Neutral Meson Mixing

Why should we study this?

- CPV first observed in $K^{0}-\bar{K}^{0}$
- Gives best flavor constraints on NP (as indicated previously)
- Neat phenomena
- Active field

Plan:

- Start with kaon: CPV in mixing (epsilon)
- CPV in decay (epsilon-prime)
- time dependent observables
- CPV in interference of mixing and decay (B)

Leave D-meson standard conventions as homework (same physics, different notation)

What is mixing?

$\bar{B}_{s} \rightarrow D_{s}^{+} \pi^{-}$
$(\bar{s} b) \rightarrow(\bar{s}[c \bar{c} d])=(\bar{s} c)(\bar{u} d)$
$B_{s} \rightarrow D_{s}^{-} \pi^{+}$
$(\bar{b} s) \rightarrow([\bar{c} u \bar{d}] s)=(\bar{c} s)(\bar{d} u)$
"Unmixed:" same as starting state (anti- B_{s})

perfect tagging + resolution

$$
\bar{B}_{s} \rightarrow D_{s}^{+} \pi^{-}
$$

Tagging:

Very roughly, we guess

$$
\bar{B}_{s} \rightarrow B_{s} \rightarrow \bar{B}_{s} \rightarrow B_{s} \rightarrow \cdots
$$

$$
\left|\bar{B}_{s}(t)\right\rangle=e^{-\frac{1}{2} \Gamma t}\left[\cos (\omega t)\left|\bar{B}_{s}\right\rangle+\sin (\omega t)\left|B_{s}\right\rangle\right]
$$

But why?

This is very small (weak interaction at 1-loop, suppressed by CKM) but important for eigenstates:

$$
i \frac{d}{d t}\binom{\bar{B}_{s}(t)}{B_{s}(t)}=M\left(\begin{array}{ll}
1 & \epsilon \\
\epsilon & 1
\end{array}\right)\binom{\bar{B}_{s}(t)}{B_{s}(t)} \quad \Rightarrow \quad \bar{B}_{s}(t)=e^{-i M t}\left[\cos (\epsilon M t) \bar{B}_{s}(0)-i \sin (\epsilon M t) B_{s}(0)\right]
$$

$$
\left(\begin{array}{cc}
1 & \epsilon \\
\epsilon & 1
\end{array}\right) \text { has eigenvalues } 1 \pm \epsilon \text { and eigenvectors }\binom{1}{ \pm 1}
$$

Mixing: formalism

Weisskopf-Wigner
Neutral mesons, at rest

Analyze all at once: $\quad X^{0}=K^{0}, D^{0}, B^{0}, B_{s}$

$$
\begin{array}{rlrl}
P\left|X^{0}\right\rangle & =-\left|X^{0}\right\rangle & P\left|\bar{X}^{0}\right\rangle & =-\left|\bar{X}^{0}\right\rangle \\
C\left|X^{0}\right\rangle & =\left|\bar{X}^{0}\right\rangle & C\left|\bar{X}^{0}\right\rangle & =\left|X^{0}\right\rangle \\
& C P\left|X^{0}\right\rangle=-\left|\bar{X}^{0}\right\rangle & C P\left|\bar{X}^{0}\right\rangle=-\left|X^{0}\right\rangle
\end{array}
$$

$$
\mathbf{H}=\mathbf{M}-\frac{i}{2} \boldsymbol{\Gamma}=\left(\begin{array}{ccrl}
M-\frac{i}{2} \Gamma & M_{12}-\frac{i}{2} \Gamma_{12} \\
M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*} & M-\frac{i}{2} \Gamma
\end{array}\right) \quad \mathbf{M}^{\dagger}=\mathbf{M} \quad|1\rangle=\left|X^{0}\right\rangle
$$

We have insisted on CPT: $\quad(C P T)^{-1} \mathbf{H}(C P T)=\mathbf{H}^{\dagger} \Rightarrow H_{11}=H_{22}$
(If you want to test CPT you relax this)

CP-invariance $\Rightarrow M_{12}^{*}=M_{12}, \Gamma_{12}^{*}=\Gamma_{12}$
CPV if $\operatorname{Im} M_{12} \neq 0$ or $\operatorname{Im} \Gamma_{12} \neq 0$

$$
\mathbf{H}=\mathbf{M}-\frac{i}{2} \boldsymbol{\Gamma}=\left(\begin{array}{cc}
M-\frac{i}{2} \Gamma & M_{12}-\frac{i}{2} \Gamma_{12} \\
M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*} & M-\frac{i}{2} \Gamma
\end{array}\right)
$$

Define eigenvalues

$$
M_{X_{H}}-\frac{i}{2} \Gamma_{X_{H}}=M-\frac{i}{2} \Gamma \pm \frac{1}{2}\left(\Delta M-\frac{i}{2} \Delta \Gamma\right)
$$

eigenvectors

$$
\left|X_{H}^{H}\right\rangle=p\left|X^{0}\right\rangle \pm q\left|\bar{X}^{0}\right\rangle
$$

Note that for $q=p$

$$
C P\left|X_{H}^{H}\right\rangle=\mp\left|X_{H}^{H}\right\rangle
$$

Solving:

$$
\frac{p}{q}=2 \frac{M_{12}-\frac{i}{2} \Gamma_{12}}{\Delta M-\frac{i}{2} \Delta \Gamma}=\frac{1}{2} \frac{\Delta M-\frac{i}{2} \Delta \Gamma}{M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}}
$$

It follows that:

$$
\begin{gathered}
(\Delta M)^{2}-\frac{1}{4}(\Delta \Gamma)^{2}=4\left|M_{12}\right|^{2}-\left|\Gamma_{12}\right|^{2} \\
\Delta M \Delta \Gamma=4 \operatorname{Re}\left(M_{12} \Gamma_{12}^{*}\right)
\end{gathered}
$$

For Kaons, it is common to define "Long" and "Short" (instead of Heavy and Light):

$$
\begin{aligned}
M_{K_{L}} & -\frac{i}{2} \Gamma_{K_{L}}=M-\frac{i}{2} \Gamma \pm \frac{1}{2}\left(\Delta M-\frac{i}{2} \Delta \Gamma\right) \\
\left|K_{L}\right\rangle & =\frac{1}{\sqrt{2\left(1+|\epsilon|^{2}\right)}}\left[(1+\epsilon)\left|K^{0}\right\rangle \pm(1-\epsilon)\left|\bar{K}^{0}\right\rangle\right]
\end{aligned}
$$

$$
\epsilon=0 \Rightarrow C P\left|K_{L}\right\rangle=-\left|K_{L}\right\rangle
$$

$$
\begin{aligned}
& \epsilon=0 \Rightarrow C P\left|K_{L}\right\rangle=-\left|K_{L}\right\rangle \\
& C P|\pi \pi\rangle_{\ell=0}=|\pi \pi\rangle_{\ell=0}, C P|\pi \pi \pi\rangle_{\ell=0}=-|\pi \pi \pi\rangle_{\ell=0} \quad \Rightarrow K_{S} \rightarrow \pi \pi, K_{L} \rightarrow \pi \pi \pi
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Br}\left(K_{S} \rightarrow \pi \pi\right) & =100 \% \\
\operatorname{Br}\left(K_{L} \rightarrow \pi \pi\right) & =0.297 \% \\
\operatorname{Br}\left(K_{L} \rightarrow \pi \pi \pi\right) & =33.9 \%
\end{aligned}
$$

- epsilon is small
- CP is not a symmetry
- Longer K_{L} lifetime accidental

$$
\begin{gathered}
m_{K} \approx 490 \mathrm{MeV} \quad 3 m_{\pi} \approx \\
\tau\left(K_{S}\right)=0.59 \times 10^{-10} \mathrm{~S} \\
\tau\left(K_{L}\right)=5.18 \times 10^{-8} \mathrm{~S}
\end{gathered}
$$

This is no longer the case for heavier mesons.

Perturbation theory (in H_{w}): connect with underlying fundamentals

$$
\begin{aligned}
& M_{i j}=M \delta_{i j}+\langle i| \mathcal{H}|j\rangle+\sum_{n}^{\prime} \operatorname{PP} \frac{\langle i| \mathcal{H}|n\rangle\langle n| \mathcal{H}|j\rangle}{M-E_{n}}+\cdots \\
& \Gamma_{i j}=2 \pi \sum_{n}^{\prime} \delta\left(M-E_{n}\right)\langle i| \mathcal{H}|n\rangle\langle n| \mathcal{H}|j\rangle+\cdots
\end{aligned}
$$

beware, here: $\langle i \mid j\rangle=\frac{E}{m} \delta^{3}\left(\vec{p}-\vec{p}^{\prime}\right)$

Time Evolution

$i \frac{d}{d t}\left|X_{L}^{H}\right\rangle=\left(\underset{L}{M_{H}}-\frac{i}{2} \Gamma_{L} \Gamma_{L}\right)\left|X_{L}\right\rangle \quad \Rightarrow \quad\left|X_{L}(t)\right\rangle=e^{-i M_{L} t} e^{-\frac{1}{2} \Gamma_{L} t}\left|X_{L}(0)\right\rangle$
$\left|X_{H}^{H}\right\rangle$ are eigenvectors: no mixing
But often create X^{0} or \bar{X}^{0}. These mix, since they are a combination of X_{H} and \bar{X}_{L}.

Time evolution:

Invert

$$
\begin{aligned}
&\left|X^{0}\right\rangle=\frac{1}{2 p}\left(\left|X_{H}\right\rangle+\left|X_{L}\right\rangle\right) \quad\left|\bar{X}^{0}\right\rangle=\frac{1}{2 q}\left(\left|X_{H}\right\rangle-\left|X_{L}\right\rangle\right) \\
&\left|X^{0}(t)\right\rangle=\frac{1}{2 p}\left[e^{-i M_{H} t} e^{-\Gamma_{H} t}\left|X_{H}(0)\right\rangle+e^{-i M_{L} t} e^{-\Gamma_{L} t}\left|X_{L}(0)\right\rangle\right] \\
& \text { and use } \quad\left|X(0)_{L}^{H}\right\rangle=p\left|X^{0}(0)\right\rangle \pm q\left|\bar{X}^{0}(0)\right\rangle
\end{aligned}
$$

$$
\left|X^{0}(t)\right\rangle=f_{+}(t)\left|X^{0}\right\rangle+\frac{q}{p} f_{-}(t)\left|\bar{X}^{0}\right\rangle
$$

Exercise: $\quad f_{ \pm}(t)=\frac{1}{2} e^{-i M_{L} t-\frac{1}{2} \Gamma_{L} t}\left(e^{-i \Delta M t-\frac{1}{2} \Delta \Gamma t} \pm 1\right)$
and

$$
\left|\bar{X}^{0}(t)\right\rangle=\frac{p}{q} f_{-}(t)\left|X^{0}\right\rangle+\underset{\text { Io }}{f_{+}(t)\left|\bar{X}^{0}\right\rangle}
$$

Mixing: slow/fast?

