
Facilities in Latin America

Xavier Bertou

bertou@cab.cnea.gov.ar

Laboratorio Detección de Partículas y Radiación

Centro Atómico Bariloche CNEA/CONICET

8th CERN Latin-American School of High-Energy Physics Ibarra, Ecuador, 4-17 March 2015

Astroparticle Facilities in Latin America

Plan of the talk

- Why talk about Astroparticle Facilities in Latin America
- Current Astroparticle Facilities in Latin America
 - The Pierre Auger Observatory
 - The Latin American Giant Observatory (LAGO)
 - The High Altitude Water Cherenkov (HAWC)
- Future Astroparticle Facilities in Latin America
 - HAWC Southern Hemisphere Site
 - The Cherenkov Telescope Array (CTA)
 - The ANDES Deep Underground Laboratory

WE WANT YOU!

Why talk about Astroparticle Facilities in Latin America

What is Astroparticle Physics?

Astroparticle physics, [...], is a branch of particle physics that studies elementary particles of astronomical origin and their relation to astrophysics and cosmology. It is a relatively new field of research emerging at the intersection of particle physics, astronomy, astrophysics, detector physics, relativity, solid state physics, and cosmology. (Wikipedia)

Astroparticle physics is a new multidisciplinary field of research that deals with the study of particles coming from the Universe. (ASPERA)

Astroparticle physics is Astrophysics done by Particle Physicists (Common knowledge)

Why do Particle Physicist do Astrophysics?

- Because they think they will find new physics
 - Dark Matter search in Gamma Ray observatories
 - Top-down Cosmic Ray production
- Because they want to stay in small collaborations
 - More visibility in individual work
 - More responsabilities in the projects
- Astroparticle Physics needs Particle Physics detectors

Note: After 20 years, Particle Physicists found the Higgs, Astroparticle Physicists are doing Astrophysics

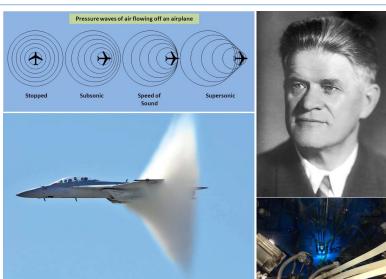
Note 2: Even if new Astroparticle projects start to be huge (1200 members for CTA), there are still many frontier small experiments in Astroparticle Physics

Particle Physics Facilities in Latin America

- Laboratorio Tandar
- Laboratório Nacional de Luz Síncrotron
- Central Nuclear Almirante Álvaro Alberto
- Centro Atómico Bariloche

• ...

Particle Physics experimental facilities becoming too large to be handled by single institutions


No "true" Particle Physics experimental facility in Latin America (neither now nor in the near or not-so-near future)

Current Astroparticle Facilities in Latin America

Parenthesis on the Cherenkov effect

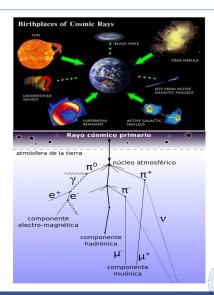
The Pierre Auger Observatory

The Cosmic Ray Enigma

- CR are energetic radiation from space
- Discovered in 1912 by Victor Hess
- Named Cosmic Rays by Millikan

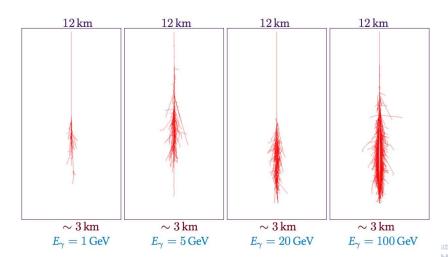
Reading for your kids:

http://www.telescopearray.org/media/cosmicrays.e.pdf

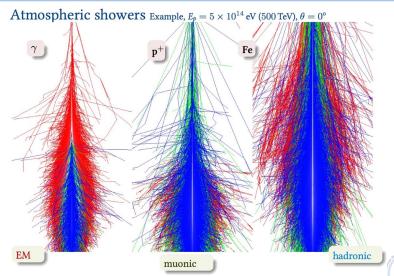

What are Cosmic Rays?

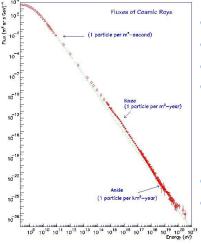
Primaries

- Proton
- Nuclei (He... CNO... Fe)
- Gammas
- Neutrinos...


