### Top quark mass from the bottom (at NLO)

Roberto Franceschini (CERN) April 9th 2015 (Portorož 2015)

Work in Progress with K. Agashe, D. Kim and M. Schulze





#### CMS-PAS-FTR-13-017

1310.0799 - Juste, Mantry, Mitov, Penin, Skands, Varnes, Vos, Wimpenny -Determination of the top quark mass circa 2013: methods, subtleties, perspective

# Many measurements



The strength of the future LHC top mass measurement will build on the **diversity of methods** ⇒ not very useful to talk about "*single best measurement*"

# Many measurements

due to different hypothesis, different mass measurement methods can result in significantly disagreeing measurements: **QCD or new physics effect?** 



The strength of the future LHC top mass measurement will build on the **diversity of methods** ⇒ not very useful to talk about "*single best measurement*"

# (Alternative) Methods

- Energy Peaks 1209.0772 + WIP
- Generalized Medians 1405.2395
- Leptonic Mellin moments 1407.2763
- B-hadron life-time Lxy hep-ex/0501043
- $J/\psi$  exclusive hep-ph/9912320
- do(ttj) 1303.6415
- Inclusive σ(tt) 1307.1907

# Energy Peaks

### Lorentz variant quantities

# Given suitable conditions, Lorentz variant quantities can tell us a lot about the invariants

### How special is this invariance?



The sensitivity to the **boost distribution** is the key

### The Breit-Wigner peak substitute?



 $(P_{\mu} + P_{\mu})^{*} \rightarrow m_{z}^{2}$ 

### The Breit-Wigner peak substitute?



2

### The Breit-Wigner peak substitute?



# Cosmic peaks (Stecker 1971)





### properties similar to Lorentz invariants

# Useful in practice?

 $E_{b}^{\star} = \frac{m_{t}^{2} - m_{w}^{2} + m_{b}^{2}}{2m_{t}}$ 

## b-jet energy (LO+PS)

100 pseudo-experiments from <u>MadGraph5+Pythia6.4+Delphes</u> (**ATLAS-2012-097**)



2-parameters fit: peak position, width of the distribution

Proof of the concept: 5/fb LHC 7 TeV

### **m**top=173.1 ± 2.5 GeV (stat)

1209.0772 - Agashe Franceschini and Kim

message: LO effects are well under control  $\rightarrow$  CMS at work!

## b-jet energy (LO+PS)

100 pseudo-experiments from <u>MadGraph5+Pythia6.4+Delphes</u> (**ATLAS-2012-097**)



2-parameters fit: peak position, width of the distribution

Proof of the concept: 5/fb LHC 7 TeV

**m**top=173.1(1± $\alpha/\pi$ )± 2.5 GeV (stat)

1209.0772 - Agashe Franceschini and Kim

message: LO effects are well under control -> CMS at work!

### variations around Lorentz Invariance



what is the "small parameter"  $\Delta_{TH}$  that "breaks" (true or effective) LI?

# very encouraging LO result with b-jet energy

after having explored a number of **new physics applications** of this idea

- 1212.5230 Agashe, RF, Kim, Wardlow
- 1309.4776 Agashe, RF, Kim
- 1403.3399 Chen, Davoudiasl, Kim
- 1503.03836 Agashe, RF, Kim, Wardlow
- Agashe, RF, Kim, Hong WIP

# study of <u>perturbative</u> effects at fixed NLO nearing completion

#### corrections to the production mechanism



### corrections to the top decay



# NLO: production & decay

(MCFM) '

Agashe, Franceschini, Kim, Schulze - in preparation





- resolved gluon from the top decay
- merged "extraneous" gluon
- reclustered bottom-gluon jets



need to compute radiation in decay



# Decay at NLO

Agashe, Franceschini, Kim, Schulze - in preparation



### Peak shift at NLO









### NLO: production & decay

(MCFM)