It's about time we connect with SM! So let's see...

Want this: $\quad \frac{1+\epsilon}{1-\epsilon}=\frac{p}{q}=2 \frac{M_{12}-\frac{i}{2} \Gamma_{12}}{\Delta M-\frac{i}{2} \Delta \Gamma}=\frac{1}{2} 2 \frac{\Delta M-\frac{i}{2} \Delta \Gamma}{M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}}$
Use this: $\quad M_{i j}=M \delta_{i j}+\langle i| \mathcal{H}|j\rangle+\sum_{n}^{\prime} \operatorname{PP} \frac{\langle i| \mathcal{H}|n\rangle\langle n| \mathcal{H}|j\rangle}{M-E_{n}}+\cdots$

$$
\Gamma_{i j}=2 \pi \sum_{n}^{\prime} \delta\left(M-E_{n}\right)\langle i| \mathcal{H}|n\rangle\langle n| \mathcal{H}|j\rangle+\cdots
$$

Clear that:

$(\Delta M)^{2}-\frac{1}{4}(\Delta \Gamma)^{2}=4\left|M_{12}\right|^{2}-\left|\Gamma_{12}\right|^{2}$
$\Delta M \Delta \Gamma=4 \operatorname{Re}\left(M_{12} \Gamma_{12}^{*}\right)$

Quickly, for $B^{o} \& B s-$ mesons:

- modern-GIM: t-quark dominates
- Neglect Γ_{12}
- Then $\Delta M=2\left|M_{12}\right|$
- Then $\quad p / q=M_{12} /\left|M_{12}\right|$ a pure phase
- No phase in Feynman diagram (no cuts), phase from CKM's only:

$$
p / q=\left(V_{t b} V_{t d}^{*}\right)^{2} /\left|V_{t b} V_{t d}^{*}\right|^{2}
$$

- idem for $B s$:

$$
p / q=\left(V_{t b} V_{t s}^{*}\right)^{2} /\left|V_{t b} V_{t s}^{*}\right|^{2}
$$

- in SU(3) (Gell-Mann) symmetry limit

$$
(\Delta M)_{B_{s}} /(\Delta M)_{B^{0}}=\left|V_{t s} / V_{t b}\right|^{2}
$$

recall this?

We can now understand it! For example, take $\epsilon_{\mathrm{K}}=\epsilon$

Compare with $\quad \frac{1}{\Lambda^{2}}\left\langle K^{0}\right| \bar{d}_{L} \gamma^{\mu} s_{L} \bar{d}_{L} \gamma_{\mu} s_{L}\left|\bar{K}^{0}\right\rangle$
$\Lambda^{2} \leq \frac{4 \pi^{2}}{G_{F}^{2} M_{W}^{2}} \frac{1}{\left|V_{t d}^{*} V_{t s}\right|^{2}} \approx\left[\frac{6}{\left(10^{-5}\right)\left(10^{2}\right)} \frac{1}{(0.04)(0.004)} \mathrm{GeV}\right]^{2} \approx\left[4 \times 10^{4} \mathrm{TeV}\right]^{2}$

Exercise: check the other three mixing "bounds."

CPV

CPV in Decay

- Nothing to do with mixing, per-se
- Conceptually Simple
- Predictability: difficult
- Later also CPV in mixing and decay
asymmetry $\quad \mathcal{A}=\frac{\Gamma-\bar{\Gamma}}{\Gamma+\bar{\Gamma}} \quad \begin{aligned} & \Gamma \text { some rate } \\ & \bar{\Gamma} \text { the conjugate of the above } \\ & \text { (under something: } \mathrm{C}, \mathrm{CP}, \theta \rightarrow \pi-\theta \text {) }\end{aligned}$
CP decay-asymmetry $\quad \mathcal{A}=\frac{|\langle f \mid X\rangle|^{2}-|\langle\bar{f} \mid \bar{X}\rangle|^{2}}{|\langle f \mid X\rangle|^{2}+|\langle\bar{f} \mid \bar{X}\rangle|^{2}}$

Example: D decay

$$
\begin{aligned}
& \langle f \mid X\rangle=a A+b B \\
& \langle\bar{f} \mid \bar{X}\rangle=a^{*} \bar{A}+b^{*} \bar{B} \\
& a=V_{c s}^{*} V_{u s}, \quad b=V_{c d}^{*} V_{u d} \\
& \quad A=\langle f|\left(\bar{u}_{L} \gamma^{\mu} s_{L}\right)\left(\bar{s}_{L} \gamma_{\mu} c_{L}\right)|D\rangle \\
& B=\langle f|\left(\bar{u}_{L} \gamma^{\mu} d_{L}\right)\left(\bar{d}_{L} \gamma_{\mu} c_{L}\right)|D\rangle
\end{aligned}
$$

CP invariance of strong interactions:

$$
\begin{aligned}
A & =\langle f|\left(\bar{u}_{L} \gamma^{\mu} s_{L}\right)\left(\bar{s}_{L} \gamma_{\mu} c_{L}\right)|D\rangle \\
& =\langle f|(C P)^{-1}(C P)\left(\bar{u}_{L} \gamma^{\mu} s_{L}\right)\left(\bar{s}_{L} \gamma_{\mu} c_{L}\right)(C P)^{-1}(C P)|D\rangle \\
& =\langle\bar{f}|\left(\bar{s}_{L} \gamma^{\mu} u_{L}\right)\left(\bar{c}_{L} \gamma_{\mu} s_{L}\right)|\bar{D}\rangle \\
& =\bar{A}
\end{aligned}
$$

CP decay-asymmetry $\mathcal{A}=\frac{|\langle f \mid X\rangle|^{2}-|\langle\bar{f} \mid \bar{X}\rangle|^{2}}{|\langle f \mid X\rangle|^{2}+|\langle\bar{f} \mid \bar{X}\rangle|^{2}} \quad$ where $\quad \begin{aligned} & \langle f \mid X\rangle=a A+b B \\ & \langle\bar{f} \mid \bar{X}\rangle\end{aligned}=a^{*} A+b^{*} B$

$$
\Rightarrow \quad \mathcal{A}=\frac{2 \operatorname{Im}\left(a^{*} b\right) \operatorname{Im}\left(A^{*} B\right)}{|a A|^{2}+|b B|^{2}+2 \operatorname{Re}\left(a^{*} b\right) \operatorname{Re}\left(A^{*} B\right)}
$$

For direct CPV need both phases! (and knowledge of matrix elements computed with strong interactions):

Note that

$$
\operatorname{Im}\left(a^{*} b\right)=\operatorname{Im}\left(\left(V_{c s}^{*} V_{u s}\right)^{*} V_{c d}^{*} V_{u d}\right)=\operatorname{Im}\left(V_{c s} V_{c d}^{*} V_{u d} V_{u s}^{*}\right)=J
$$

$D^{ \pm}$CP-violation decay-rate asymmetries

$$
\begin{aligned}
& A_{C P}\left(\mu^{ \pm} \nu\right)=(8 \pm 8) \% \\
& A_{C P}\left(K_{S}^{0} \pi^{ \pm}\right)=(-0.41 \pm 0.09) \% \\
& A_{C P}\left(K^{\mp} 2 \pi^{ \pm}\right)=(-0.1 \pm 1.0) \% \\
& A_{C P}\left(K^{\mp} \pi^{ \pm} \pi^{ \pm} \pi^{0}\right)=(1.0 \pm 1.3) \% \\
& A_{C P}\left(K_{S}^{0} \pi^{ \pm} \pi^{0}\right)=(0.3 \pm 0.9) \% \\
& A_{C P}\left(K_{S}^{0} \pi^{ \pm} \pi^{+} \pi^{-}\right)=(0.1 \pm 1.3) \% \\
& A_{C P}\left(\pi^{ \pm} \pi^{0}\right)=(2.9 \pm 2.9) \% \\
& A_{C P}\left(\pi^{ \pm} \eta\right)=(1.0 \pm 1.5) \% \quad(S=1.4) \\
& A_{C P}\left(\pi^{ \pm} \eta^{\prime}(958)\right)=(-0.5 \pm 1.2) \% \quad(\mathrm{~S}=1.1) \\
& A_{C P}\left(K_{S}^{0} K^{ \pm}\right)=(-0.11 \pm 0.25) \% \\
& A_{C P}\left(K^{+} K^{-} \pi^{ \pm}\right)=(0.36 \pm 0.29) \% \\
& A_{C P}\left(K^{ \pm} K^{* 0}\right)=(-0.3 \pm 0.4) \% \\
& A_{C P}\left(\phi \pi^{ \pm}\right)=(0.09 \pm 0.19) \% \quad(S=1.2) \\
& A_{C P}\left(K^{ \pm} K_{0}^{*}(1430)^{0}\right)=\left(8_{-6}^{+7}\right) \% \\
& \left.A_{C P}\left(K^{ \pm} K_{2}^{*}(1430)\right)^{0}\right)=\left(43_{-26}^{+20}\right) \% \\
& A_{C P}\left(K^{ \pm} K_{0}^{*}(800)\right)=\left(-12-12_{-18}^{+18}\right) \% \\
& A_{C P}\left(a_{0}(1450)^{0} \pi^{ \pm}\right)=\left(-19{ }_{-16}^{+14}\right) \% \\
& A_{C P}\left(\phi(1680) \pi^{ \pm}\right)=(-9 \pm 26) \% \\
& A_{C P}\left(\pi^{+} \pi^{-} \pi^{ \pm}\right)=(-2 \pm 4) \% \\
& A_{C P}\left(K_{S}^{0} K^{ \pm} \pi^{+} \pi^{-}\right)=(-4 \pm 7) \% \\
& A_{C P}\left(K^{ \pm} \pi^{0}\right)=(-4 \pm 11) \%
\end{aligned}
$$