Secondaries

- muons
- electrons/positrons
- gammas
- neutrons
- neutrinos
- ...



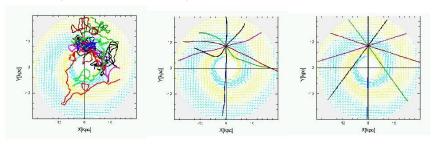

Cascade simulation vs Energy

Extended Air Shower components

Cosmic Rays Spectrum

- Power law with index 2.7
- 12 orders of magnitude in energy
- 32 orders of magnitude in flux
- only few features
 - \circ Knee: 1 event/m 2 /year
 - Ankle: 1 event/km²/year

UHECR


- At 10²⁰ eV: 1 event/km²/century?
- First event: Volcano Ranch, 1962

UHECR Astronomy

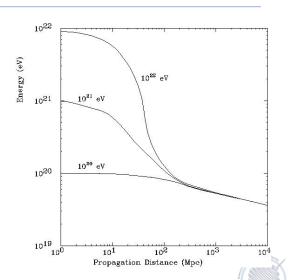
Magnetic fields

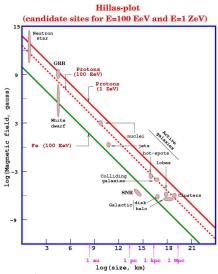
At low energies, CR are deflected by galactic and extra-galactic magnetic fields.

UHECR (protons in particular) should point to the source

 $10^{18}\,\text{eV}$

 $10^{19}\,\mathrm{eV}$


 $10^{20} \, eV$

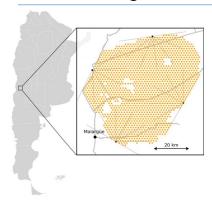

GZK cut-off

At UHE, protons interact with CMB photons by photo production, and nuclei with CMB and IR photons through photo dissociation

UHECR should lose energy quickly on short distances $(< 100 \, \mathrm{Mpc})$

UHECR Sources?

Bottom-Up


• $E_{\rm max} \simeq Z B L$

Top-Down

- Super massive particle
- Topological Defect
 - neutrinos
 - photons

The Pierre Auger Observatory

In Malargüe (Argentina)

- 69.3° W. 35.3° S
- 1400 m a.s.l. (870 g cm⁻²)

Design

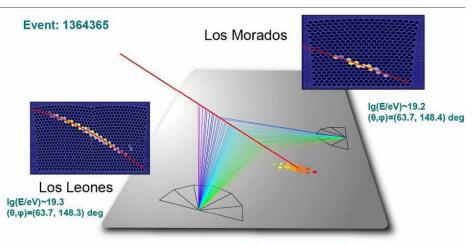
- UHECR study ($E \ge 10^{18} \, \text{eV}$)
- Construction over in 2008

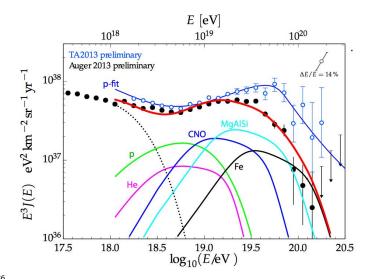
UHECR hybrid detection

- Ground detectors (SD): 1600 Water Cherenkov Detectors covering 3000 km² on a 1500 m triangular grid
- Fluorescence detectors (FD): 24 fluorescence telescopes in 4 sites observing over the SD area

Ground detectors: WCD

- 10 m² area rotationally molded polyethylene tanks
- 12 m³ ultra pure water in a diffusive bag
- Cherenkov light collected by three 9" PMTs
- 40 MHz FADC digitization
- Radio wireless communication
- GPS based timing
- Battery and solar panel powered


Fluorescence telescopes


- 4 FD buildings
- 6 cameras per building
- UV filters
- 440 PMT per camera
- $180^{\circ} \times 30^{\circ}$ field of view
- 10% duty cycle
- Observes longitudinal development
- Calorimetric energy measurement
- Composition measurement (X_{max})

