
Neutral Meson Mixing
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• CPV first observed in
• Gives best flavor constraints on NP (as indicated previously)
• Neat phenomena
• Active field 

Why should we study this?

K0 � K̄0

Plan:

• Start with kaon: CPV in mixing (epsilon)
• CPV in decay (epsilon-prime)
• time dependent observables 
• CPV in interference of mixing and decay (B)

Leave D-meson standard conventions as homework (same physics, different notation)
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Measuring Δ𝑚  

Rencontres de Moriond  
EW Interactions and unified theories 2013 

  Sebastian  Wandernoth 

 significance: 𝜎(Δ𝑚 ) ∝ 𝜀𝐷 𝑒  

perfect tagging + resolution 

simulation 

What is mixing?
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Bs ! D�
s ⇡

+

(b̄s) ! ([c̄ud̄]s) = (c̄s)(d̄u)

B̄s ! D+
s ⇡

�

(s̄b) ! (s̄[cūd]) = (s̄c)(ūd)

“Unmixed:” same as
starting state (anti-Bs )

Pictures from:
S. Wandernoth
Rencontres de Moriond 2013



• Opposite side taggers 
– exploits 𝑏𝑏 pair production 

by partially reconstructing 
the second B-hadron in the 
event 

• Same side kaon tagger 
– exploits hadronization of 

signal 𝐵 -meson 
• Combined tagging power 

– 𝜀𝐷 = 3.5 ± 0.5% 
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Rencontres de Moriond  
EW Interactions and unified theories 2013 

  Sebastian  Wandernoth 

Flavour Tagging 

𝜀 = #     
#     

             𝜔 = #     
#  

                𝐷 = (1 − 2𝜔) 
Tagging efficiency Mistag probability Dilution 

4

B̄s ! D+
s ⇡

�

Tagging:

Pictures from:
S. Wandernoth
Rencontres de Moriond 2013
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Very roughly, we guess B̄s ! Bs ! B̄s ! Bs ! · · ·

| ¯Bs(t)i = e�
1
2�t

⇥
cos(!t)| ¯Bsi+ sin(!t)|Bsi

⇤

But why?
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B-oscillation 

Simplified Schroedinger equation describing oscillation and decay 

|𝐵 ⟩   = 𝑘|𝐵 ⟩ + 𝑙 𝐵  
|𝐵 ⟩ = 𝑘|𝐵 ⟩ − 𝑙 𝐵  

Mass eigenstates ≠  flavour  eigenstates → mass difference ∝ osc. frequency 

Dominant Feynman diagrams 
(Standard Model) 

Rencontres de Moriond  
EW Interactions and unified theories 2013 

  Sebastian  Wandernoth 

𝑖
𝐵

𝐵
= 𝑀 − Γ

𝐵

𝐵
                 M =

𝑀 𝑀
𝑀∗ 𝑀 ; Γ =

Γ Γ
Γ∗ Γ  

 

Δ𝑚 = 𝑚 −𝑚 = 2 𝑀  

This is very small (weak interaction at 1-loop, suppressed by CKM) but important for eigenstates:

i
d

dt

✓
B̄s(t)
Bs(t)

◆
= M

✓
1 ✏
✏ 1

◆✓
B̄s(t)
Bs(t)

◆
) ¯Bs(t) = e�iMt

⇥
cos(✏Mt) ¯Bs(0)� i sin(✏Mt)Bs(0)

⇤

✓
1 ✏
✏ 1

◆
has eigenvalues 1± ✏ and eigenvectors

✓
1
±1

◆
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Mixing: formalism
Weisskopf-Wigner
Neutral mesons, at rest

We have insisted on CPT :   

(If you want to test CPT you relax this)

CP-invariance ) M⇤
12 = M12,�

⇤
12 = �12 CPV if 

ImM12 6= 0 or Im�12 6= 0

H = M� i

2
� =

✓
M � i

2� M12 � i
2�12

M⇤
12 � i

2�
⇤
12 M � i

2�

◆
M† = M

�† = �

H† 6= H (unstable)