$C P$ violation

$$
\begin{aligned}
& A_{C P}\left(B^{+} \rightarrow J / \psi(1 S) K^{+}\right)=0.003 \pm 0.006 \quad(\mathrm{~S}=1.8) \\
& A_{C P}\left(B^{+} \rightarrow J / \psi(1 S) \pi^{+}\right)=(0.1 \pm 2.8) \times 10^{-2} \quad(\mathrm{~S}=1.2) \\
& A_{C P}\left(B^{+} \rightarrow J / \psi \rho^{+}\right)=-0.11 \pm 0.14 \\
& A_{C P}\left(B^{+} \rightarrow J / \psi K^{*}(892)^{+}\right)=-0.048 \pm 0.033 \\
& A_{C P}\left(B^{+} \rightarrow \eta_{c} K^{+}\right)=-0.02 \pm 0.10 \quad(\mathrm{~S}=2.0) \\
& A_{C P}\left(B^{+} \rightarrow \psi(2 S) \pi^{+}\right)=0.03 \pm 0.06 \\
& A_{C P}\left(B^{+} \rightarrow \psi(2 S) K^{+}\right)=-0.024 \pm 0.023 \\
& A_{C P}\left(B^{+} \rightarrow \psi(2 S) K^{*}(892)^{+}\right)=0.08 \pm 0.21 \\
& A_{C P}\left(B^{+} \rightarrow \chi_{c 1}(1 P) \pi^{+}\right)=0.07 \pm 0.18 \\
& A_{C P}\left(B^{+} \rightarrow \chi_{c 0} K^{+}\right)=-0.20 \pm 0.18 \quad(\mathrm{~S}=1.5) \\
& A_{C P}\left(B^{+} \rightarrow \chi_{c 1} K^{+}\right)=-0.009 \pm 0.033 \\
& A_{C P}\left(B^{+} \rightarrow \chi_{c 1} K^{*}(892)^{+}\right)=0.5 \pm 0.5 \\
& A_{C P}\left(B^{+} \rightarrow D^{0} \pi^{+}\right)=-0.007 \pm 0.007 \\
& A_{C P}\left(B^{+} \rightarrow D_{C P(+1)} \pi^{+}\right)=0.035 \pm 0.024 \\
& A_{C P}\left(B^{+} \rightarrow D_{C P(-1)} \pi^{+}\right)=0.017 \pm 0.026 \\
& A_{C P}\left(\left[K^{\mp} \pi^{ \pm} \pi^{+} \pi^{-}\right]_{D} \pi^{+}\right)=0.13 \pm 0.10 \\
& A_{C P}\left(B^{+} \rightarrow D^{0} K^{+}\right)=0.01 \pm 0.05 \quad(\mathrm{~S}=2.1) \\
& A_{C P}\left(\left[K^{\mp} \pi^{ \pm} \pi^{+} \pi^{-}\right]_{D} K^{+}\right)=-0.42 \pm 0.22 \\
& \mathrm{r}_{B}\left(B^{+} \rightarrow D^{0} K^{+}\right)=0.096 \pm 0.008 \\
& \delta_{B}\left(B^{+} \rightarrow D^{0} K^{+}\right)=(115 \pm 13)^{\circ} \\
& \mathrm{r}_{B}\left(B^{+} \rightarrow D^{0} K^{*+}\right)=0.17 \pm 0.11 \quad(\mathrm{~S}=2.3) \\
& \delta_{B}\left(B^{+} \rightarrow D^{0} K^{*+}\right)=(155 \pm 70)^{\circ} \quad(\mathrm{S}=2.0) \\
& A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} K^{+}\right)=-0.58 \pm 0.21 \\
& A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+} \pi^{0}\right]_{D} K^{+}\right)=0.41 \pm 0.30 \\
& A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} K^{*}(892)^{+}\right)=-0.3 \pm 0.5 \\
& A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{D} \pi^{+}\right)=0.00 \pm 0.09 \\
& A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+} \pi^{0}\right]_{D} \pi^{+}\right)=0.16 \pm 0.27 \\
& A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{(D \pi)} \pi^{+}\right)=-0.09 \pm 0.27 \\
& A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{(D \gamma)} \pi^{+}\right)=-0.7 \pm 0.6 \\
& A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{(D \pi)} K^{+}\right)=0.8 \pm 0.4 \\
& A_{C P}\left(B^{+} \rightarrow\left[K^{-} \pi^{+}\right]_{(D \gamma)} K^{+}\right)=0.4 \pm 1.0
\end{aligned}
$$

$A_{C P}\left(B^{+} \rightarrow\left[\pi^{+} \pi^{-} \pi^{0}\right]_{D} K^{+}\right)=-0.02 \pm 0.15$

$$
A_{C P}\left(B^{+} \rightarrow f_{2}(1270) K^{+}\right)=-0.68_{-0.17}^{+0.19}
$$