Hybrid events

SD array: Ig(E/eV)~19.1 (θ,φ)=(63.3, 148.9) deg

Spectrum and possible composition interpretation

Pierre Auger Observatory main results

- UHECR are regular nuclei (H ightarrow Fe), no γ , no ν
- UHECR are produced by astrophysical sources
- UHECR look heavy at the highest energies
- Cut at highest energies isn't necessarily the GZK cutoff
- UHECR flux might not extend (much) after 10^{20} eV: $\approx 1 \text{ event/km}^2/\text{millennium}$
- Astronomy with heavy primaries will be tough
- Current game at UHECR is in composition measurements
- Beyond 2015 Auger upgrade plan:
 - Add Scintillator detector on each WCD
 - Measure muon and EM components
 - Composition event by event

Other results from the Pierre Auger Observatory

- High energy interaction model studies
- Proton-air cross section measurements
- Muon component in Extensive Air Showers
- No excess from Galactic Center
- Point sources with neutral primary (neutrons, photons)
- Radio detection of EAS (geosynchrotron MHz, molecular bremsstrahlung - GHz?)
- Atmospheric studies
- Solar physics
- TLE/Elves/Lightning physics
- Not only an observatory, a complete research facility

The Latin American Giant Observatory (LAGO)

Slides from H. Asorey

The Latin American Giant Observatory (LAGO)

- Argentina, Bolivia, Colombia, Ecuador, Guatemala, Mexico, Peru & Venezuela
- + Brazil in 2015

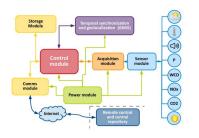
- 70 members from 22 institutions at 9 Latin American countries
- Scientific goals:
 - Astroparticles up to the CR knee
 - Study background radiation, transient and long term Space Weather phenomena trough Solar modulation of Cosmic Rays
- Academic goals:
 - Train Latin American students in H.E. and Astroparticle techniques
 - Build a Latin American network of Astroparticle researchers

A very long baseline "array" of WCD

Organization:

 Non-centralized, collaborative network of institutions

- 3 working groups,
 9+2 members
 coordination
 committee, 1 pi
- Developments, expertize and data are shared across the network


The detector: the sWCD (s as in smart)

- Autonomous, reliable, simple and cheap detector
- Commercial tanks with 1.5 m² - 10 m² of detection area filled with purified water
- Inner coating of Tyvek (UV diffusive and reflective fabric)
- PMT + Digitizer board (own design, openly available)
- FPGA + Raspberry Pi: detector control, telemetry, data acquisition and on board data pre-analysis

- Digitized signals by a 10-14 bits FADC at 40-100 MHz (10-25 ns)
- Temporal synchronization: GPS in PPS mode
- Power consumption: $\lesssim 8 \, \mathrm{W}$

The station: the smart LAGO-WCD

- Arduino-One + environmental sensors (P, T, CO₂, NO_x, radiance, ...)
- Control (Raspberry Pi): data conformation, pre-processing and control
- Power: 15 W solar panel and batteries
- GNSS: geo-localization and time synchronization
- Comms by standard protocols: WiFi, GPRS (2.5G-3G-3.5G), 4G-LTE

LAGO Programs

LAGO-Extreme Universe

- Gamma Ray Burst HE monitor
- High energy astroparticles
- Towards CR knees region

LAGO-Space Weather

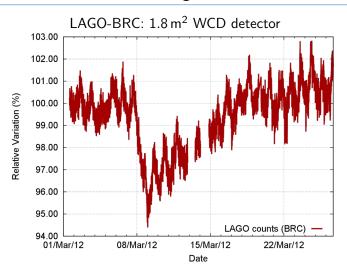
- Cosmic ray solar modulation
- Possible connections with physics of the atmosphere
- Background radiation at ground (and flight) level

LAGO-Virtual

 Acquire, produce, collect and preserve LAGO data

LAGO-Universities

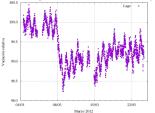
- Astrophysics and particle physics in undergraduate courses
- Data analysis and statistic
- Muon decay
- Detector physics and interaction of radiation with matter
- Construction and characterization of particles detectors


Space Weather

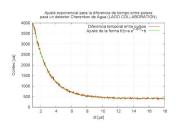
Sun-Earth connection

- Dynamic conditions in the Earth outer space environment:
 - Disruption of electrical power grids
 - Contribute to the corrosion of long pipelines
 - HF radio communications and GPS interferences
 - Operational anomalies and damage or degradation of critical electronics on spacecraft, satellites and even on board of commercial airplanes