P |X0i = �|X0i P |X̄0i = �|X̄0i
C|X̄0i = |X0iC|X0i = |X̄0i

CP |X0i = �|X̄0i CP |X̄0i = �|X0i

(CPT )�1 H (CPT ) = H† ) H11 = H22

|1i = |X0i
|2i = |X̄0i

Analyze all at once: X0 = K0, D0, B0, Bs
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H = M� i

2
� =

✓
M � i

2� M12 � i
2�12

M⇤
12 � i

2�
⇤
12 M � i

2�

◆

Define eigenvalues

eigenvectors

MXH
L

� i
2�XH

L

= M � i
2�± 1

2 (�M � i
2��)

|XH
L
i = p|X0i± q|X̄0i

Note that for q = p CP |XH
L
i = ⌥|XH

L
i

Solving:
p

q
= 2

M12 � i
2�12

�M � i
2��

=
1

2

�M � i
2��

M⇤
12 � i

2�
⇤
12

(�M)2 � 1

4
(��)2 = 4|M12|2 � |�12|2

�M�� = 4Re(M12�
⇤
12)

It follows that:
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• epsilon is small
• CP is not a symmetry
• Longer KL lifetime accidental

mK ⇡ 490 MeV 3m⇡ ⇡ 420 MeV

⌧(KS) = 0.59⇥ 10�10 s

⌧(KL) = 5.18⇥ 10�8 s

This is no longer the case for heavier mesons.

Br(KS ! ⇡⇡) = 100%

Br(KL ! ⇡⇡) = 0.297%

Br(KL ! ⇡⇡⇡) = 33.9%

✏ = 0 ) CP |KLi = �|KLi
CP |⇡⇡i`=0 = |⇡⇡i`=0, CP |⇡⇡⇡i`=0 = �|⇡⇡⇡i`=0

) KS ! ⇡⇡,KL ! ⇡⇡⇡

MKL
S

� i
2�KL

S

= M � i
2�± 1

2 (�M � i
2��)

For Kaons, it is common to define “Long” and “Short” (instead of Heavy and Light):

|KL
S
i = 1p

2(1 + |✏|2)
⇥
(1 + ✏)|K0i± (1� ✏)|K̄0i

⇤
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Perturbation theory (in Hw): connect with underlying fundamentals see, e.g., Messiah, v2 994-1001

Mij = M�ij + hi|H|ji+
X

n

0
PP

hi|H|nihn|H|ji
M � En

+ · · ·

�ij = 2⇡
X

n

0
�(M � En)hi|H|nihn|H|ji+ · · ·

hi|ji = E

m
�3(~p� ~p0)beware, here: 
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Time Evolution

are eigenvectors: no mixing

But often create These mix, since they are a combination of 

Time evolution:

i
d

dt
|XH

L
i = (MH

L
� i

2�H
L
)|XH

L
i ) |XH

L
(t)i = e

�iMH
L

t
e
� 1

2�H
L

t
|XH

L
(0)i

|XH
L
i

X0
or

¯X0. XH and X̄L.

Invert |X̄0i = 1
2q (|XHi � |XLi)|X0i = 1

2p (|XHi+ |XLi)

|X0(t)i = f+(t)|X0i+ q
pf�(t)|X̄

0i

|X(0)H
L
i = p|X0(0)i± q|X̄0(0)iand use

Exercise: f±(t) =
1
2e

�iMLt� 1
2�Lt(e�i�Mt� 1

2��t ± 1)

and |X̄0(t)i = p
q f�(t)|X

0i+ f+(t)|X̄0i

|X0(t)i = 1
2p

⇥
e�iMHte��Ht|XH(0)i+ e�iMLte��Lt|XL(0)i

⇤



Neutral Meson Mixing 
!  Neutral mesons can transform 
    into their anti-particles via 2nd 

    order weak interactions 
!  Short distance transition rate  
   depends on  

"  mass of intermediate qi, the heavier the larger, favors 
s & b since t is allowed 

"  CKM elements Vij 

ICHEP, Melbourne, July 9, 2012 ! 11 

Q
q

q

W
Q
q

Po Po
W

i qi

VQqi

almost zero? 

from Van Kooten 

New particles possible in 
the loop 
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Mixing: slow/fast?