$$
\begin{aligned}
& \boldsymbol{A}_{\boldsymbol{C P}}\left(\boldsymbol{B}^{+} \rightarrow \boldsymbol{D}_{\boldsymbol{C P}(+1)} K^{+}\right)=0.170 \pm 0.033 \quad(\mathrm{~S}=1.2) \\
& A_{A D S}\left(B^{+} \rightarrow D K^{+}\right)=-0.52 \pm 0.15 \\
& A_{A D S}\left(B^{+} \rightarrow D \pi^{+}\right)=0.14 \pm 0.06 \\
& A_{C P}\left(B^{+} \rightarrow D_{C P(-1)} K^{+}\right)=-0.10 \pm 0.07 \\
& A_{C P}\left(B^{+} \rightarrow \bar{D}^{* 0} \pi^{+}\right)=-0.014 \pm 0.015 \\
& A_{C P}\left(B^{+} \rightarrow\left(D_{C P(+1)}^{*}\right)^{0} \pi^{+}\right)=-0.02 \pm 0.05 \\
& A_{C P}\left(B^{+} \rightarrow\left(D_{C P(-1)}^{*}\right)^{0} \pi^{+}\right)=-0.09 \pm 0.05 \\
& A_{C P}\left(B^{+} \rightarrow D^{* 0} K^{+}\right)=-0.07 \pm 0.04 \\
& r_{B}^{*}\left(B^{+} \rightarrow D^{* 0} K^{+}\right)=0.114_{-0.040}^{+0.023} \quad(S=1.2) \\
& \delta_{B}^{*}\left(B^{+} \rightarrow D^{* 0} K^{+}\right)=\left(310_{-28}^{+22}\right)^{\circ} \quad(S=1.3) \\
& A_{C P}\left(B^{+} \rightarrow D_{C P(+1)}^{* 0} K^{+}\right)=-0.12 \pm 0.08 \\
& A_{C P}\left(B^{+} \rightarrow D_{C P(-1)}^{*} K^{+}\right)=0.07 \pm 0.10 \\
& A_{C P}\left(B^{+} \rightarrow D_{C P(+1)} K^{*}(892)^{+}\right)=0.09 \pm 0.14 \\
& A_{C P}\left(B^{+} \rightarrow D_{C P(-1)} K^{*}(892)^{+}\right)=-0.23 \pm 0.22 \\
& A_{C P}\left(B^{+} \rightarrow D_{s}^{+} \phi\right)=0.0 \pm 0.4 \\
& A_{C P}\left(B^{+} \rightarrow D^{*+} \bar{D}^{* 0}\right)=-0.15 \pm 0.11 \\
& A_{C P}\left(B^{+} \rightarrow D^{*+} \bar{D}^{0}\right)=-0.06 \pm 0.13 \\
& A_{C P}\left(B^{+} \rightarrow D^{+} \bar{D}^{* 0}\right)=0.13 \pm 0.18 \\
& A_{C P}\left(B^{+} \rightarrow D^{+} \bar{D}^{0}\right)=-0.03 \pm 0.07 \\
& A_{C P}\left(B^{+} \rightarrow K_{S}^{0} \pi^{+}\right)=-0.017 \pm 0.016 \\
& A_{C P}\left(B^{+} \rightarrow K^{+} \pi^{0}\right)=0.037 \pm 0.021 \\
& A_{C P}\left(B^{+} \rightarrow \eta^{\prime} K^{+}\right)=0.013 \pm 0.017 \\
& A_{C P}\left(B^{+} \rightarrow \eta^{\prime} K^{*}(892)^{+}\right)=-0.26 \pm 0.27 \\
& A_{C P}\left(B^{+} \rightarrow \eta^{\prime} K_{0}^{*}(1430)^{+}\right)=0.06 \pm 0.20 \\
& A_{C P}\left(B^{+} \rightarrow \eta^{\prime} K_{2}^{*}(1430)^{+}\right)=0.15 \pm 0.13 \\
& \boldsymbol{A}_{\boldsymbol{C P}}\left(\boldsymbol{B}^{+} \rightarrow \boldsymbol{\eta} \boldsymbol{K}^{+}\right)=-0.37 \pm 0.08 \\
& A_{C P}\left(B^{+} \rightarrow \eta K^{*}(892)^{+}\right)=0.02 \pm 0.06 \\
& A_{C P}\left(B^{+} \rightarrow \eta K_{0}^{*}(1430)^{+}\right)=0.05 \pm 0.13 \\
& A_{C P}\left(B^{+} \rightarrow \eta K_{2}^{*}(1430)^{+}\right)=-0.45 \pm 0.30 \\
& A_{C P}\left(B^{+} \rightarrow \omega K^{+}\right)=0.02 \pm 0.05 \\
& A_{C P}\left(B^{+} \rightarrow \omega K^{*+}\right)=0.29 \pm 0.35 \\
& A_{C P}\left(B^{+} \rightarrow \omega(K \pi)_{0}^{*+}\right)=-0.10 \pm 0.09 \\
& A_{C P}\left(B^{+} \rightarrow \omega K_{2}^{*}(1430)^{+}\right)=0.14 \pm 0.15 \\
& A_{C P}\left(B^{+} \rightarrow K^{* 0} \pi^{+}\right)=-0.04 \pm 0.09 \quad(S=2.1) \\
& A_{C P}\left(B^{+} \rightarrow K^{*}(892)^{+} \pi^{0}\right)=-0.06 \pm 0.24 \\
& \boldsymbol{A}_{\boldsymbol{C P}}\left(\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{+}\right)=0.033 \pm 0.010 \\
& A_{C P}\left(B^{+} \rightarrow K^{+} K^{-} K^{+} \text {nonresonant }\right)=0.06 \pm 0.05 \\
& A_{C P}\left(B^{+} \rightarrow f(980)^{0} K^{+}\right)=-0.08 \pm 0.09
\end{aligned}
$$

```
\(A_{C P}\left(B^{+} \rightarrow f_{0}(1500) K^{+}\right)=0.28 \pm 0.30\)
\(A_{C P}\left(B^{+} \rightarrow f_{2}^{\prime}(1525)^{0} K^{+}\right)=-0.08_{-0.04}^{+0.05}\)
\(\boldsymbol{A}_{C P}\left(\boldsymbol{B}^{+} \rightarrow \boldsymbol{\rho}^{\mathbf{0}} \boldsymbol{K}^{+}\right)=0.37 \pm 0.10\)
\(A_{C P}\left(B^{+} \rightarrow K_{0}^{*}(1430)^{0} \pi^{+}\right)=0.055 \pm 0.033\)
\(A_{C P}\left(B^{+} \rightarrow K_{2}^{*}(1430)^{0} \pi^{+}\right)=0.05_{-0.24}^{+0.29}\)
\(A_{C P}\left(B^{+} \rightarrow K^{+} \pi^{0} \pi^{0}\right)=-0.06 \pm 0.07\)
\(A_{C P}\left(B^{+} \rightarrow K^{0} \rho^{+}\right)=-0.12 \pm 0.17\)
\(A_{C P}\left(B^{+} \rightarrow K^{*+} \pi^{+} \pi^{-}\right)=0.07 \pm 0.08\)
\(A_{C P}\left(B^{+} \rightarrow \rho^{0} K^{*}(892)^{+}\right)=0.31 \pm 0.13\)
\(A_{C P}\left(B^{+} \rightarrow K^{*}(892)^{+} f_{0}(980)\right)=-0.15 \pm 0.12\)
\(A_{C P}\left(B^{+} \rightarrow a_{1}^{+} K^{0}\right)=0.12 \pm 0.11\)
\(A_{C P}\left(B^{+} \rightarrow b_{1}^{+} K^{0}\right)=-0.03 \pm 0.15\)
\(A_{C P}\left(B^{+} \rightarrow K^{*}(892)^{0} \rho^{+}\right)=-0.01 \pm 0.16\)
\(A_{C P}\left(B^{+} \rightarrow b_{0}^{0} K^{+}\right)=-0.46 \pm 0.20\)
\(A_{C P}\left(B^{+} \rightarrow K^{0} K^{+}\right)=0.04 \pm 0.14\)
\(A_{C P}\left(B^{+} \rightarrow K_{S}^{0} K^{+}\right)=-0.21 \pm 0.14\)
\(A_{C P}\left(B^{+} \rightarrow K^{+} K_{S}^{0} K_{S}^{0}\right)=0.04_{-0.05}^{+0.04}\)
\(A_{C P}\left(B^{+} \rightarrow K^{+} K^{-} \pi^{+}\right)=-0.12 \pm 0.05 \quad(\mathrm{~S}=1.2)\)
\(\boldsymbol{A}_{\boldsymbol{C P}}\left(\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{+} \boldsymbol{K}^{-} \boldsymbol{K}^{+}\right)=-0.036 \pm 0.012 \quad(\mathrm{~S}=1.1)\)
\(A_{C P}\left(B^{+} \rightarrow \phi K^{+}\right)=0.04 \pm 0.04 \quad(S=2.1)\)
\(A_{C P}\left(B^{+} \rightarrow X_{0}(1550) K^{+}\right)=-0.04 \pm 0.07\)
\(A_{C P}\left(B^{+} \rightarrow K^{*+} K^{+} K^{-}\right)=0.11 \pm 0.09\)
\(A_{C P}\left(B^{+} \rightarrow \phi K^{*}(892)^{+}\right)=-0.01 \pm 0.08\)
\(A_{C P}\left(B^{+} \rightarrow \phi(K \pi)_{0}^{*+}\right)=0.04 \pm 0.16\)
\(A_{C P}\left(B^{+} \rightarrow \phi K_{1}(1270)^{+}\right)=0.15 \pm 0.20\)
\(A_{C P}\left(B^{+} \rightarrow \phi K_{2}^{*}(1430)^{+}\right)=-0.23 \pm 0.20\)
\(A_{C P}\left(B^{+} \rightarrow K^{+} \phi \phi\right)=-0.10 \pm 0.08\)
\(A_{C P}\left(B^{+} \rightarrow K^{+}[\phi \phi]_{\eta_{c}}\right)=0.09 \pm 0.10\)
\(A_{C P}\left(B^{+} \rightarrow K^{*}(892)^{+} \gamma\right)=0.018 \pm 0.029\)
\(A_{C P}\left(B^{+} \rightarrow \eta K^{+} \gamma\right)=-0.12 \pm 0.07\)
\(A_{C P}\left(B^{+} \rightarrow \phi K^{+} \gamma\right)=-0.13 \pm 0.11 \quad(S=1.1)\)
\(A_{C P}\left(B^{+} \rightarrow \rho^{+} \gamma\right)=-0.11 \pm 0.33\)
\(A_{C P}\left(B^{+} \rightarrow \pi^{+} \pi^{0}\right)=0.03 \pm 0.04\)
\(\boldsymbol{A}_{\boldsymbol{C P}}\left(\boldsymbol{B}^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}\right)=0.105 \pm 0.029 \quad(\mathrm{~S}=1.3)\)
\(A_{C P}\left(B^{+} \rightarrow \rho^{0} \pi^{+}\right)=0.18_{-0.17}^{+0.09}\)
\(A_{C P}\left(B^{+} \rightarrow f_{2}(1270) \pi^{+}\right)=0.41 \pm 0.30\)
\(A_{C P}\left(B^{+} \rightarrow \rho^{0}(1450) \pi^{+}\right)=-0.1_{-0.5}^{+0.4}\)
\(A_{C P}\left(B^{+} \rightarrow f_{0}(1370) \pi^{+}\right)=0.72 \pm 0.22\)
\(A_{C P}\left(B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}\right.\)nonresonant \()=-0.14_{-0.16}^{+0.23}\)
\(A_{C P}\left(B^{+} \rightarrow \rho^{+} \pi^{0}\right)=0.02 \pm 0.11\)
\(A_{C P}\left(B^{+} \rightarrow \rho^{+} \rho^{0}\right)=-0.05 \pm 0.05\)
```

```
\(A_{C P}\left(B^{+} \rightarrow \omega \pi^{+}\right)=-0.04 \pm 0.06\)
\(A_{C P}\left(B^{+} \rightarrow \omega \rho^{+}\right)=-0.20 \pm 0.09\)
\(A_{C P}\left(B^{+} \rightarrow \eta \pi^{+}\right)=-0.14 \pm 0.07 \quad(S=1.4)\)
\(A_{C P}\left(B^{+} \rightarrow \eta \rho^{+}\right)=0.11 \pm 0.11\)
\(A_{C P}\left(B^{+} \rightarrow \eta^{\prime} \pi^{+}\right)=0.06 \pm 0.16\)
\(A_{C P}\left(B^{+} \rightarrow \eta^{\prime} \rho^{+}\right)=0.26 \pm 0.17\)
\(A_{C P}\left(B^{+} \rightarrow b_{1}^{0} \pi^{+}\right)=0.05 \pm 0.16\)
\(A_{C P}\left(B^{+} \rightarrow p \bar{p} \pi^{+}\right)=0.00 \pm 0.04\)
\(A_{C P}\left(B^{+} \rightarrow p \bar{p} K^{+}\right)=-0.08 \pm 0.04 \quad(\mathrm{~S}=1.1)\)
\(A_{C P}\left(B^{+} \rightarrow p \bar{p} K^{*}(892)^{+}\right)=0.21 \pm 0.16 \quad(\mathrm{~S}=1.4)\)
\(A_{C P}\left(B^{+} \rightarrow p \bar{\lambda} \gamma\right)=0.17 \pm 0.17\)
\(A_{C P}\left(B^{+} \rightarrow p \bar{\Lambda} \pi^{0}\right)=0.01 \pm 0.17\)
\(A_{C P}\left(B^{+} \rightarrow K^{+} \ell^{+} \ell^{-}\right)=-0.02 \pm 0.08\)
\(A_{C P}\left(B^{+} \rightarrow K^{+} e^{+} e^{-}\right)=0.14 \pm 0.14\)
\(A_{C P}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)=-0.003 \pm 0.033\)
\(A_{C P}\left(B^{+} \rightarrow K^{*+} \ell^{+} \ell^{-}\right)=-0.09 \pm 0.14\)
\(A_{C P}\left(B^{+} \rightarrow K^{*} e^{+} e^{-}\right)=-0.14 \pm 0.23\)
\(A_{C P}\left(B^{+} \rightarrow K^{*} \mu^{+} \mu^{-}\right)=-0.12 \pm 0.24\)
\(\gamma\left(B^{+} \rightarrow D^{(*) 0} K^{(*)+}\right)=\left(73_{-9}^{+7}\right)^{\circ}\)
```


CPV in mixing

Kaons first（will come back to heavier mesons）
Physical approximations：

$$
\begin{aligned}
& \text { If CP were conserved } \quad \epsilon=0, \operatorname{Im} M_{12}=0, \operatorname{Im} \Gamma_{12}=0 \\
& \text { and we would have } \quad \Delta M=2 \operatorname{Re} M_{12}, \Delta \Gamma=2 \operatorname{Re} \Gamma_{12}
\end{aligned}
$$

CPV is small：assume $\quad \operatorname{Im} M_{12} \ll \operatorname{Re} M_{12}, \quad \operatorname{Im} \Gamma_{12} \ll \operatorname{Re} \Gamma_{12}$

$$
\epsilon \approx i \frac{\operatorname{Im} M_{12}-\frac{i}{2} \operatorname{Im} \Gamma_{12}}{\Delta M-\frac{i}{2} \Delta \Gamma}
$$