Agashe, Franceschini, Kim, Schulze - in preparation



### NLO: production & decay (anti-kT R=0.5)



decay NLO sensitive to the scale choice: ±1 GeV on mtop

### NLO: production & decay (anti-kT R=1.0)



### decay NLO sensitive to the scale choice: ±1 GeV on mtop

### NLO: production & decay (anti-kT R=0.7)

(MCFM)



decay NLO sensitive to the scale choice: ±0.5 GeV on mtop

### NLO: production & decay (MCFM) Agashe, Franceschini, Kim, Schulze - in preparation



| $pp \to t\bar{t} _{NLO} \times t \to b\ell\nu _{LO}$ |                       |                       |                       | $pp \to t\bar{t} _{NLO} \times t \to b\ell\nu _{NLO}$ |                     |                       |                       |
|------------------------------------------------------|-----------------------|-----------------------|-----------------------|-------------------------------------------------------|---------------------|-----------------------|-----------------------|
| $m_t = 173 \text{ GeV}$                              | R = 0.5               | R = 0.7               | R = 1.0               |                                                       | R = 0.5             | R = 0.7               | R = 1.0               |
| $\mu = 2m_t^{(pole)}$                                | 174.3(1)              | 175.9(1)              | 179.4(2)              | $\mu = 2m_t^{(pole)}$                                 | 170(2)              | 173.1(2)              | 178.4(3)              |
| $\mu = m_t^{(pole)}$                                 | 174.5(2)              | 176.3(2)              | 180.3(2)              | $\mu = m_t^{(pole)}$                                  | 169.1(2)            | 172.9(2)              | 179.0(3)              |
| $\left  \ \mu = m_t^{(pole)}/2 \ \right $            | 174.7(2)              | 176.9(2)              | 181.5(2)              | $\mu = m_t^{(pole)}/2$                                | 167.9(2)            | 172.4(3)              | 180.0(3)              |
| $\delta_{th}$                                        | $\pm 0.2 \text{ GeV}$ | $\pm 0.5 \text{ GeV}$ | $\pm 1.0 \text{ GeV}$ | $\delta_{th}$                                         | $\pm 1 \text{ GeV}$ | $\pm 0.4 \text{ GeV}$ | $\pm 0.8 \text{ GeV}$ |

# Mild corrections from NLO

Agashe, Franceschini, Kim, Schulze - in preparation

$$\hat{E} = E_{LO}^* \cdot \begin{bmatrix} 1 + f_{pol} + \epsilon_{FSR} \\ \uparrow & \uparrow \\ \delta_{prod} \end{bmatrix} \begin{bmatrix} C_{bWg} + \underbrace{\delta_{int} + \delta_{PDFs} + \dots} \\ \delta_{prod} \end{bmatrix} \\ \leq 3 \cdot 10^{-3} \leq 0.1 \quad O(1)$$

$$O_{NLO} = O_{LO} \cdot \left[ 1 + \underbrace{\delta_{int} + \delta_{PDFs} + \dots}_{\delta_{prod}} \right]$$

### variations around Lorentz Invariance



what is the "small parameter"  $\Delta_{TH}$  that "breaks" (true or effective) LI?

### More (B hadron) peak observables

The strength of the future LHC top mass measurement will build on the **diversity of methods** ⇒ not very useful to talk about "*single best measurement*"



exclusive B decays in the top sample

# B hadron observables

B physics in the top sample

Fragmentation: the b quark energy peak is translated into a (broader) B hadron energy peak

- more exclusive final states
- non-JES uncertainties
- <u>hadronization uncertainties</u>
# B <u>hadron</u> energy peak

get the hadron energy entirely from tracks



B'-> 3 TRACKS

### Exclusive Decay (Fully reconstructible with tracks)

$$B_{s}^{0} \to J/\psi \phi \to \mu^{-} \mu^{+} K^{+} K^{-} \qquad \text{II06.4048} \\ B^{0} \to J/\psi K_{S}^{0} \to \mu^{-} \mu^{+} \pi^{+} \pi^{-} \qquad \text{II04.2892} \\ B^{+} \to J/\psi K^{+} \to \mu^{+} \mu^{-} K^{+} \qquad \text{II01.0131} \\ I_{309.6920} \\ \Lambda_{b} \to J/\psi \Lambda \to \mu^{+} \mu^{-} p \pi^{-} \qquad \text{I205.0594} \end{cases}$$

J/psi modes  $b \xrightarrow{few \cdot 10^{-3}} J/\psi + X \xrightarrow{10^{-1}} \ell \overline{\ell} + X$ 

J/psi but no need to require leptonic W decay

#### D modes

$$B^{0} \xrightarrow[3\cdot10^{-3}]{} D^{-}\pi^{+} \xrightarrow[10^{-2}]{} K^{0}_{S}\pi^{-}\pi^{+}$$

$$B^{0} \xrightarrow[3\cdot10^{-3}]{} D^{-}\pi^{+} \xrightarrow[10^{-2}]{} K^{-}\pi^{+}\pi^{-}\pi^{+}$$

$$B^{0} \xrightarrow[3\cdot10^{-3}]{} D^{-}\pi^{+} \xrightarrow[3\cdot10^{-2}]{} K^{0}_{S}\pi^{+}\pi^{-}\pi^{+}$$

# $\frac{B hadron}{\gamma boost factor}$



Does the **ratio**  $\gamma = E/m$  help to get rid of exp. uncertainties?

