser, PRD 76 (2007) 075006; arXiv:0705.2190]

LNV Higgs decay

N is Majorana, thus LNV Higgs decays:

- 50% same sign dileptons
- light N, i.e. long lifetime
- In LR, N decay WR mediated
- LNVH complementary to WR drell-yan production of N [Keung Senjanović '83]

Need to check existing limits...

Recent and Future Limits

EXP

[CMS-EXO-13-008] $W_R - v_R$ plane, beyond old theo bound 2.5 TeV [Maiezza+'10]

Recent and Future Limits

EXP

[CMS-EXO-13-008] $W_R - v_R$ plane, beyond old theo bound 2.5TeV [Maiezza+'10]

FIG. 10. Combined constraints on M_R and M_{W_R} from ε , ε' B_d and B_s mixings obtained in the \mathcal{P} parity case from the numerical fit of the Yukawa sector of the model.

Bertolini (Eeg) Maiezza, FN '12,'13,'14]

Recent and Future Limits

$0v2\beta$

points to W_R & m_N @LHC

Direct search limits

Direct search limits

LNV Higgs decay - parton level

Same-sign 11 + j j j j:

- M(lljjjj) reconstructs higgs mass
- M(ljj) the neutrino mass peak

- Flavour of leptons reconstructs leptonic V_R (NB. Quark and lepton mixing structure predicted in LR [Nemevšek Senjanović Tello PRL '14] [Senjanović Tello PRL '15])
- Low typical momenta mh/6- 20 GeV
- Nlifetime submillimeter to meters: displaced vertices

SM Background, same sign

- Electron channel forget it: charge misidentification + photoproduction need to be experimentally measured
- Muon channel: challenging
 prompt muons from WZ+ZZ+VVjj+ttbar
 - nonprompt muons from 19.7 fb⁻¹ (8 TeV) Events/50 GeV Misid. muon bkgd. CMS QCD jets + ٧V Higgs boson 10 hadron misidentified vvv tī+V $m_N = 100 \text{ GeV}, IV_{uN}I^2 = 0.001$ $m_N = 300 \text{ GeV}, |V_{uN}^{\mu N}|^2 = 0.05$ as a muon To be measured in control regions. We try to estimate it Data 100 200 300 400 500 600 700 800 900 1000 $\mu^{\pm}\mu^{\pm}$ jj invariant mass (GeV) [CMS-EXO12057]

Basic cuts and Event count

- Model implemented w/ Feynrules (extension of [Roitgrund+ 1401.3345]) available at https://sites.google.com/site/leftrighthep
- Collider simulation with Madgraph5+Pythia6+Delphes3
 WZ+ZZ+WW2j+ttbar simulated, QCD estimated =*2.5 factor

Cuts [GeV]
JZ < 30
$P_T(\mu) < 55$
$M(\mu\mu) < 80$
$M_T(\mu \not p_T) < 30$

 $\Delta R < 0.4, \text{ etc.}$ $\min P_T(j)=20$ $\operatorname{isol} \mu > 0.3$ $\min P_T(\mu)=10$

Process	No cuts	Imposed cuts						
1100055		$\mu^{\pm}\mu^{\pm} + n_j$		p_T	m_T	$m_{ m inv}$		
WZ	2 M	544	143	78	40	20		
ZZ	1 M	55	29	16	12	8	1.100	
$W^{\pm}W^{\pm}2j$	389	115	16	5	3	1	NT VS D. I	
$t\overline{t}$	10 M	509	97	40	22	14	s:3 adv	
Signal (20)	254	11	11	10	9	8	alread	
Signal (40)	543	44	43	41	38	37	onsitive	
Ser Ser								

TABLE I. Number of expected events at the 13 TeV LHC run with 100 fb⁻¹ collected luminosity after sequential cuts described in the text. The signal is generated with $m_N = 20$ and 40 GeV, $\sin \theta = 10 \%$, $M_{W_R} = 3 \text{ TeV}$ and $n_j = 1, 2, 3$.

On top, let's take advantage of vertex displacement...

Simulation and Displaced Vertices

• Madgraph 5 event generator - updated (module to add decay time in parton events)

- Pythia 6 hadronization (writes lifetime in stdhep)
- Delphes 3 detector updated

 (new module for vertex track resolution smearing)
 (extended lhco format to hold vertex info)
- Madanalysis 5 analysis package updated (to read new formats and treat displacement)

(...becoming a complete suite)

LNV Higgs - displaced vertices

FIG. 3. Reconstructed transverse muon displacement after $\mu^{\pm}\mu^{\pm}+n_{j}$ event selection and before other cuts.

We cut on a sliding window function of *m*_N

Track vertex resolution ~ 20 μ m

Displaced vertices power

- Background: usually one prompt + one loose muon
- Signal: muons are both displaced N lifetime depending on m_N and M_{WR}
- Thus we require two displacements, and employ a sliding window cut: $L/10 < d_T < L * 5$
- Background is greatly reduced:

• For each N mass/lifetime, we optimize on L.

LHC Sensitivity

Keung-Senjanovic lljj

displaced LNVH decay $h \rightarrow \mu^{\pm} \mu^{\pm} + jet(s)$

Thursday, 9 April 2015

LHC Sensitivity

Thursday, 9 April 2015

 m_N in GeV

So, the Higgs to neutrino mass roadmap

Search for $h \rightarrow NN$:

• Find N, check vs yukawa

(mass generation!)

- Estimate θ mixing. Perturbativity says: $m_{\Delta} \lesssim 5 \,\text{TeV}\left(\frac{0.4}{\theta}\right)$
- Look for Δ and its NN decays \swarrow (confirm mass generation) Look for W_R (parity restoration)
- ... if necessary, at a future collider :)

(e+e-particularly clean)

Improvements Challenges

- Relax minimum muon P_T below 10GeV? (x 2 more signal!)
- Go to tighter missing energy? <20GeV? (really hard?)
- (naively doable) Displaced jets e.g. talk by Golling
- Displacements vs larger impact par. problems?
- Triggering at low pt?

LNVH in other models_

- Seesaw type-I and III: $h \rightarrow vN$ decay may turn into $h \rightarrow NN$ LNV decays, by paying a price of *MDirac*. However, mixing is now excluded [CMS-EXO-12-057]
- SUSY with R-parity violation [Allanach, Kom, Pas '09] Not excluded, need a dedicated study, e.g. [T. Banks, JHEP '08]. Current limits pose a challenge.
- Scalar singlet + N ok, but no neutrino connection [Graesser '07][Shoemaker+ '10]
- Simplified model may be *B-L* spontaneous breaking.

Our analysis applies to generic models / lifetime scenarios.

Resume - Outlook

- Neutrino masses exist Left-Right natural theory
- Contains Higgs mixing and
- Offers new Lepton Number Violating Higgs decays
- Higgs a gateway to the neutrino mass mechanism
- Can probe parity restoration to -20 TeV
- Unexplored territory (e.g. physics of neutral Δ) $\widehat{\mathbf{A}}$

Resume - Outlook

- Neutrino masses exist Left-Right natural theory
- Contains Higgs mixing and
- Offers new Lepton Number Violating Higgs decays
- Higgs a gateway to the neutrino mass mechanism
- Can probe parity restoration to ~20 TeV
- Unexplored territory (e.g. physics of neutral Δ)

Thanks!

displaced vertices after cuts

We cut on a sliding window function of *m*_N

Track vertex resolution - 20 μ m

muon PT- before/after cuts

muon PT- before/after cuts