Forbush decrease with a single LAGO WCD



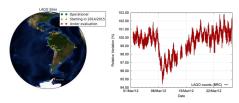
LAGO-Universities



Introductory Physics Course 2014 Universidad Industrial de Santander python + gnuplot + data analysis

Particle Physics or Experimental Physics courses at UIS (COL), Balseiro (ARG) and UCV (VEN)

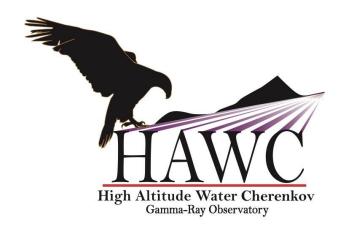
Electroweak theory + python + data analysis techniques



$$\tau_{\mu} = (2020 \pm 0.1) \text{ ns}$$

LAGO Summary

- sWCD and environmental stations: data for other communities
- Full simulation chain: from primary flux to detector signals
- Observation of Space Weather phenomena at ground by using sWCDs at different sites
- Ultra long baseline "array" of WCD from Mexico to Antarctica
- High and low altitude sites across the Andean range: Background radiation, Space Weather and HE
- Local to regional integration of Universities and Citizen Science
- Developing Astroparticle in as many LA countries as possible



The High Altitude Water Cherenkov (HAWC)

Slides from M. Mostafa

HAWC precursor

Milagro site

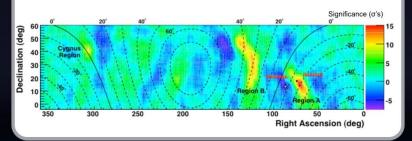
- Los Alamos, NM
- 8,650 ft in elevation
- 60 m x 80 m x 8 m covered pond

Milagro

- water Cherenkov detector
- threshold ~300 GeV
- wide angle
- γ/hadron separation
- 24 hour all year operation

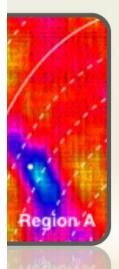
A first generation wide-field γ-ray detector

(site at 2650 m of altitude)



Scientific Motivation

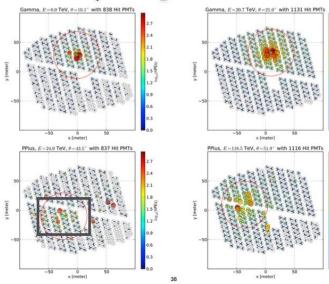
- Constrain the origin of cosmic rays by measuring gamma-ray spectra to 100 TeV.
- Probe particle acceleration in astrophysical jets with wide field of view, high duty factor observations.
- Explore new physics with an unbiased survey of the TeV sky.


Milagro Results

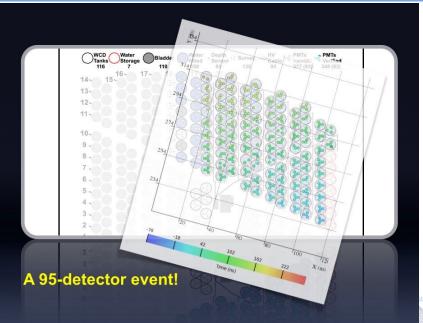
Map of significances for the Milagro (cosmic rays) data set

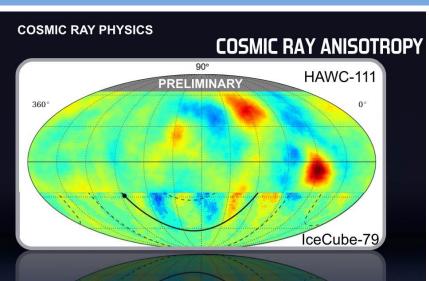
Milagro observes anisotropy in 10 TeV cosmic rays.

HAWC will have better energy resolution plus a higher rate



Milagro Discoveries


- over a dozen TeV sources
- diffuse TeV emission from the Galactic plane
- directional excess of cosmic rays



γ/h separation

"Observation of the **Anisotropy of Cosmic Rays** at the HAWC Observatory"

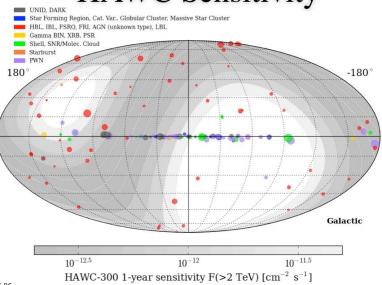
HAWC Science

- Discover the origin of cosmic rays via HAWC's observations of γ-rays up to 100 TeV from discrete sources and the Galactic plane.
- Understand particle acceleration in astrophysical jets with HAWC's (wide field of view, high duty factor) observations of transient sources, such as gamma ray bursts and supermassive black holes.
- Explore new TeV physics via HAWC's unbiased survey of ½ the sky.