We＇ll see $\operatorname{Im} \Gamma_{12} \ll \operatorname{Im} M_{12} \quad$ Empirically $\Delta \Gamma \approx-2 \Delta M \quad \epsilon \approx e^{i \pi / 4} \frac{\operatorname{Im} M_{12}}{\sqrt{2} \Delta M}$
Example：Conceptually clean measurement，semileptonic charge－asymmetry

$$
\delta \equiv \frac{\Gamma\left(K_{1} \rightarrow 刀^{-} e^{+\nu}\right)-\Gamma\left(K_{L} \rightarrow 刀^{+} e^{-} \nu\right)}{\Gamma\left(K_{L} \rightarrow 刀^{-} e^{+L}\right)+\Gamma\left(K_{L} \rightarrow 刀^{+} e^{-} \nu\right)}=\frac{|1+\epsilon|^{2}-|1-\epsilon|^{2}}{11+\epsilon^{2}+11-\left.\epsilon\right|^{2}} \approx 2 \text { Re }
$$

$$
\delta_{\text {exp }}=0.330 \pm 0.012 \% \quad \text { gives } \quad \text { Ret }=1.65 \times 10^{-3}
$$

Example: Time dependent charge-asymmetry in semileptonic X decay (" $X_{l 3}$ decay")
Like δ above but now $\delta(t)$

Assume beam has $N_{X^{0}}$ and $N_{\bar{X}^{0}}$ of X^{0} and \bar{X}^{0}

$$
\begin{gathered}
\delta(t)=\frac{N^{+}-N^{-}}{N^{+}+N^{-}} \quad \text { where } t \text { is from distance from target/magic box } \\
\delta(t)=\frac{N_{X^{0}}\left[\Gamma\left(X^{0}(t) \rightarrow \pi^{-} e^{+} \nu\right)-\Gamma\left(X^{0}(t) \rightarrow \pi^{+} e^{-} \nu\right)\right]+N_{\bar{X}^{0}}\left[\Gamma\left(\bar{X}^{0}(t) \rightarrow \pi^{-} e^{+} \nu\right)-\Gamma\left(\bar{X}^{0}(t) \rightarrow \pi^{+} e^{-} \nu\right)\right]}{\text { same but with }++++\operatorname{signs}}
\end{gathered}
$$

yeach! real life is complicated...

Exercises

Exercise 2.5.2-2: Use $\left.\Gamma\left(K^{0}(t) \rightarrow \pi^{-} e^{+} \nu\right) \propto\left|\left\langle\pi^{-} e^{+} \nu\right| H_{W}\right| K^{0}(t)\right\rangle\left.\right|^{2}$ and the assumptions that
(i) $\left\langle\pi^{-} e^{+} \nu\right| H_{W}\left|\bar{K}^{0}(t)\right\rangle=0=\left\langle\pi^{+} e^{-} \nu\right| H_{W}\left|K^{0}(t)\right\rangle$
(ii) $\left\langle\pi^{-} e^{+} \nu\right| H_{W}\left|K^{0}(t)\right\rangle=\left\langle\pi^{+} e^{-} \nu\right| H_{W}\left|\bar{K}^{0}(t)\right\rangle$
to show that

$$
\delta(t)=\frac{\left(N_{K^{0}}-N_{\bar{K}^{0}}\right)\left[\left|f_{+}(t)\right|^{2}-\left|f_{-}(t)\right|^{2} \frac{1}{2}\left(\left|\frac{q}{p}\right|^{2}+\left|\frac{p}{q}\right|^{2}\right)\right]+\frac{1}{2}\left(N_{K^{0}}+N_{\bar{K}^{0}}\right)\left|f_{-}(t)\right|^{2}\left(\left|\frac{p}{q}\right|^{2}-\left|\frac{q}{p}\right|^{2}\right)}{\left(N_{K^{0}}+N_{\bar{K}^{0}}\right)\left[\left|f_{+}(t)\right|^{2}+\left|f_{-}(t)\right|^{2} \frac{1}{2}\left(\left|\frac{q}{p}\right|^{2}+\left|\frac{p}{q}\right|^{2}\right)\right]-\frac{1}{2}\left(N_{K^{0}}-N_{\bar{K}^{0}}\right)\left|f_{-}(t)\right|^{2}\left(\left|\frac{p}{q}\right|^{2}-\left|\frac{q}{p}\right|^{2}\right)}
$$

Justify assumptions (i) and (ii).
KAONS: $p / q=(1+\epsilon) /(1-\epsilon) \quad a \equiv\left(N_{K^{0}}-N_{\bar{K}^{0}}\right) /\left(N_{K^{0}}+N_{\bar{K}^{0}}\right) \quad \Delta \Gamma \approx-\Gamma_{S}$

$$
\begin{aligned}
\delta(t) & =\frac{a\left[\left|f_{+}(t)\right|^{2}-\left|f_{-}(t)\right|^{2}\right]+4 \operatorname{Re}(\epsilon)\left|f_{-}(t)\right|^{2}}{\left[\left|f_{+}(t)\right|^{2}+\left|f_{-}(t)\right|^{2}\right]-4 a \operatorname{Re}(\epsilon)\left|f_{-}(t)\right|^{2}} \\
& \approx \frac{2 a e^{-\frac{1}{2} \Gamma_{S} t} \cos (\Delta M t)+\left(1+e^{-\Gamma_{S} t}-2 e^{-\frac{1}{2} \Gamma_{S} t} \cos (\Delta M t)\right) 2\left(1+\frac{a}{2}\right) \operatorname{Re}(\epsilon)}{1+e^{-\Gamma_{S} t}}
\end{aligned}
$$

muons:
Fig. 1. The charge asymmetry as a function of the reconstructed decay time τ^{\prime} for the $\mathrm{K}_{\mathrm{e} 3}$ decays. The experimental data are compared to the best fit as indicated by the solid line.

Charge asymmetry in the decars $\mathrm{K}^{0} \longrightarrow \pi^{i} \mu^{:} \cdot v$
S. Gjesdal, et al, Phys.Lett. B52 (1974) Iı3

The solid curve is a fit to the formula of previous slide from which the parameters $\Gamma_{S}, \Delta M, a$ and $\operatorname{Re}(\epsilon)$ are extracted.
 Fig, 2. The charge asymmetry as a function of the
pared to the best fit as indicated by the solid line.

This is B^{0} (in hadronic decays)

41

FIG. 25: Time-dependent asymmetry $\mathcal{A}(\Delta t)$ between unmixed and mixed events for hadronic B candidates with $m_{\mathrm{ES}}>$ $5.27 \mathrm{GeV} / c^{2}$, a) as a function of Δt; and b) folded as a function of $|\Delta t|$. The asymmetry in a) is due to the fitted bias in the Δt resolution function.

Babar, arXiv.org > hep-ex > arXiv:hep-ex/o20iozo

CP Asymmetries in Interference Mixing-Decay

Mixing gives two paths to same final state. If final state is a CP eigenstate this can test for CPV in the two decays.

This we know: $\left.\Gamma\left(X^{0}(t) \rightarrow f\right)=\left|f_{+}(t)\langle f| H_{w}\right| X^{0}\right\rangle+\left.\frac{q}{p} f_{-}(t)\langle f| H_{w}\left|\bar{X}^{0}\right\rangle\right|^{2}$
This defines shorthand: $\quad \equiv\left|f_{+}(t) A_{f}+\frac{q}{p} f_{-}(t) \bar{A}_{f}\right|^{2}$
idem

$$
\Gamma\left(\bar{X}^{0}(t) \rightarrow \bar{f}\right)=\left|\frac{p}{q} f_{-}(t) A_{\bar{f}}+f_{+}(t) \bar{A}_{\bar{f}}\right|^{2}
$$

Time-dependent asymmetry

$$
\mathcal{A}(t)=\frac{\Gamma\left(\bar{X}^{0}(t) \rightarrow \bar{f}\right)-\Gamma\left(X^{0}(t) \rightarrow f\right)}{\Gamma\left(\bar{X}^{0}(t) \rightarrow \bar{f}\right)+\Gamma\left(X^{0}(t) \rightarrow f\right)}
$$

I. Semileptonic (much like $\delta(t)$): $f=e^{-}+$any
$\bar{b} \rightarrow \bar{c} e^{+} \nu \quad \Rightarrow \quad X^{0} \rightarrow e^{+}+$any \quad Then $\quad \begin{gathered}A_{f}=0 \\ \bar{A}_{\bar{f}}=0\end{gathered} \quad \Gamma\left(X^{0}(t) \rightarrow f\right)=\left|\frac{q}{p} f_{-}(t) \bar{A}_{f}\right|^{2}$
$b \rightarrow c e^{-} \bar{\nu} \quad \Rightarrow \quad \bar{X}^{0} \rightarrow e^{-}+$any \quad Then $\quad \bar{A}_{\bar{f}}=0$

$$
\Gamma\left(\bar{X}^{0}(t) \rightarrow \bar{f}\right)=\left|\frac{p}{q} f_{-}(t) A_{\bar{f}}\right|^{2}
$$

$$
\mathcal{A}_{\mathrm{SL}}(t)=\frac{\left|\frac{p}{q}\right|^{2}-\left|\frac{q}{p}\right|^{2}}{\left|\frac{p}{q}\right|^{2}+\left|\frac{q}{p}\right|^{2}}
$$

- Directly probes $|q / p|$
- Time dependence? time independent
- We already saw that in SM this is expected to vanish to good approximation (if $\Gamma_{12}=0$)
- We did not try to improve on our approximation nor estimate deviations; guesstimate
$B_{d}: \quad \mathcal{A}_{\mathrm{SL}}^{d}=\mathcal{O}\left[\left(m_{c}^{2} / m_{t}^{2}\right) \sin \beta\right] \lesssim 0.001 . \quad B_{s:}: \mathcal{A}_{\mathrm{SL}}^{s}=\mathcal{O}\left[\left(m_{c}^{2} / m_{t}^{2}\right) \sin \beta_{s}\right] \lesssim 10^{-4}$.
- Experiment

$$
\begin{aligned}
& \mathcal{A}_{\mathrm{SL}}^{d}=(+0.7 \pm 2.7) \times 10^{-3} \Longrightarrow|q / p|=0.9997 \pm 0.0013 \\
& \mathcal{A}_{\mathrm{SL}}^{s}=(-17.1 \pm 5.5) \times 10^{-3} \Longrightarrow|q / p|=1.0086 \pm 0.0028
\end{aligned}
$$

In what follows take $\quad\left|\frac{p}{q}\right|=1 \quad$ and it makes sense to use $\Delta \Gamma \approx 0$
Simplification:

$$
f_{ \pm}(t)=e^{-i M t} e^{-\Gamma t}\left\{\begin{array}{l}
\cos \left(\frac{1}{2} \Delta M t\right) \\
-i \sin \left(\frac{1}{2} \Delta M t\right)
\end{array}\right.
$$