3D decay length discussion with J. Incandela

Time of decays is harder to measure than the position

Experiments measure decay length L



Jet Energy Scale does not affect λ, nor L

### Mean decay length invariance

 $\gamma = E/m$ 

- A peak in the energy distribution of the b quark implies a peak in the boost factor distribution
- Not so interesting because the boost is not measured directly



up to m<sup>2</sup>/E<sup>2</sup> effects the *mean* decay length of the *b* quark has a peak at the top rest frame value

How to get the distribution of  $\lambda$  from the observed L?



1209.0772 - Agashe, Franceschini and Kim from MC: exponential ansatz work well





$$\frac{d\varepsilon}{dE_{\rm b}} \propto \frac{d\varepsilon}{d\chi_{\rm b}} \propto \frac{d\varepsilon}{d\chi}$$

How to get the distribution of  $\lambda$  from the observed L?

$$\frac{d \varepsilon}{d L} = \int_{\varepsilon} \frac{-L}{\lambda} \otimes p d \beta(\lambda) d \lambda$$

For now we just predicted the mode of  $pdf(\lambda)$ 

$$pdf(\lambda) = e^{-\omega \left(\frac{\lambda}{\lambda_o} + \frac{\lambda_o}{\lambda}\right)}?$$

### (moral) Conclusions

#### 1. Energy distributions as Breit-Wigner substitutes



### (moral) Conclusions

#### 2. Extensive program with b-jets and B-hadrons



### (factual) Conclusions Peak of b-jet energy distribution

- "invariance" holds when only NLO production corrections are considered
- full NLO gives δm<sub>top</sub>≃±1 GeV scale sensitivity for any jet size parameter R

| $pp \to t\bar{t} _{NLO} \times t \to b\ell\nu _{LO}$ |                       |                       | $pp \to t\bar{t} _{NLO} \times t \to b\ell\nu _{NLO}$ |                                   |                     |                       |                       |
|------------------------------------------------------|-----------------------|-----------------------|-------------------------------------------------------|-----------------------------------|---------------------|-----------------------|-----------------------|
| $m_t = 173 \text{ GeV}$                              | R = 0.5               | R = 0.7               | R = 1.0                                               |                                   | R = 0.5             | R = 0.7               | R = 1.0               |
| $\mu = 2m_t^{(pole)}$                                | 174.3(1)              | 175.9(1)              | 179.4(2)                                              | $\mu = 2m_t^{(pole)}$             | 170(2)              | 173.1(2)              | 178.4(3)              |
| $\mu = m_t^{(pole)}$                                 | 174.5(2)              | 176.3(2)              | 180.3(2)                                              | $\mu = m_t^{(pole)}$              | 169.1(2)            | 172.9(2)              | 179.0(3)              |
| $\left  \ \mu = m_t^{(pole)}/2 \ \right $            | 174.7(2)              | 176.9(2)              | 181.5(2)                                              | $\left \mu=m_t^{(pole)}/2\right $ | 167.9(2)            | 172.4(3)              | 180.0(3)              |
| $\delta_{th}$                                        | $\pm 0.2 \text{ GeV}$ | $\pm 0.5 \text{ GeV}$ | $\pm 1.0 \text{ GeV}$                                 | $\delta_{th}$                     | $\pm 1 \text{ GeV}$ | $\pm 0.4 \text{ GeV}$ | $\pm 0.8 \text{ GeV}$ |

• chances that a NNLO <u>decay</u> description would be enough to make a solid prediction at  $\delta m_{\text{top}} \approx 500 \text{ MeV}$ 

# To Do (in progress)

- check scale sensitivity at R~0.82 (tt+jet @ NLO)
- check effects of cuts
- compare to moments of  $d\sigma/dE_{\rm b}$
- B-hadron energy

# To Do (2)

explore:

- tt vs. bWbW
- shower effects (NLO+PS Powheg)
- non-perturbative effects (color re-connection)

#### Extra



very little sensitive to the scale choice (less than 400 MeV on mtop)