Neutral Meson Mixing 
!  Neutral mesons can transform 
    into their anti-particles via 2nd 

    order weak interactions 
!  Short distance transition rate  
   depends on  

"  mass of intermediate qi, the heavier the larger, favors 
s & b since t is allowed 

"  CKM elements Vij 

ICHEP, Melbourne, July 9, 2012 ! 11 

Q
q

q

W
Q
q

Po Po
W

i qi

VQqi

almost zero? 

from Van Kooten 

New particles possible in 
the loop 

It’s about time we connect  with SM! So let’s see...
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Mij = M�ij + hi|H|ji+
X

n

0
PP

hi|H|nihn|H|ji
M � En

+ · · ·
�ij = 2⇡

X

n

0
�(M � En)hi|H|nihn|H|ji+ · · ·

1 + ✏

1� ✏
=

p

q
= 2

M12 � i
2�12

�M � i
2��

=
1

2
2
�M � i

2��

M⇤
12 � i

2�
⇤
12

Want this:

Use this:

Only M12

t-quark: only M12

u,c-quarks: M12 & Γ12 

Clear that:
Quickly, for B0 & Bs-mesons:

• modern-GIM: t-quark dominates
• Neglect Γ12

• Then
• Then 

a pure phase
• No phase in Feynman diagram
(no cuts), phase from CKM’s only:

• idem for Bs: 

• in SU(3) (Gell-Mann) symmetry limit

�M = 2|M12|
p/q = M12/|M12|

(�M)Bs/(�M)B0 = |Vts/Vtb|2

(�M)2 � 1

4
(��)2 = 4|M12|2 � |�12|2

�M�� = 4Re(M12�
⇤
12)

p/q = (VtbV
⇤
td)

2/|VtbV
⇤
td|2

p/q = (VtbV
⇤
ts)

2/|VtbV
⇤
ts|2
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Flavor Structure in the SM and Beyond

�
U

V
[T

eV
]

101

102

103

104

105

(b� d)(s� d) (b� s) (c� u)
�md, sin 2��mK , �K �ms, As

SL

CP

D – D̄

LSM +
1

�2
UV

(Q̄iQj)(Q̄iQj)

Generic bounds without a flavor symmetry

recall this?

We can now understand it! For example, take  ϵK = ϵ

9/20 Lecture 2 (9/20)2013-06-03 10:33:54

1

⇤2
hK0|d̄L�µsLd̄L�µsL|K̄0iCompare with

⇤2  4⇡2

G2
FM

2
W

1

|V ⇤
tdVts|2

⇡


6

(10�5)(102)

1

(0.04)(0.004)
GeV

�2
⇡ [4⇥ 104TeV]2

Exercise: check the other three mixing “bounds.”



CPV
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CPV in Decay
• Nothing to do with mixing, per-se
• Conceptually Simple
• Predictability: difficult
• Later also CPV in mixing and decay

asymmetry A =
�� �̄

�+ �̄

some rate

the conjugate of  the above
(under something: C, CP,                    )

�̄

�

✓ ! ⇡ � ✓

CP decay-asymmetry A =
|hf |Xi|2 � |hf̄ |X̄i|2

|hf |Xi|2 + |hf̄ |X̄i|2
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Volume 222, number 3,4 PHYSICS LETTERS B 25 May 1989 

d 
C 8 C d 
q q q q 

8 

d 

Fig. 1. Two diagrams for charm decay into the same final state. 
The first diagram has a coefficient V*~ V.~, while the second has 
Vcd V,d. 

where q are light quark fields, having flavor index i, j and color index a,  fl; F is a gamma matrix structure which 
will be discussed below; and T k are coefficients given below. This hamiltonian transforms under flavor SU (3) 
as 3 ® 3 ® 3 = 15M~ 6 ~  3 ~ 3. The 15M is symmetric in i, k and traceless when i or k is contracted with j, the 6 is 
antisymmetric and traceless, while the traces o f  the symmetric and antisymmetric parts are the two 3's. 