2. CPV in interference between a decay with mixing and a decay without mixing

No distinction between final states $\quad A_{\bar{f}}=A_{f} \quad \bar{A}_{\bar{f}}=\bar{A}_{f}$

$$
\mathcal{A}_{f_{C P}}=\frac{\left|\frac{p}{q} f_{-}(t) A_{f}+f_{+}(t) \bar{A}_{f}\right|^{2}-\left|f_{+}(t) A_{f}+\frac{q}{p} f_{-}(t) \bar{A}_{f}\right|^{2}}{\left|\frac{p}{q} f_{-}(t) A_{f}+f_{+}(t) \bar{A}_{f}\right|^{2}+\left|f_{+}(t) A_{f}+\frac{q}{p} f_{-}(t) \bar{A}_{f}\right|^{2}}
$$

Divide by $|A|^{2}$, use $|p / q|=1$ and define

$$
\begin{aligned}
& \qquad \lambda_{f}=\frac{q}{p} \frac{\bar{A}_{f}}{A_{f}} \\
& =\frac{\left|f_{-}(t)+f_{+}(t) \lambda_{f}\right|^{2}-\left|f_{+}(t)+f_{-}(t) \lambda_{f}\right|^{2}}{\left|f_{-}(t)+f_{+}(t) \lambda_{f}\right|^{2}-\left|f_{+}(t)+f_{-}(t) \lambda_{f}\right|^{2}} \\
& =-\frac{1-\left|\lambda_{f}\right|^{2}}{1+\left|\lambda_{f}\right|^{2}} \cos (\Delta M t)+\frac{2 \operatorname{Im} \lambda_{f}}{1+\left|\lambda_{f}\right|^{2}} \sin (\Delta M t) \\
& \equiv-C_{f} \cos (\Delta M t)+S_{f} \sin (\Delta M t)
\end{aligned}
$$

Example: $f=D^{+} D^{-}$

$A_{D^{+} D^{-}} \propto V_{c b}^{*} V_{c d}$

$\frac{\bar{A}_{f}}{A_{f}}=\frac{V_{c b} V_{c d}^{*}}{V_{c b}^{*} V_{c d}}$

We have already seen that

$$
\frac{p}{q}=\frac{2 M_{12}}{\Delta M}=\frac{\Delta M}{2 M_{12}^{*}}=\frac{M_{12}}{\left|M_{12}\right|}=\frac{V_{t b}^{*} V_{t d}}{V_{t b} V_{t d}^{*}}
$$

Putting these together $\quad\left|\lambda_{D^{+} D^{-}}\right|=1$
and

$$
S_{D^{+} D^{-}}=\operatorname{Im}\left(\lambda_{D^{+} D^{-}}\right)=\operatorname{Im}\left(\frac{V_{c b} V_{c d}^{*}}{V_{c b}^{*} V_{c d}} \frac{V_{t b}^{*} V_{t d}}{V_{t b} V_{t d}^{*}}\right)=\operatorname{Im}\left(e^{2 i \beta}\right)=\sin (2 \beta)
$$

This is pure KM phase! No hadronic uncertainties.

Just as in direct CPV:

$$
A_{f}=a T+b P
$$

$$
\bar{A}_{f}=a^{*} T+b^{*} P
$$

$$
a, b=\text { CKMs }
$$

$$
T, P=\text { M.E.s }
$$

("tree" and "penguin")

Suppose $\quad|P|=0 \quad \Rightarrow \quad \lambda_{f}=\frac{q}{p} \frac{a^{*}}{a}$

That's just CKM's. No dependence on unknown M.E.s !

For pointing this out I. Bigi and A. Sanda received the Sakurai Prize 2004
... and a race to build B-factories was on! (well, with the added idea of asymmetric colliders)
$B \rightarrow J / \psi K_{S}$

$$
\frac{\bar{A}_{\psi K_{S}}}{A_{\psi K_{S}}}=-\frac{\left(V_{c b} V_{c s}^{*}\right) T+\left(V_{u b} V_{u s}^{*}\right) P}{\left(V_{c b}^{*} V_{c s}\right) T+\left(V_{u b}^{*} V_{u s}\right) P} \times \frac{V_{c d}^{*} V_{c s}}{V_{c d} V_{c s}^{*}}
$$

Neglecting P :

$$
\lambda_{\psi K_{S}}=-e^{-2 i \beta} \quad S_{\psi K_{S}}=\sin (2 \beta), \quad C_{\psi K_{S}}=0
$$

PDG: $\quad S_{\psi K}=+0.682 \pm 0.019, \quad C_{\psi K}=(0.5 \pm 2.0) \times 10^{-2}$
$B \rightarrow \pi \pi$

$$
\frac{\bar{A}_{\pi \pi}}{A_{\pi \pi}}=-\frac{\left(V_{u b} V_{u d}^{*}\right) T+\left(V_{t b} V_{t d}^{*}\right) P}{\left(V_{u b}^{*} V_{u d}\right) T+\left(V_{t b}^{*} V_{t d}\right) P}
$$

PDG: $\quad C_{\pi^{+} \pi^{-}}=-0.31 \pm 0.05$

Real life, $|P| \neq 0 \quad$ (for this observation, I got no prize; Phys.Lett. B229 (1989) 280)

| $\bar{b} \rightarrow \bar{q} q \bar{q}^{\prime}$ | $B^{0} \rightarrow f$ | $B_{s} \rightarrow f$ | CKM dependence of A_{f} | Suppression |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\bar{b} \rightarrow \bar{c} c \bar{s}$ | ψK_{S} | $\psi \phi$ | $\left(V_{c b}^{*} V_{c s}\right) T+\left(V_{u b}^{*} V_{u s}\right) P^{u}$ | loop $\times \lambda^{2}$ |
| $\bar{b} \rightarrow \bar{s} s \bar{s}$ | ϕK_{S} | $\phi \phi$ | $\left(V_{c b}^{*} V_{c s}\right) P^{c}+\left(V_{u b}^{*} V_{u s}\right) P^{u}$ | λ^{2} |
| $\bar{b} \rightarrow \bar{u} u \bar{s}$ | $\pi^{0} K_{S}$ | $K^{+} K^{-}$ | $\left(V_{c b}^{*} V_{c s}\right) P^{c}+\left(V_{u b}^{*} V_{u s}\right) T$ | $\lambda^{2} /$ loop |
| $\bar{b} \rightarrow \bar{c} c \bar{d}$ | $D^{+} D^{-}$ | ψK_{S} | $\left(V_{c b}^{*} V_{c d}\right) T+\left(V_{t b}^{*} V_{t d}\right) P^{t}$ | loop |
| $\bar{b} \rightarrow \bar{s} s \bar{d}$ | $K_{S} K_{S}$ | ϕK_{S} | $\left(V_{t b}^{*} V_{t d}\right) P^{t}+\left(V_{c b}^{*} V_{c d}\right) P^{c}$ | $\lesssim 1$ |
| $\bar{b} \rightarrow \bar{u} u \bar{d}$ | $\pi^{+} \pi^{-}$ | $\rho^{0} K_{S}$ | $\left(V_{u b}^{*} V_{u d}\right) T+\left(V_{t b}^{*} V_{t d}\right) P^{t}$ | loop |

$C_{D^{*-} D^{+}}\left(B^{0} \rightarrow D^{*}(2010)^{-} D^{+}\right)=-0.01 \pm 0.11$
$\boldsymbol{S}_{\boldsymbol{D}^{*-} \boldsymbol{D}^{+}}\left(B^{0} \rightarrow D^{*}(\mathbf{2 0 1 0})^{-} \boldsymbol{D}^{+}\right)=-0.72 \pm 0.15$
$C_{D^{*+} D^{-}}\left(B^{0} \rightarrow D^{*}(2010)^{+} D^{-}\right)=0.00 \pm 0.13 \quad(S=1.3)$
$\boldsymbol{S}_{\boldsymbol{D}^{++} \boldsymbol{D}^{-}}\left(\boldsymbol{B}^{0} \rightarrow \boldsymbol{D}^{*}(\mathbf{2 0 1 0})^{+} \boldsymbol{D}^{-}\right)=-0.73 \pm 0.14$
$C_{D^{*+} D^{*-}}\left(B^{0} \rightarrow D^{*+} D^{*-}\right)=0.01 \pm 0.09 \quad(S=1.6)$
$\boldsymbol{S}_{\boldsymbol{D}^{*+} \boldsymbol{D}^{*-}}\left(B^{0} \rightarrow \boldsymbol{D}^{*+} \boldsymbol{D}^{*-}\right)=-0.59 \pm 0.14 \quad(\mathrm{~S}=1.8)$
$C_{+}\left(B^{0} \rightarrow D^{*+} D^{*-}\right)=0.00 \pm 0.10 \quad(S=1.6)$
$S_{+}\left(B^{0} \rightarrow D^{*+} D^{*-}\right)=-0.73 \pm 0.09$