# NLO: production

(MCFM)



m<sub>top</sub>(Fit) [GeV]

### NLO: production





 $\hat{E} = E_0 + \alpha(\mu) \cdot [p \cdot R^2 + p \cdot \log R] + \dots$ 

decay NLO sensitive to the scale choice: ±1 GeV on mtop



#### NLO virtues Agashe, Franceschini, Kim, Schulze - in preparation

- Invariance holds for pp→tt @ NLO
- Not sensitive to Initial State Radiation
- Not sensitive to Parton Distribution Functions
- Not sensitive to the exact energy of the collider

#### only sensitive to the NLO decay t→bWg

### Insensitive to production at NLO

Agashe, Franceschini, Kim, Schulze - in preparation

Production NLO only affects the boost distribution of top



The energy peak position is unchanged

$$E_{b}^{\mu\nu k} = \frac{m_{t}^{2} - m_{w} + m_{b/j}}{2m_{t}} = E_{b}^{*}$$

# NLO virtues

- Invariance holds for pp→tt @ NLO
- Not sensitive to Initial State Radiation
- Not sensitive to Parton Distribution Functions
- Not sensitive to the exact energy of the collider

#### only sensitive to the NLO decay t→bWg

### Effect of initial state radiation

ISR only affects the boost distribution of top

Agashe, Franceschini, Kim, Schulze - in preparation



# NLO virtues

- Invariance holds for pp→tt @ NLO
- Not sensitive to Initial State Radiation
- Not sensitive to Parton Distribution Functions
- Not sensitive to the exact energy of the collider

#### only sensitive to the NLO decay t→bWg

### Top mass combination

1403.4427 - First combination of Tevatron and LHC measurements of the top-quark mass

#### LHC/Tevatron NOTE

ATLAS-CONF-2014-008

CDF Note 11071 CMS PAS TOP-13-014 D0 Note 6416





March 17, 2014

| Experiment | tī final state               | $\mathcal{L}_{int} [fb^{-1}]$ | $m_{top} \pm (stat.) \pm (syst.) [GeV]$ | Total uncertainty on mtop [GeV] ([%]) | Reference |
|------------|------------------------------|-------------------------------|-----------------------------------------|---------------------------------------|-----------|
| CDF        | l+jets                       | 8.7                           | → 172.85 ± 0.52 ± 0.99 ←                | <u>1.12</u> (0.65)                    | [8]       |
|            | dilepton                     | 5.6                           | $170.28 \pm 1.95 \pm 3.13$              | 3.69 (2.17)                           | [9]       |
|            | all jets                     | 5.8                           | $172.47 \pm 1.43 \pm 1.41$              | 2.01 (1.16)                           | [10]      |
|            | $E_{\rm T}^{\rm miss}$ +jets | 8.7                           | $173.93 \pm 1.26 \pm 1.36$              | 1.85 (1.07)                           | [11]      |
| D0         | <i>l</i> +jets               | 3.6                           | 174.94 ± 0.83 ± 1.25                    | 1.50 (0.86)                           | [12]      |
|            | dilepton                     | 5.3                           | $174.00 \pm 2.36 \pm 1.49$              | 2.79 (1.60)                           | [13]      |
| ATLAS      | <i>l</i> +jets               | 4.7                           | $172.31 \pm 0.23 \pm 1.53$              | 1.55 (0.90)                           | [14]      |
| , incas    | dilepton                     | 4.7                           | $173.09 \pm 0.64 \pm 1.50$              | 1.63 (0.94)                           | [15]      |
|            | <i>l</i> +jets               | 4.9                           | → 173.49 ± 0.27 ± 1.03 ←                | <u>1.06</u> (0.61)                    | [16]      |
| CMS        | dilepton                     | 4.9                           | $172.50 \pm 0.43 \pm 1.46$              | 1.52 (0.88)                           | [17]      |
|            | all jets                     | 3.5                           | $173.49 \pm 0.69 \pm 1.23$              | 1.41 (0.81)                           | [18]      |

#### LHC-7 is on par with TeVatron

173.34± 0.27(stat) ± 0.71 (syst) GeV dominated by systematics l+jets dilepton all jets