We may use a renormalization group analysis [4 ] to compute  the coefficients o f  the various operators de- 
scribed above. The bare operators in the ACharm = - 1, strangeness conserving decay are 

~eba~ = 4Gv x//~ [V*dV, d(d'*LUc,)(uaLuda)+V*~Vudg'~LUc,)(aPLusa)+Vc*bV.b(6'~LUc,~)(aPLuba)], (2) 

where L ~= 7u( 1 -7~ ) /2 .  The renormalized effective hamiltonian is a function of  the scale/2. We assume that at 
/2 = row, the W boson mass, the effective hamiltonian is the same as eq. (2).  Assuming the top quark mass is 
bigger than 60 GeV or so, we may compute  the effective operator a t / 2 =  m¢, the charm quark mass, via a two 
step process. The effective hamiltonian is run f r o m / 2 =  mw t o / 2 =  rob, the b-quark mass, at which scale the b- 
quark is frozen out, and then the hamiltonian is run down to/2 = me. 

Eq. (2) may be written in the form 

G~ 
~bare - -  N//~ [ (2(9 ( 'sM)+2C (g))Z+ (3(32 - (9, + (p (,5M)')A+4V¢*b V.b~ 1, (3) 

where 

~(v~v--V~dV.d), ~J=½(Vc%V.~+V~Vu~) 
and 

(9 ~'sM) = ( g'~L Uc,~) ( aPLusa) + ( a'~L ~c,~) ( gaLusa) - ( ar,~L Uc,~) ( aPLuda) - ( a,~L ,,c,~) ( daLuda), 

(9 ~lSM)'= ( d'~L ~c,~) ( aPLudp) + ( a'~L "c,~) ( dPLuda) + (g~L,'c,~) ( aPL,,sp) + ( a"L  Uc.) ( eSLusp) 

- 2( a"L  ~c.) ( aPL, u , )  , 

C (~)= (Y'~LUc~) (aaL~,sa) - (a"L,c,~) (gPL,s , )  - (cl~LUc,~) (aPLuda) + ( a " L , c , )  (d~L,dp) .  

(9, = ( a~L ~c,) [ ( aaL~ua) + ( d~L~dp) + (~PLusa) ], 

c5 = ( a'~L ~c,) [ ( aPL~u.~) + ( d'Lud,~) + ( yaL~s,~) ], 

C8 = ( a'~L ~ca) ( SaLub,~). 

Here we have used a Fierz rearrangement to write C2 and ~ in this form. The operators 8~(Ls,,) and (9 ('sM)' are 
two different members o f  the same SU (3) 15-plet. The operators (f,, (32, and 68 transform as members of  triplets. 

The coefficient A would be 0 if  the 2 × 2 submatrix of  the KM matrix were unitary. I f  the world has only three 
generations (as we assume throughout) ,  then unitarity o f  the KM matrix requires that Vc% V.b = --2A. 

Since the strong interactions conserve flavor SU (3),  one sees that it is not  possible to mix different SU (3)  

502 

V ⇤
csVus V ⇤

cdVud

Example: D decay hf |Xi = aA+ bB

hf̄ |X̄i = a⇤Ā+ b⇤B̄

CP invariance of strong interactions:

A = hf |(ūL�
µsL)(s̄L�µcL)|Di

= hf |(CP )�1(CP )(ūL�
µsL)(s̄L�µcL)(CP )�1(CP )|Di

= hf̄ |(s̄L�µuL)(c̄L�µsL)|D̄i
= Ā

CP decay-asymmetry whereA =
|hf |Xi|2 � |hf̄ |X̄i|2

|hf |Xi|2 + |hf̄ |X̄i|2
hf |Xi = aA+ bB

hf̄ |X̄i = a⇤A+ b⇤B

a = V ⇤
csVus, b = V ⇤

cdVud

A = hf |(ūL�
µsL)(s̄L�µcL)|Di

B = hf |(ūL�
µdL)(d̄L�µcL)|Di

Im(a⇤b) = Im((V ⇤
csVus)

⇤V ⇤
cdVud) = Im(VcsV

⇤
cdVudV

⇤
us) = J

Note that 

as promised ...