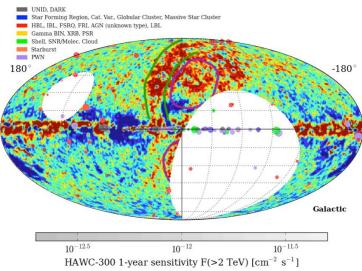
HAWC Summary

- HAWC is the largest wide field gamma ray observatory
- HAWC just got complete (300 detectors, inauguration next Friday)
- Results to come on a regular basis for 10 years

Future Astroparticle Facilities in Latin America



HAWC Southern Hemisphere Site

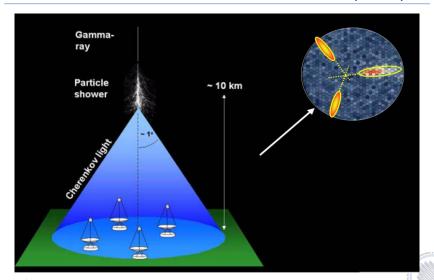


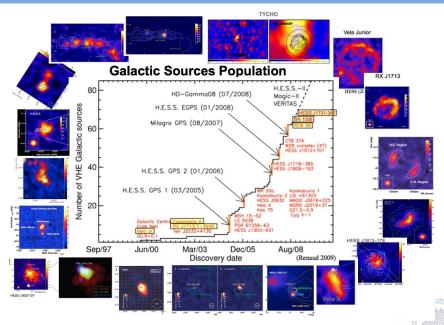
HAWC Sensitivity

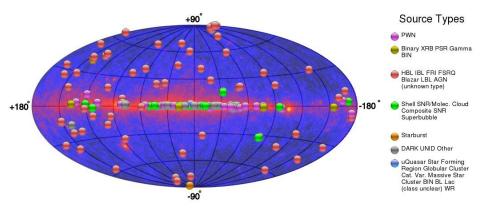
Fermi bubbles

HAWC South needs a 4000 m+ site

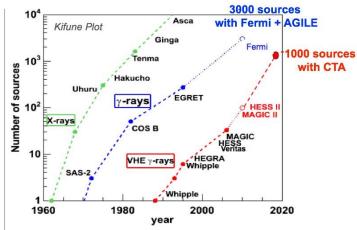
- Numerous options in South America:
 - Argentina
 - Bolivia
 - Chile
 - → More than 11000 flat km² to choose from
- Well proven technique, well known detector
- Science output guaranteed
- Systematic studies on common sky with HAWC
- → Natural follow-up of HAWC (could also be a follow-up of LHASSO)
 - → Great opportunity for Latin America




The Cherenkov Telescope Array (CTA)

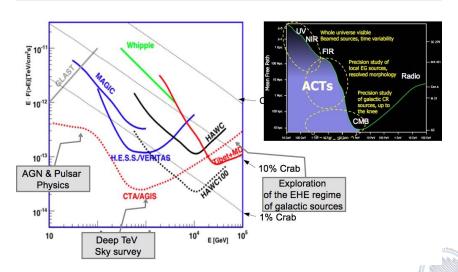

Slides from C. Medina

Imaging Atmospheric Cherenkov Telescopes (IACT)



157 TeV sources as of last week

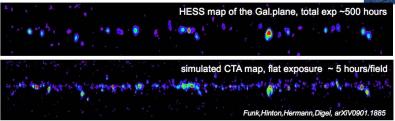
Source demographic grow



The next generation of IACT arrays needs to function like a true observatory:

Observation time for astro-physical/particle community

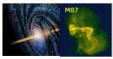
Open access data at different levels


CTA sensitivity

Expectations for galatic survey

~ 300 sources in -30° ≤ I ≤ 30°

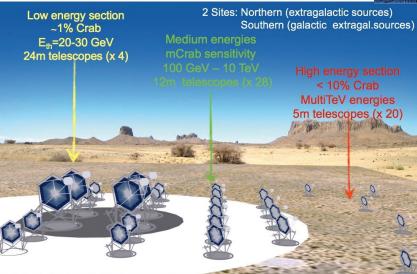
SNRS:


- CTA Galactic plane survey, currently known shell SNRs detectable to 10–15 kpc (i.e. throughout most of the Galaxy)
- If shells shine 2000 <u>yr</u> in <u>TeV</u>, ~40 <u>TeV</u> shells in Galaxy; ~25 detectable (vs 6 currently known)

Pulsar Wind Nebulae

- CTA will detect luminous <u>PWNe</u> like the Crab to the distance of the Large <u>Magellanic</u> Cloud luminosity-limited survey
- o If PWNe shine 10 000 yr in TeV, ~200 TeV PWNe in Galaxy (75% detectable by CTA)
- In a CTA Galactic plane survey, weaker <u>PWNe</u> like <u>Kes</u> 75 detectable to ~13–15 <u>kpc</u> (i.e. in large fraction of Galaxy)

Extragalactic studies with CTA: Active Galaxies, Cosmic Radiation Fields and Cosmology

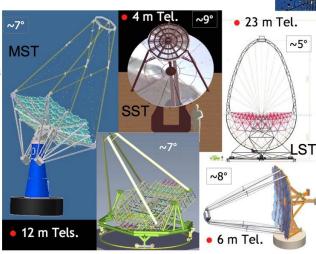

- Study of different AGN classes at VHE (unification, "blazar sequence")
 - today: ~30 BL Lacs, 3 FSRQ, 3 radio galaxies
- Starburst Galaxies
 - VERITAS and H.E.S.S. have observed <u>TeV</u> gamma-rays from the nearest starburst galaxies.
- GRBs
 - Fermi LAT → emission above 10 GeV from many GRBs
- Dark matter search
 - DM can annihilate or decay to detectable gamma-rays. Large dark matter densities → detectable fluxes, (i.e. annihilation rate ∝ square of the density).

CTA basic layout

62 of 86

CTA Technology (Telescopes)

CTA


- MST
 - Middle Size
 - 1500 pixels
 - 2.5 ton camera
 - f/d ~ 1.4

LST

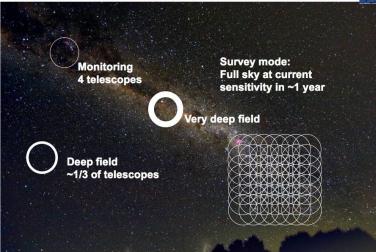
- Large Size
- 2500 pixels
- 2 ton camera
- f/d ~1.2

SST

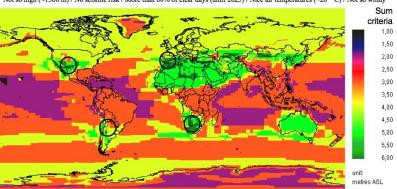
- Small Size
- 1300 pixels

Telescope Technology

- Mount & Dish
 - Mounting system & drivers
 - Dish design and camera support
- Telescope optics
 - Mirrors
 - Alignment system
- Photon detection
 - Electronics
 - Triggering
 - Camera integration
- Calibration and monitoring



Several operation modes



CTA Site Search

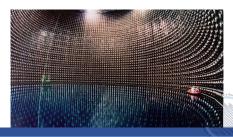
Not so high (<1500 m) / No seismic risk / More than 60% of clear days (until 2025) / Nice air temperatures (~20° C) / Not so windy

Made with FriOVVL (2007), IAP, Bern

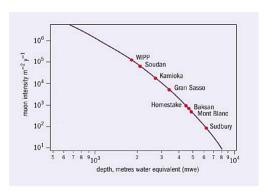
CTA Summary

- CTA is built on the success of last generation of IACT: HESS, Veritas, MAGIC...
- CTA will be the major observatory in VHE gamma ray astronomy in the 2020s with both guaranteed astrophysics and a significant discovery potential
- CTA received excellent reviews and high rankings in Science Roadmaps in Europe and across the world
- CTA is an acknowledged ESFRI project and features high on roadmaps of future projects of ApPEC, ASPERA and ASTRONET
- CTA design well advanced, ending preparatory phase, and starting prototype construction
- Southern site to be decided this year: ESO (Chile) or Namibia, Argentina as backup solution