### Many measurements



# Many measurements?



# Many measurements?



### CMS PAS TOP-14-001 172.04 ± 0.19 (stat.+JSF) ± 0.75 (syst.) GeV

#### Ideogram Method (Kinematic fit)

|                                                                     | MG5+Py6 or POWHEG                                                                    | $\delta m_t^{2D}$ (GeV) | $\delta$ JSF        | $\delta m_t^{1D}$ (GeV) |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------|---------------------|-------------------------|
|                                                                     | Experimental uncertainties                                                           |                         |                     |                         |
| CMS Preliminary, 19.7 fb <sup>-1</sup> , $\sqrt{s} = 8$ TeV, I+jets | $\frac{1}{2000}$ CMS Preliminary, 19.7 fb <sup>-1</sup> , $\sqrt{s} = 8$ TeV, I+jets | 0.10                    | 0.001               | 0.06                    |
| い<br>If contour                                                     | This measurement                                                                     | 0.18                    | 0.007               | 1.17                    |
| <sup>-</sup> 1.012                                                  | N E                                                                                  | 0.03                    | < 0.001             | 0.03                    |
| $3\sigma$ contour                                                   |                                                                                      | 0.09                    | 0.001               | 0.01                    |
| 1.01                                                                |                                                                                      | 0.26                    | 0.004               | 0.07                    |
|                                                                     |                                                                                      | 0.02                    | < 0.001             | 0.01                    |
| 1.008                                                               |                                                                                      | 0.27                    | 0.005               | 0.17                    |
|                                                                     |                                                                                      | 0.11                    | 0.001               | 0.01                    |
| 1.006                                                               |                                                                                      |                         |                     |                         |
|                                                                     |                                                                                      | 0.41                    | 0.004               | 0.32                    |
| 1.004                                                               | 400                                                                                  | 0.06                    | 0.001               | 0.04                    |
| 1.002                                                               |                                                                                      | 0.16                    | < 0.001             | 0.15                    |
| 1.002                                                               |                                                                                      |                         |                     |                         |
| 171.5 172 172.5                                                     | 0.184 0.186 0.188 0.19                                                               | 0.09                    | 0.001               | 0.05                    |
| m <sub>t</sub> [Gev]                                                | factorization scales                                                                 | $0.12{\pm}0.13$         | $0.004 {\pm} 0.001$ | $0.25{\pm}0.08$         |
|                                                                     | ME-PS matching threshold                                                             |                         | $0.003 {\pm} 0.001$ | $0.07 {\pm} 0.08$       |
|                                                                     | ME generator                                                                         | $0.23 \pm 0.14$         | $0.003 {\pm} 0.001$ | $0.20 {\pm} 0.08$       |
|                                                                     | Modeling of non-perturbative QCD                                                     |                         |                     |                         |
|                                                                     | Underlying event                                                                     | $0.14 \pm 0.17$         | $0.002 \pm 0.002$   | $0.06 \pm 0.10$         |
|                                                                     | Color reconnection modeling                                                          | $0.08 \pm 0.15$         | $0.002{\pm}0.001$   | $0.07 {\pm} 0.09$       |

0.75

0.012

1.29

Total

# ATLAS-CONF-2013-046

#### $m_{top} = 172.31 \pm 0.23 \text{ (stat)} \pm 0.27 \text{ (JSF)} \pm 0.67 \text{ (bJSF)} \pm 1.35 \text{ (syst)} \text{ GeV}$ 3D Method (Kinematic Fit)