For direct CPV need both phases! 
(and knowledge of matrix 
elements computed with strong 
interactions):

) A =
2Im(a⇤b)Im(A⇤B)

|aA|2 + |bB|2 + 2Re(a⇤b)Re(A⇤B)
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Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov)

CHARMED MESONSCHARMED MESONSCHARMED MESONSCHARMED MESONS
(C = ±1)(C = ±1)(C = ±1)(C = ±1)

D+ = cd , D0 = cu, D0 = c u, D− = c d, similarly for D∗’s

D±D±
D±D± I (JP ) = 1

2 (0−)

Mass m = 1869.61 ± 0.10 MeV (S = 1.1)
Mean life τ = (1040 ± 7) × 10−15 s

cτ = 311.8 µm

c-quark decaysc-quark decaysc-quark decaysc-quark decays

Γ(c → ℓ+anything)/Γ(c → anything) = 0.096 ± 0.004 [a]

Γ(c → D∗(2010)+ anything)/Γ(c → anything) = 0.255 ± 0.017

CP-violation decay-rate asymmetriesCP-violation decay-rate asymmetriesCP-violation decay-rate asymmetriesCP-violation decay-rate asymmetries

ACP (µ± ν) = (8 ± 8)%
ACP (K0

S π±) = (−0.41 ± 0.09)%
ACP (K∓ 2π±) = (−0.1 ± 1.0)%
ACP (K∓π±π±π0) = (1.0 ± 1.3)%
ACP (K0

S π±π0) = (0.3 ± 0.9)%
ACP (K0

S π±π+π−) = (0.1 ± 1.3)%
ACP (π±π0) = (2.9 ± 2.9)%
ACP (π±η) = (1.0 ± 1.5)% (S = 1.4)
ACP (π±η′(958)) = (−0.5 ± 1.2)% (S = 1.1)
ACP (K0

S K±) = (−0.11 ± 0.25)%
ACP (K+K−π±) = (0.36 ± 0.29)%
ACP (K±K∗0) = (−0.3 ± 0.4)%
ACP (φπ±) = (0.09 ± 0.19)% (S = 1.2)
ACP (K±K∗

0(1430)0) = (8+7
−6)%

ACP (K±K∗
2(1430)0) = (43+20

−26)%

ACP (K±K∗
0(800)) = (−12+18

−13)%

ACP (a0(1450)0π±) = (−19+14
−16)%

ACP (φ(1680)π±) = (−9 ± 26)%
ACP (π+π−π±) = (−2 ± 4)%
ACP (K0

S K±π+π−) = (−4 ± 7)%
ACP (K±π0) = (−4 ± 11)%

T-violation decay-rate asymmetryT-violation decay-rate asymmetryT-violation decay-rate asymmetryT-violation decay-rate asymmetry

AT (K0
S K±π+π−) = (−12 ± 11) × 10−3 [b]

HTTP://PDG.LBL.GOV Page 1 Created: 8/21/2014 13:13

D±
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Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov)

B±B±
B±B± I (JP ) = 1

2 (0−)

I , J, P need confirmation. Quantum numbers shown are quark-model
predictions.

Mass mB± = 5279.26 ± 0.17 MeV
Mean life τ B± = (1.638 ± 0.004) × 10−12 s

cτ = 491.1 µm

CP violationCP violationCP violationCP violation

ACP (B+ → J/ψ(1S)K+) = 0.003 ± 0.006 (S = 1.8)
ACP (B+ → J/ψ(1S)π+) = (0.1 ± 2.8) × 10−2 (S = 1.2)
ACP (B+ → J/ψρ+) = −0.11 ± 0.14
ACP (B+ → J/ψK∗(892)+) = −0.048 ± 0.033
ACP (B+ → ηc K+) = −0.02 ± 0.10 (S = 2.0)
ACP (B+ → ψ(2S)π+) = 0.03 ± 0.06
ACP (B+ → ψ(2S)K+) = −0.024 ± 0.023
ACP (B+ → ψ(2S)K∗(892)+) = 0.08 ± 0.21
ACP (B+ → χc1(1P)π+) = 0.07 ± 0.18
ACP (B+ → χc0K+) = −0.20 ± 0.18 (S = 1.5)
ACP (B+ → χc1K+) = −0.009 ± 0.033
ACP (B+ → χc1K∗(892)+) = 0.5 ± 0.5
ACP (B+ → D0π+) = −0.007 ± 0.007
ACP (B+ → DCP (+1)π