$C_{-}\left(B^{0} \rightarrow D^{*+} D^{*-}\right)=0.19 \pm 0.31$
$S_{-}\left(B^{0} \rightarrow D^{*+} D^{*-}\right)=0.1 \pm 1.6 \quad(\mathrm{~S}=3.5)$
$C\left(B^{0} \rightarrow D^{*}(2010)^{+} D^{*}(2010)^{-} K_{S}^{0}\right)=0.01 \pm 0.29$
$S\left(B^{0} \rightarrow D^{*}(2010)^{+} D^{*}(2010)^{-} K_{S}^{0}\right)=0.1 \pm 0.4$
$C_{D^{+} D^{-}}\left(B^{0} \rightarrow D^{+} D^{-}\right)=-0.46 \pm 0.21 \quad(S=1.8)$
$\boldsymbol{S}_{\boldsymbol{D}^{+} \boldsymbol{D}^{-}}\left(\boldsymbol{B}^{0} \rightarrow \boldsymbol{D}^{+} \boldsymbol{D}^{-}\right)=-0.99_{-0.14}^{+0.17}$
$C_{J / \psi(1 S) \pi^{0}}\left(B^{0} \rightarrow J / \psi(1 S) \pi^{0}\right)=-0.13 \pm 0.13$
$S_{J / \psi(\mathbf{1 S}) \pi^{0}}\left(B^{0} \rightarrow J / \psi(\mathbf{1 S}) \pi^{0}\right)=-0.94 \pm 0.29 \quad(\mathrm{~S}=1.9)$
$C_{D_{C P}^{(*)} h^{0}}\left(B^{0} \rightarrow D_{C P}^{(*)} h^{0}\right)=-0.23 \pm 0.16$
$S_{D_{C P}^{(*)} h^{0}}\left(B^{0} \rightarrow D_{C P}^{(*)} h^{0}\right)=-0.56 \pm 0.24$
$C_{K^{0} \pi^{0}}\left(B^{0} \rightarrow K^{0} \pi^{0}\right)=0.00 \pm 0.13 \quad(S=1.4)$
$\boldsymbol{S}_{K^{0} \pi^{0}}\left(B^{0} \rightarrow K^{0} \pi^{0}\right)=0.58 \pm 0.17$
$C_{\eta^{\prime}(958) K_{S}^{0}}\left(B^{0} \rightarrow \eta^{\prime}(958) K_{S}^{0}\right)=-0.04 \pm 0.20 \quad(S=2.5)$
$S_{\eta^{\prime}(958) K_{S}^{0}}\left(B^{0} \rightarrow \eta^{\prime}(958) K_{S}^{0}\right)=0.43 \pm 0.17 \quad(S=1.5)$
$C_{\eta^{\prime} K^{0}}\left(B^{0} \rightarrow \eta^{\prime} K^{0}\right)=-0.05 \pm 0.05$
$S_{\eta^{\prime} K^{0}}\left(B^{0} \rightarrow \eta^{\prime} K^{0}\right)=0.60 \pm 0.07$
$C_{\omega K_{S}^{0}}\left(B^{0} \rightarrow \omega K_{S}^{0}\right)=-0.30 \pm 0.28 \quad(S=1.6)$
$S_{\omega K_{S}^{0}}\left(B^{0} \rightarrow \omega K_{S}^{0}\right)=0.43 \pm 0.24$
$C\left(B^{0} \rightarrow K_{S}^{0} \pi^{0} \pi^{0}\right)=0.2 \pm 0.5$
$S\left(B^{0} \rightarrow K_{S}^{0} \pi^{0} \pi^{0}\right)=0.7 \pm 0.7$
$C_{\rho^{0}} K_{S}^{0}\left(B^{0} \xrightarrow{0} \rho^{0} K_{S}^{0}\right)=-0.04 \pm 0.20$
$S_{\rho^{0} K_{S}^{0}}\left(B^{0} \rightarrow \rho^{0} K_{S}^{0}\right)=0.50_{-0.21}^{+0.17}$
$C_{f_{0}} K_{S}^{0}\left(B^{0} \rightarrow f_{0}(980) K_{S}^{0}\right)=0.29 \pm 0.20$
$S_{f_{0} K_{s}^{0}}\left(B^{0} \rightarrow f_{0}(980) K_{S}^{0}\right)=-0.50 \pm 0.16$
$S_{f_{2} K_{S}^{0}}\left(B^{0} \rightarrow f_{2}(1270) K_{S}^{0}\right)=-0.5 \pm 0.5$
$C_{f_{2} K_{S}^{0}}\left(B^{0} \rightarrow f_{2}(1270) K_{S}^{0}\right)=0.3 \pm 0.4$
$S_{f_{x}} K_{S}^{0}\left(B^{0} \rightarrow f_{x}(1300) K_{S}^{0}\right)=-0.2 \pm 0.5$
$C_{f_{x}} K_{S}^{0}\left(B^{0} \rightarrow f_{x}(1300) K_{S}^{0}\right)=0.13 \pm 0.35$
$S_{K^{0} \pi^{+} \pi^{-}}\left(B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}\right.$nonresonant $)=-0.01 \pm 0.33$
$C_{K^{0} \pi^{+} \pi^{-}}\left(B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}\right.$nonresonant $)=0.01 \pm 0.26$
$C_{K_{S}^{0}} K_{S}^{0}\left(B^{0} \rightarrow K_{S}^{0} K_{S}^{0}\right)=0.0 \pm 0.4 \quad(S=1.4)$
$S_{K_{S}^{0} K_{S}^{0}}\left(B^{0} \rightarrow K_{S}^{0} K_{S}^{0}\right)=-0.8 \pm 0.5$
$C_{K}{ }^{+} K^{-} K_{S}^{0}\left(B^{0} \rightarrow K^{+} K^{-} K_{S}^{0}\right.$ nonresonant $)=0.06 \pm 0.08$

+ two more pages

EPILOGUE

State of the art:

Exercise: you should be able to understand these shapes

The End

Hierarchies from small order parameter (s).
IDEA: (i) Small parameter $\epsilon=\frac{\langle\phi\rangle}{M} \ll 1$
(ii) Symmetry group G prevents masstems $\bar{\psi}_{L ;} \psi_{R j}$
|iii) Terms $\left(\frac{\phi}{m}\right)^{\Delta_{i j}} \bar{\Psi}_{L_{i}} \psi_{k_{j}}$ allowed by G
$\mid j v)\langle\phi\rangle \neq 0$ breaks G spontaneously
IV) Different charges under G for different $\psi_{L / R i}$

Simplest if $G=U(1)$, with $Q(\phi)=1, Q\left(\psi_{k_{i}}\right)=c+b_{i} \quad Q\left(\psi_{R_{i}}\right)=c-a_{j}$
Then $Q\left(\bar{\psi}_{i j} \psi_{R_{j}}\right)=-\left(a_{i}+b_{i}\right)$. If $a_{i}+b_{i}>0 \quad\left(\frac{\phi}{M}\right)^{A_{i j}} \bar{\psi}_{L_{j}} \psi_{R_{j}} \quad \Delta_{i j}=a_{i}+b_{j}$ else $\left(\frac{\phi^{*}}{M}\right)^{a_{i j}} \Psi_{L} \psi_{R j}$

Take $M_{i j}=g_{i j} \epsilon^{a_{i}+b_{j}} \quad a_{i}>0, b_{j} \geqslant 0$
and order them $a_{1} \leq a_{2} \leq a_{3}, b_{1} \leq b_{2} \leq b_{3}$
Anarchy (democracy? Ask the Greeks) $G=\left(g_{i j}\right)=\begin{aligned} & \text { all entries of } \\ & \text { same order }\end{aligned}$
What can we say about masses/mixing?
(a) product of largest $=\eta^{n} \lambda \approx\left(\operatorname{det} G^{(n)}\right) \epsilon^{k_{n}} G^{(n)}=$ top $n \times n$ block in G n eigenvalues $=\prod_{i=1}^{n} \lambda_{i} \approx\left(K_{n}=\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)\right.$
(jj) n-th largest mass $m_{n}=\frac{\prod_{1}^{n} \lambda_{i}}{\prod_{1}^{-1} \lambda_{j}}=\frac{\left(\text { (at } G^{(n-1)}\right.}{\left(\operatorname{det}+G^{(n-1)}\right)} \epsilon^{a_{n}+b_{n}} \Rightarrow \frac{m_{j}}{m_{j}}=\epsilon^{a_{i}-a_{j}+b_{i}-b_{j}}$
(iii) (KM? First need two mass matrices, so let's introduce $\bar{U}_{R} M_{v} U_{L}+\bar{d}_{R} M_{d} d_{L}+h . c$.
Assume each is of the form above

CKM: recall if $U_{U_{R}}^{\dagger} M_{U} U_{U_{L}}$ and $U_{d_{k}}^{\dagger} M_{d} U_{d_{L}}$ are diagonal then $V=U_{U_{L}}^{\dagger} U_{d_{L}}$
$U_{U_{L}}^{+} M_{U}^{+} M_{U} U_{U_{L}}$ and $U_{d L}^{+} M_{d}^{+} M_{d} U_{d_{L}}$ diagonal
\Rightarrow columns of U are normalized) eigenvectors of $M^{+} M$.

$$
\left(M^{\dagger} M\right)_{i j}=M_{k i}^{*} M_{k j}=\sum_{k} g_{k i}^{*} g_{k j} \epsilon^{g_{k}+b_{i}+b_{j}}=g_{1 i}^{*} g_{1 j} \epsilon^{2 a_{1}} \epsilon^{b_{i}+b_{j}}+\cdots
$$

- For largest eigenvalue (m_{1}^{\prime} or m_{t}^{2}) eigenvector is

$$
\sum_{j}\left[\left(g_{1 i}^{*} \epsilon^{b_{i}}\right)\left(g_{1 j} \epsilon^{b_{j}}\right)\right]\left(g_{1 j}^{*} \epsilon^{b_{j}}\right)=\left(\sum_{j}\left|g_{1 j} \epsilon^{b_{j}}\right|^{2}\right) g_{1 i}^{*} \epsilon^{b_{j}}
$$

Normalize: norm ${ }^{2}=\sum_{i}\left|g_{l i}^{*} \epsilon^{b_{i}}\right|^{2}=\left|g_{11}\right|^{2 b_{1}} \Rightarrow U_{1 \downarrow}=\frac{g_{1 i}^{*}}{g_{11}^{*}} \epsilon^{b_{i}-b_{1}}$
(used freedom to choose overall phase)

- For second largest,
for $i \geqslant 2: U_{i 2}^{*}=\frac{g_{11} g_{2 i}-g_{22} g_{1 i}}{g_{11} g_{22}-g_{12} g_{21}} \epsilon^{b_{1}-b_{2}}$, and $U_{12}^{*}=-U_{21}$
Exercise: Use perturbation theory (as in your QM courses) to show this. Keep in mind this is only leading order in ϵ.
- In general one may show $U_{i j}=u_{i j} \epsilon^{\left|b_{i}-b_{j}\right|}$ with $u_{i j}$ order 1 complex.
- CKM: $\left(U_{V_{L}}\right)_{i j}=u_{i j} \epsilon^{\left|b_{i}-b_{j}\right|} \quad\left(U_{d_{2}}\right)=d_{i j} \epsilon^{\left|b_{i}-b_{j}\right|}$

Same b's: U_{L} and d_{L} are members of doublet q_{L} and G must commute with $S U(2)_{W} \times U(1)_{Y}$.

$$
V_{i j}=\left(U_{V_{L}}^{+} U_{d_{L}}\right)_{i j}=\sum_{k} u_{k j}^{*} d_{k j} \epsilon^{\left|b_{i}-b_{k}\right|} \epsilon^{\left|b_{k}-b_{j}\right|}
$$

Largest term when $k=i$ or j

$$
V_{i j}=v_{i j} \epsilon^{\left|b_{i}-b_{j}\right|}
$$

Note this gives $V_{i j}=\delta_{i j}+\theta\left(\epsilon^{\text {power }}\right)$
Also, some relation (vague) to mass ratios (as in Frisch):

$$
\frac{m_{u j}}{m_{u j}} \sim \epsilon^{a_{i}^{x}-a_{j}^{u}+b_{i}-b_{j}} \quad \frac{m_{d j}}{m_{d j}} \sim \epsilon^{a_{j}^{d}-a_{j}^{d}+b_{i}-b_{j}}
$$

Model?