|                                              | 2d-analysis         |       | 3d-analysis                |       |       |
|----------------------------------------------|---------------------|-------|----------------------------|-------|-------|
|                                              | $m_{\rm top}$ [GeV] | JSF   | $m_{\rm top}  [{\rm GeV}]$ | JSF   | bJSF  |
| Measured value                               | 172.80              | 1.014 | 172.31                     | 1.014 | 1.006 |
| Data statistics                              | 0.23                | 0.003 | 0.23                       | 0.003 | 0.008 |
| Jet energy scale factor (stat. comp.)        | 0.27                | n/a   | 0.27                       | n/a   | n/a   |
| bJet energy scale factor (stat. comp.)       | n/a                 | n/a   | 0.67                       | n/a   | n/a   |
| Method calibration                           | 0.13                | 0.002 | 0.13                       | 0.002 | 0.003 |
| Signal MC generator                          | 0.36                | 0.005 | 0.19                       | 0.005 | 0.002 |
| Hadronisation                                | 1.30                | 0.008 | 0.27                       | 0.008 | 0.013 |
| Underlying event                             | 0.02                | 0.001 | 0.12                       | 0.001 | 0.002 |
| Colour reconnection                          | 0.03                | 0.001 | 0.32                       | 0.001 | 0.004 |
| ISR and FSR (signal only)                    | 0.96                | 0.017 | 0.45                       | 0.017 | 0.006 |
| Proton PDF                                   | 0.09                | 0.000 | 0.17                       | 0.000 | 0.001 |
| single top normalisation                     | 0.00                | 0.000 | 0.00                       | 0.000 | 0.000 |
| W+jets background                            | 0.02                | 0.000 | 0.03                       | 0.000 | 0.000 |
| QCD multijet background                      | 0.04                | 0.000 | 0.10                       | 0.000 | 0.001 |
| Jet energy scale                             | 0.60                | 0.005 | 0.79                       | 0.004 | 0.007 |
| <i>b</i> -jet energy scale                   | 0.92                | 0.000 | 0.08                       | 0.000 | 0.002 |
| Jet energy resolution                        | 0.22                | 0.006 | 0.22                       | 0.006 | 0.000 |
| Jet reconstruction efficiency                | 0.03                | 0.000 | 0.05                       | 0.000 | 0.000 |
| <i>b</i> -tagging efficiency and mistag rate | 0.17                | 0.001 | 0.81                       | 0.001 | 0.011 |
| Lepton energy scale                          | 0.03                | 0.000 | 0.04                       | 0.000 | 0.000 |
| Missing transverse momentum                  | 0.01                | 0.000 | 0.03                       | 0.000 | 0.000 |
| Pile-up                                      | 0.03                | 0.000 | 0.03                       | 0.000 | 0.001 |
| Total systematic uncertainty                 | 2.02                | 0.021 | 1.35                       | 0.021 | 0.020 |
| Total uncertainty                            | 2.05                | 0.021 | 1.55                       | 0.021 | 0.022 |





| Source                      | $\delta M_{\rm t}$ (GeV) |
|-----------------------------|--------------------------|
| Jet Energy Scale            | $+1.3 \\ -1.8$           |
| Jet Energy Resolution       | $\pm 0.5$                |
| Lepton Energy Scale         | $+0.3 \\ -0.4$           |
| Fit Range                   | $\pm 0.6$                |
| Background Shape            | $\pm 0.5$                |
| Jet and Lepton Efficiencies | $^{+0.1}_{-0.2}$         |
| Pileup                      | < 0.1                    |
| QCD effects                 | $\pm 0.6$                |
| Total                       | $+1.7 \\ -2.1$           |



very little sensitive to the scale choice (less than 400 MeV on mtop)





### $\mu_{\rm F} \neq \mu_{\rm R}$












#### Fit Variations p&d-NLO



#### Fit Variations p&d-NLO



#### $OMCFM fixed \mu = m_{top}$ (E=67.9 GeV)





1par Exp(x+1/x)

Events/4. GeV

2 pars Exp(x+1/x)



#### pNLO MCFM fixed $\mu = m_{top}$ (E=67.9 GeV)

1 par Exp(x+1/x)



# A simple, yet subtle, invariance of the two body decay

1209.0772 - Agashe, Franceschini and Kim



Event-by-event we cannot tell anything

Fixed top boost decay Massless b-quark (for now)  $E_{e,b} = E_{b}^{*} (\chi + \chi \beta \cos \vartheta)$ 

unpolarized top sample  $\rightarrow$  cos $\theta$  is flat





### Lab-frame energy distribution



There is no difference when the b-mass is taken into account provided  $\gamma_{top} < 500$ 

### On mass measurements

- Lorentz invariants
- resonance reconstruction

#### Ideal mass measurements





Lorentz invariant

#### insensitive to:

- Parton Distribution Functions
- Production Mode (qq or gg, SM or BSM, ISR, ...)

beware of radiation for precision measurement

#### Less ideal mass measurements

One particle is just lost



Need to come up with a trick

#### for example:

- Transverse Mass (use mET)
- pT (nuisances are back: qq or gg, SM or BSM, ISR, ...)

#### ... and it can get worse

any BSM with some sort of Matter Parity (e.g. RPC SUSY)



can we make a mass measurement without ever mentioning the unobservable particle  $\chi$ ?

#### "useful" top is semi-invisible



can we make a mass measurement without ever mentioning the unobservable particle W?

top quark reconstruction is entangled with *some* picture of the kinematics (fixed order?)

NLO ( decay) NLO+PS in 1412.1828

















does (not) distinguish where the final state came from (t, t\*, bW, bWg, bqqg)

need (not) to define the top

might (not) depend on the production mechanism