+) = 0.035 ± 0.024

ACP (B+ → DCP (−1)π
+) = 0.017 ± 0.026

ACP ([K∓π±π+π− ]D π+) = 0.13 ± 0.10
ACP (B+ → D0K+) = 0.01 ± 0.05 (S = 2.1)
ACP ([K∓π±π+π− ]D K+) = −0.42 ± 0.22
rB(B+ → D0K+) = 0.096 ± 0.008
δB(B+ → D0K+) = (115 ± 13)◦

rB(B+ → D0K∗+) = 0.17 ± 0.11 (S = 2.3)
δB(B+ → D0K∗+) = (155 ± 70)◦ (S = 2.0)
ACP (B+ → [K−π+ ]D K+) = −0.58 ± 0.21
ACP (B+ → [K−π+π0 ]D K+) = 0.41 ± 0.30
ACP (B+ → [K−π+ ]D K∗(892)+) = −0.3 ± 0.5
ACP (B+ → [K−π+ ]D π+) = 0.00 ± 0.09
ACP (B+ → [K−π+π0 ]D π+) = 0.16 ± 0.27
ACP (B+ → [K−π+ ](D π) π

+) = −0.09 ± 0.27

ACP (B+ → [K−π+ ](D γ) π
+) = −0.7 ± 0.6

ACP (B+ → [K−π+ ](D π) K
+) = 0.8 ± 0.4

ACP (B+ → [K−π+ ](D γ) K
+) = 0.4 ± 1.0

HTTP://PDG.LBL.GOV Page 3 Created: 8/21/2014 13:13

Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov)

ACP (B+ → [π+π−π0 ]D K+) = −0.02 ± 0.15
ACP (B+ → DCP (+1)K

+)ACP (B+ → DCP (+1)K
+)ACP (B+ → DCP (+1)K
+)ACP (B+ → DCP (+1)K
+) = 0.170 ± 0.033 (S = 1.2)

AADS(B+ → D K+) = −0.52 ± 0.15
AADS(B+ → D π+) = 0.14 ± 0.06
ACP (B+ → DCP (−1)K

+) = −0.10 ± 0.07

ACP (B+ → D∗0π+) = −0.014 ± 0.015
ACP (B+ → (D∗

CP (+1))
0π+) = −0.02 ± 0.05

ACP (B+ → (D∗
CP (−1))

0π+) = −0.09 ± 0.05

ACP (B+ → D∗0K+) = −0.07 ± 0.04
r∗B(B+ → D∗0K+) = 0.114+0.023

−0.040 (S = 1.2)

δ∗B(B+ → D∗0K+) = (310+22
−28)

◦ (S = 1.3)

ACP (B+ → D∗0
CP (+1)K

+) = −0.12 ± 0.08

ACP (B+ → D∗
CP (−1)K

+) = 0.07 ± 0.10

ACP (B+ → DCP (+1)K
∗(892)+) = 0.09 ± 0.14

ACP (B+ → DCP (−1)K
∗(892)+) = −0.23 ± 0.22

ACP (B+ → D+
s φ) = 0.0 ± 0.4

ACP (B+ → D∗+D∗0) = −0.15 ± 0.11
ACP (B+ → D∗+D0) = −0.06 ± 0.13
ACP (B+ → D+D∗0) = 0.13 ± 0.18
ACP (B+ → D+D0) = −0.03 ± 0.07
ACP (B+ → K0

S π+) = −0.017 ± 0.016
ACP (B+ → K+π0) = 0.037 ± 0.021
ACP (B+ → η′K+) = 0.013 ± 0.017
ACP (B+ → η′K∗(892)+) = −0.26 ± 0.27
ACP (B+ → η′K∗

0(1430)+) = 0.06 ± 0.20
ACP (B+ → η′K∗

2(1430)+) = 0.15 ± 0.13

ACP (B+ → ηK+)ACP (B+ → ηK+)ACP (B+ → ηK+)ACP (B+ → ηK+) = −0.37 ± 0.08
ACP (B+ → ηK∗(892)+) = 0.02 ± 0.06
ACP (B+ → ηK∗

0(1430)+) = 0.05 ± 0.13
ACP (B+ → ηK∗

2(1430)+) = −0.45 ± 0.30
ACP (B+ → ωK+) = 0.02 ± 0.05
ACP (B+ → ωK∗+) = 0.29 ± 0.35
ACP (B+ → ω (Kπ)∗+0 ) = −0.10 ± 0.09
ACP (B+ → ωK∗