The ANDES Deep Underground Laboratory



Cosmic rays as noise


In a 12 m³ detector like Auger WCD, one detects every day:

- 10⁸ muons
- 10⁸ gammas/electrons/positrons
- 10⁶ neutrons
- 10^{-2} neutrinos
- 10⁻⁶ supernova neutrinos
- maybe tens of dark matter particles (there is no multi-ton-scale dark matter detector currently)

Muon flux vs depth

Muon flux at sea level: a few $100 \,\mathrm{m}^{-2} \,\mathrm{s}^{-1}$

Muon flux at $5000 \, \text{m.w.e.}$ underground: $1 \, \text{m}^{-2} \, \text{day}^{-1}$

Cosmic rays as noise

Ibarra, Ecuador 1 particle per millisecond-m²

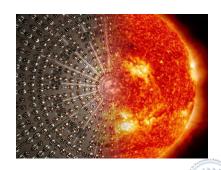
Modane Underground laboratory

1 particle per day-m²

Roger Waters at River Plate 110 dB

Patagonia (without wind) 30 dB

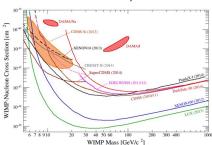
Hearing whispers from the Universe


Neutrino underground experiments

Sources

- neutrinos from nuclear reactors
- neutrinos from particle accelerators
- atmospheric neutrinos
- solar neutrinos
- supernovae neutrinos
- geoneutrinos

Physics


- neutrino oscillation
- neutrinos mass
- neutrino nature
- geophysics

Experiments in underground laboratories - DM

Dark Matter search

- 24% of Universe, 85% of matter
- different detector techniques (cryogenics, noble gas/liquids, ...)
- "new" exotic techniques (bubble chambers, CCD, ...)

WIMP search

- direct detection
- indirect search (modulation)

73 of 86

The Big Bang Theory

Season 4, episode 4


• Raj (to Sheldon): I'm telling you, if xenon emits ultraviolet light, then those dark matter discoveries must be wrong.

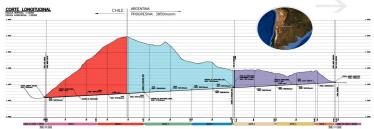
Season 2, episode 15

- Leonard: I think you'll find my work pretty interesting. I'm attempting to replicate the dark matter signal found in sodium iodide crystals by the Italians.
- Mother: So, no original research?
- · Leonard: No.
- Mother: Well, what's the point of my seeing it? I could just read the paper the Italians wrote.

Underground Laboratories

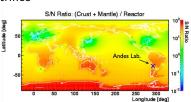
• All in the northern hemisphere

The planned Agua Negra tunnel


The Agua Negra tunnel recent history

- Pre-feasibility study done in 2005, feasibility in 2008
- Cristina Fernández de Kirchner and Michelle Bachelet signed a Bi-National Integration treaty, including the San Juan - Coquimbo option, in October 2009, voted later on by both countries
- August 2010 MERCOSUR meeting was in San Juan and a strong support for the Agua Negra tunnel was given, with Luis Inácio Lula da Silva pushing for the tunnel tender
- Since 2011 the Argentine congress votes every year a 800 MU\$D guarantee fund for the Agua Negra tunnel
- In March 2012, Cristina Fernández de Kirchner and Sebastián Piñera signed an international agreement asking for the tender of the tunnel
- In January 2013, the call for tender process was officially started
- In December 2014, the protocol for construction was agreed upon
- Total cost estimated to about 1250 MU\$D

Tunnel proposed


- ullet 2 tunnels, 12 m arnothing each, separated by 60 m, pprox 14 km long
- Argentine entry point at the Quebrada San Lorenzo, 4085 m a.s.l.
- Chilean entry point on a ridge, at \approx 3600 m a.s.l.
- Internal connexion galleries every 500 m
- Deepest point at $pprox 1750\,\mathrm{m}$ depth
- Tender in 2013-2015, Construction 2015-2024

A scientific opportunity in the south

- Opportunity for a big AND deep laboratory
- Only deep underground laboratory in the south
 - opposite weather modulation (dark matter)
 - complementary for supernovae neutrinos
- Geoneutrinos (Low neutrino flux from nuclear power plants)
- Geoactive region
 - Deep underground geophysics international laboratory

The Consorcio Latinoamericano de Experimentos Subterráneos (CLES)

- Excellent opportunity to have an international laboratory expand the MERCOSUR (UNASUR) aspect of the tunnel to the ANDES laboratory
- The CLES would be the seed of a "CERN" focused on underground science (high energies, geology, biology, technology...)