ψ_{I} are vector-like: have masses $\mathcal{L}_{k i n}=\sum_{I} \bar{\psi}_{I}\left(j \phi-M_{I}\right) \psi_{I}$
For large M this gives $\mathcal{L}_{e f f_{1} \text { interaction }}=\left(\frac{\phi}{M_{1}}\right)\left(\frac{\phi}{M_{2}}\right)\left(\frac{\phi}{M_{3}}\right) H \bar{q}_{L} u_{R}$ (times some $\mathcal{O}(1)$ coupling 1).
So we also need

In this example $c+b-2=c-a+1 \Rightarrow b+a=3$ Clearly easy to construct models. Use freedom in cp for anomaly cancelation.

Fermi Theory

$\left(-\frac{i g_{2}}{\sqrt{2}} V_{u d}^{*} \bar{d} \gamma^{\mu} P_{L} u\right)\left(-i \frac{g_{\mu \nu}-q_{\mu} q_{\nu} / M_{W}^{2}}{q^{2}-M_{W}^{2}}\right)\left(-\frac{i g_{2}}{\sqrt{2}} V_{u s} \bar{u} \gamma^{\nu} P_{L} s\right) \rightarrow-\frac{i g_{2}^{2}}{2 M_{W}^{2}} V_{u d}^{*} V_{u s} \bar{u} \gamma^{\mu} P_{L} s \bar{d} \gamma_{\mu} P_{L} u$

$$
\begin{gathered}
\text { So you can use this } \mathcal{H}_{\text {eff }}^{\Delta S=1}=\frac{g_{2}^{2}}{2 M_{W}^{2}} V_{u d}^{*} V_{u s} \bar{u}_{L} \gamma^{\mu} s_{L} \bar{d}_{L} \gamma_{\mu} u_{L} \\
M_{12}=M \delta_{12}+\langle 1| \mathcal{H}|2\rangle+\sum_{n}^{\prime} \operatorname{PP} \frac{\langle 1| \mathcal{H}|n\rangle\langle n| \mathcal{H}|2\rangle}{M-E_{n}}+\cdots
\end{gathered}
$$

The intermediate states are pions, rho-mesons, ... "long-distance contributions"

Graphs with u replaced by $c, t \ldots$
(i) It seems difficult to evaluate $\quad \sum P P \ldots$
(ii) We have used a very effective approximation $m_{K} \ll M_{W}$, why not $m_{K} \ll m_{t}$ or even $m_{K} \ll m_{c}$?

"short distance contributions"

Sweet: use ist order $\quad M_{12}=\langle 1| \mathcal{H}|2\rangle+\cdots$
\qquad
short distance: difficult
long distance: way more difficult

$$
\operatorname{Im}\left(M_{12}\right) \text { is } \mathrm{CPV} \Rightarrow \text { non-zero requires } c, t \text { quarks } \Rightarrow \text { short distance } \Rightarrow \text { doable }
$$

Do this, leave Re for lattice; see, e.g., I212.593I. Use, for numerics, $\operatorname{Re}\left(M_{12}\right)=\frac{1}{2} \Delta M$ from data

- $f(x, y)$: can compute, Feynman diagrams
- double GIM!
- non-zero Im-part form CKM's only

Exercise: show the matrix element is real (use CP of strong interactions)

- std parametrization: $V_{u d}$ and $V_{u s}$ real need at least one c or t-quark
- EFT not valid with i or $2 u$-quarks, but these very suppressed (EFT explanation is cleanest, but for now think GIM again)
- Left with c, t contributions. But

$$
\sum V_{q d} V_{q s}^{*}=0 \quad \text { and } \quad \operatorname{Im} V_{u d} V_{u s}^{*}=0 \quad \operatorname{Im} V_{c d} V_{c s}^{*}=-\operatorname{Im} V_{t d} V_{t s}^{*}=A^{2} \lambda^{5} \eta
$$

- Last we need M.E. We parametrize our ignorance using the "vacuum insertion approximation:

$$
\left\langle K^{0}\right| \bar{d}_{L} \gamma^{\mu} s_{L} \bar{d}_{L} \gamma_{\mu} s_{L}\left|\bar{K}^{0}\right\rangle=\frac{2}{3} f_{K}^{2} m_{K}^{2} B_{K}
$$

where $B_{K}=1$ in vacuum insertion approx.
Exercise: Use
$\left\langle K^{0}\right| \bar{d}_{L} \gamma^{\mu} s_{L} \bar{d}_{L} \gamma_{\mu} s_{L}\left|\bar{K}^{0}\right\rangle \rightarrow\left\langle K^{0}\right| \bar{d}_{L} \gamma^{\mu} s_{L}|0\rangle\langle 0| \bar{d}_{L} \gamma_{\mu} s_{L}\left|\bar{K}^{0}\right\rangle+\left\langle K^{0}\right| \bar{d}_{L}^{a} \gamma^{\mu} s_{L b}|0\rangle\langle 0| \bar{d}_{L}^{b} \gamma_{\mu} s_{L a}\left|\bar{K}^{0}\right\rangle$ and

$$
\langle 0| \bar{d}_{L} \gamma_{\mu} s_{L}\left|\bar{K}^{0}\right\rangle=\frac{1}{2} p_{\mu} f_{K}
$$

to show $B_{K}=1$ in vacuum insertion approx. Note: here we are using the relativistic normalization of states

Ready to put it all together?
$\operatorname{Im} M_{12}=-2 A^{2} \lambda^{5} \eta \frac{2}{3} B_{K} \frac{G_{F}^{2} m_{K}^{2} f_{K}^{2}}{4 \pi^{2}}\left[A^{2} \lambda^{5}(1-\rho) f\left(m_{t}\right)-\lambda f\left(m_{c}\right)+\lambda f\left(m_{c}, m_{t}\right)\right] \frac{1}{2 m_{K}}$ where, using $x_{i}=\frac{m_{i}^{2}}{M_{W}^{2}}$

$$
\begin{array}{rlr}
f\left(m_{c}, m_{t}\right) & =x_{c}\left[\ln \frac{x_{c}}{x_{t}}-\frac{3 x_{t}}{4\left(1-x_{t}\right)}-\frac{3 x_{t}^{2} \ln x_{t}}{4\left(1-x_{t}\right)^{2}}\right] & \text { used } \quad x_{c} \ll 1 \\
f(m) & =\frac{4 x-11 x^{2}+x^{3}}{4(1-x)^{2}}-\frac{3 x^{3} \ln x}{2(1-x)^{3}} &
\end{array}
$$

Finally
$\epsilon_{K}=e^{i \pi / 4} C_{\epsilon} A^{2} \lambda^{5} \eta\left[A^{2} \lambda^{5}(1-\rho) f\left(m_{t}\right)-\lambda\left(f\left(m_{c}\right)-f\left(m_{c}, m_{t}\right)\right)\right]$

$$
C_{\epsilon}=\frac{G_{F}^{2} f_{K}^{2} m_{K} M_{W}^{2} B_{K}}{6 \sqrt{2} \pi^{2} \Delta m_{K}} \approx 3 \times 10^{4} B_{K}
$$

Instead of detailed numerics, let's check order of magnitude: $A^{2} \lambda^{5} \sim(0.2)^{5} \sim 3 \times 10^{-4}$

$$
\begin{array}{lll}
A^{2} \lambda^{5}(1-\rho) f\left(m_{t}\right) \sim(0.2)^{5} \sim 3 \times 10^{-4} & \Rightarrow & \epsilon \sim 3 \times 10^{-3} \\
\lambda f\left(m_{c}\right) \sim \lambda f\left(m_{c}, m_{t}\right) \sim(0.2)\left(\frac{1.5}{80}\right)^{2} \sim \times 10^{-4} & \Rightarrow & \epsilon \sim \times 10^{-3}
\end{array}
$$

All give contributions of the right order of magnitude!
This is a great success of the SM!!! (how many exclamations marks do we need?)

Exercise:(i)pretend you can compute he M12 by computing Feynman diagram and using $A_{w}=\frac{1}{l} \rho_{p} G_{F}^{\prime} m_{w}^{L}(\cdots)(\bar{s} d)(\bar{s} d)$, so as to ignore $\sum_{n}^{\prime} p p$. Estimate ΔM. Compare with experimental value.
(ii) What if you ignore c, t prats? (so no G / M). (iii) Ignore t-grok. How large does m_{c} have to be to account for DM? This is how m_{c} was predicted and GIM discovered.

Before we move in, there is a sticky point...
We have replaced \rightarrow and expanded in powers of $1 / M_{W}$ while pretending we have kept strong interactions exact. But these are QCD, we know. And what about

Graphs with gluons connecting external legs accounted for:

EFT organizes the computation, factorizing

$$
\begin{array}{|c|}
\hline \begin{array}{c}
\text { long distance contributions } \\
\text { (that go into M.E.) }
\end{array}
\end{array} \times \begin{array}{|c|}
\hline \text { short distance contributions } \\
\text { (computable) }
\end{array}
$$

and allows RGE to resum logs, eg, $\sim \sum_{n}\left(\frac{\alpha_{s}}{\pi} \ln \frac{M}{\mu}\right)^{n}$, systematically,

$$
\begin{aligned}
& \epsilon_{K}=e^{i \pi / 4} C_{\epsilon} A^{2} \lambda^{5} \eta\left[\eta_{2} A^{2} \lambda^{5}(1-\rho) f\left(m_{t}\right)-\lambda\left(\eta_{1} f\left(m_{c}\right)-\eta_{3} f\left(m_{c}, m_{t}\right)\right)\right] \\
& \quad \eta_{1,2,3} \approx 0.7,0.6,0.4
\end{aligned}
$$