2(1430)+) = 0.14 ± 0.15
ACP (B+ → K∗0π+) = −0.04 ± 0.09 (S = 2.1)
ACP (B+ → K∗(892)+π0) = −0.06 ± 0.24
ACP (B+ → K+π−π+)ACP (B+ → K+π−π+)ACP (B+ → K+π−π+)ACP (B+ → K+π−π+) = 0.033 ± 0.010
ACP (B+ → K+K−K+nonresonant) = 0.06 ± 0.05
ACP (B+ → f (980)0 K+) = −0.08 ± 0.09
ACP (B+ → f2(1270)K+)ACP (B+ → f2(1270)K+)ACP (B+ → f2(1270)K+)ACP (B+ → f2(1270)K+) = −0.68+0.19

−0.17
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ACP (B+ → f0(1500)K+) = 0.28 ± 0.30
ACP (B+ → f ′2(1525)0 K+) = −0.08+0.05

−0.04

ACP (B+ → ρ0K+)ACP (B+ → ρ0K+)ACP (B+ → ρ0K+)ACP (B+ → ρ0K+) = 0.37 ± 0.10
ACP (B+ → K∗

0(1430)0π+) = 0.055 ± 0.033

ACP (B+ → K∗
2(1430)0π+) = 0.05+0.29

−0.24

ACP (B+ → K+π0π0) = −0.06 ± 0.07
ACP (B+ → K0 ρ+) = −0.12 ± 0.17
ACP (B+ → K∗+ π+π−) = 0.07 ± 0.08
ACP (B+ → ρ0K∗(892)+) = 0.31 ± 0.13
ACP (B+ → K∗(892)+ f0(980)) = −0.15 ± 0.12
ACP (B+ → a+

1 K0) = 0.12 ± 0.11

ACP (B+ → b+
1 K0) = −0.03 ± 0.15

ACP (B+ → K∗(892)0ρ+) = −0.01 ± 0.16
ACP (B+ → b0

1 K+) = −0.46 ± 0.20
ACP (B+ → K0 K+) = 0.04 ± 0.14
ACP (B+ → K0

S K+) = −0.21 ± 0.14

ACP (B+ → K+K0
S K0

S ) = 0.04+0.04
−0.05

ACP (B+ → K+K−π+) = −0.12 ± 0.05 (S = 1.2)
ACP (B+ → K+K−K+)ACP (B+ → K+K−K+)ACP (B+ → K+K−K+)ACP (B+ → K+K−K+) = −0.036 ± 0.012 (S = 1.1)
ACP (B+ → φK+) = 0.04 ± 0.04 (S = 2.1)
ACP (B+ → X0(1550)K+) = −0.04 ± 0.07
ACP (B+ → K∗+ K+K−) = 0.11 ± 0.09
ACP (B+ → φK∗(892)+) = −0.01 ± 0.08
ACP (B+ → φ(Kπ)∗+0 ) = 0.04 ± 0.16
ACP (B+ → φK1(1270)+) = 0.15 ± 0.20
ACP (B+ → φK∗

2(1430)+) = −0.23 ± 0.20
ACP (B+ → K+φφ) = −0.10 ± 0.08
ACP (B+ → K+[φφ]ηc

) = 0.09 ± 0.10

ACP (B+ → K∗(892)+γ) = 0.018 ± 0.029
ACP (B+ → ηK+γ) = −0.12 ± 0.07
ACP (B+ → φK+ γ) = −0.13 ± 0.11 (S = 1.1)
ACP (B+ → ρ+γ) = −0.11 ± 0.33
ACP (B+ → π+π0) = 0.03 ± 0.04
ACP (B+ → π+π−π+)ACP (B+ → π+π−π+)ACP (B+ → π+π−π+)ACP (B+ → π+π−π+) = 0.105 ± 0.029 (S = 1.3)
ACP (B+ → ρ0π+) = 0.18+0.09