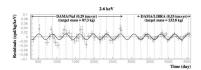
Scientific programme for ANDES

- Neutrino
 - host a double beta decay experiment
 - build a large Latin American neutrino detector
 - similar to KamLAND/Borexino
 - focused on low energies
 - solar/supernovae/geo-neutrinos
- Dark Matter
 - modulation measurements
 - new technologies
- Geophysics
 - Natural link of seismograph networks
 - "flat slab" study
- Biology
- Low radiation measurements
- Accelerator
 - Nuclear astrophysics/DAR neutrino beam?

SuperNEMO double beta decay experiment

- based on NEMO-NEMO3 experience (LSM)
- ▶ 100 200 kg of 82 Se
- neutrino mass sensitivity: $\approx 0.05 - 0.1 \, eV$
- modular design: ≈ 20 modules
- demostrator for 2013
 - design and schedule well adapted to ANDES
 - strong interest from SuperNEMO representatives

Large Latinamerican Neutrino Detector

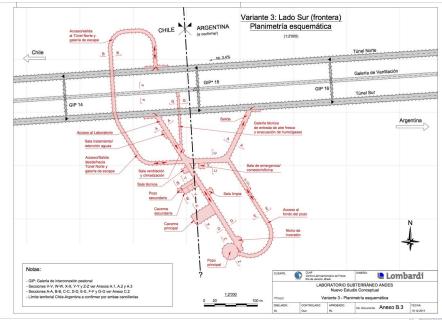

- similar design to Borexino and Kaml AND
- 3 10 kton of scintillator volume
- ▶ unique site for geoneutrinos
- complementarity for supernova neutrinos analysis arXiv:1207.5454

- design under study
- main topic of next ANDES Workshop

Dark Matter in ANDES

- host a copy of a DM experiment observing a modulation signal
- ▶ host a 3rd gen. DM experiment
- work on new technologies (fast evolving topic)

Nuclear Astrophysics


LUNA: Laboratory for Underground Nuclear Astrophysics

- installed at LNGS (Gran Sasso)
- 50 kV accelerator
- ▶ 400 kV (LUNA II)
 - study low energy nuclear reactions relevant for astrophysics (down to the Gamow peak)
 - ex: ³He(³He,2p)⁴He below 21 keV

Proposal from Galindo-Uribarri. Padilla-Rodal and Vega for a 300 kV high intensity platform at ANDES

Current Status

- International community support:
 - 19 support letters
 (underground lab directors, international projects spokespersons, national physics associations and academies...)
- Regional interest:
 - 26 letters from Latin American groups
- First workshop in Buenos Aires, April 2011
- Second in Rio de Janeiro, June 2011
- Third in Valparaíso, January 2012
- Fourth in México DF, January 2014
- Official support from Argentine MinCyT (Comisión Asesora Grandes Instrumentos)
- Official support from EBITAN (Entidad bi-nacional túnel Agua Negra)

Memorandum of Understanding (First workshop, Buenos Aires, April 2011)

Current status (cont.)

CLAF - ANDES Unit

- ANDES Unit created in CLAF in January 2014
- First step towards the CLES

Tunnel tender process started in January 2013

- International call issued in June 2013
- Process is finishing in 2015
- Construction planned to start end 2015

ANDES design studies with Lombardi

- Conceptual study, finished end 2014
- Detailed engineering study, mid 2015
- ANDES will go as an "adicional de obra"

http://andeslab.org/

Summary

- Latin America has state of the art Astroparticle Facilities
 - Largest and best UHECR observatory: Pierre Auger
 - Region-wide network for Science and Education: LAGO
 - Largest and best wide field Gamma ray observatory: HAWC
- Unique potential for the future
 - Southern sky wide field Gamma ray observatory: HAWC South
 - Ideal sky conditions for the next generation IACT: CTA
 - World class underground laboratory in final planning phase: ANDES
- It is by having state of the art local/regional facilities that the region will be able to better contribute to high energy physics worldwide
 - Synergy between Theory and Experiment, Particle physics and Astroparticle physics
 - We are living exciting scientific times in Latin America

Thanks for the invitation...

... and for the attention!