−0.17

ACP (B+ → f2(1270)π+) = 0.41 ± 0.30
ACP (B+ → ρ0(1450)π+) = −0.1+0.4

−0.5

ACP (B+ → f0(1370)π+)ACP (B+ → f0(1370)π+)ACP (B+ → f0(1370)π+)ACP (B+ → f0(1370)π+) = 0.72 ± 0.22
ACP (B+ → π+π−π+ nonresonant) = −0.14+0.23

−0.16

ACP (B+ → ρ+π0) = 0.02 ± 0.11
ACP (B+ → ρ+ρ0) = −0.05 ± 0.05
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ACP (B+ → ωπ+) = −0.04 ± 0.06
ACP (B+ → ωρ+) = −0.20 ± 0.09
ACP (B+ → ηπ+) = −0.14 ± 0.07 (S = 1.4)
ACP (B+ → ηρ+) = 0.11 ± 0.11
ACP (B+ → η′π+) = 0.06 ± 0.16
ACP (B+ → η′ρ+) = 0.26 ± 0.17
ACP (B+ → b0

1 π+) = 0.05 ± 0.16
ACP (B+ → ppπ+) = 0.00 ± 0.04
ACP (B+ → ppK+) = −0.08 ± 0.04 (S = 1.1)
ACP (B+ → ppK∗(892)+) = 0.21 ± 0.16 (S = 1.4)
ACP (B+ → pΛγ) = 0.17 ± 0.17
ACP (B+ → pΛπ0) = 0.01 ± 0.17
ACP (B+ → K+ ℓ+ ℓ−) = −0.02 ± 0.08
ACP (B+ → K+ e+ e−) = 0.14 ± 0.14
ACP (B+ → K+µ+µ−) = −0.003 ± 0.033
ACP (B+ → K∗+ ℓ+ ℓ−) = −0.09 ± 0.14
ACP (B+ → K∗ e+ e−) = −0.14 ± 0.23
ACP (B+ → K∗µ+µ−) = −0.12 ± 0.24
γ(B+ → D(∗)0K (∗)+)γ(B+ → D(∗)0K (∗)+)γ(B+ → D(∗)0K (∗)+)γ(B+ → D(∗)0K (∗)+) = (73+7

−9)
◦

B− modes are charge conjugates of the modes below. Modes which do not
identify the charge state of the B are listed in the B±/B0 ADMIXTURE
section.

The branching fractions listed below assume 50% B0B0 and 50% B+ B−

production at the Υ(4S). We have attempted to bring older measurements
up to date by rescaling their assumed Υ(4S) production ratio to 50:50

and their assumed D, Ds , D∗, and ψ branching ratios to current values
whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All
resonant subchannels have been corrected for resonance branching frac-
tions to the final state so the sum of the subchannel branching fractions
can exceed that of the final state.

For inclusive branching fractions, e.g., B → D± anything, the values
usually are multiplicities, not branching fractions. They can be greater
than one.

Scale factor/ p

B+ DECAY MODESB+ DECAY MODESB+ DECAY MODESB+ DECAY MODES Fraction (Γi /Γ) Confidence level(MeV/c)

Semileptonic and leptonic modesSemileptonic and leptonic modesSemileptonic and leptonic modesSemileptonic and leptonic modes
ℓ+νℓ anything [a] ( 10.99 ±0.28 ) % –

e+ νe Xc ( 10.8 ±0.4 ) % –
D ℓ+ νℓ anything ( 9.8 ±0.7 ) % –
D0 ℓ+νℓ [a] ( 2.27 ±0.11 ) % 2310

D0 τ+ντ ( 7.7 ±2.5 ) × 10−3 1911

HTTP://PDG.LBL.GOV Page 6 Created: 8/21/2014 13:13
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If CP were conserved ✏ = 0, ImM12 = 0, Im�12 = 0

and we would have �M = 2ReM12,�� = 2Re�12

Physical approximations:

CPV is small: assume ImM12 ⌧ ReM12, Im�12 ⌧ Re�12

✏ ⇡ i
ImM12 � i

2 Im�12

�M � i
2��

We’ll see Im�12 ⌧ ImM12 Empirically �� ⇡ �2�M ) ✏ ⇡ ei⇡/4
ImM12p
2�M

Example: Conceptually clean measurement, semileptonic charge-asymmetry

4/20 Lecture 2 (4/20)2013-06-03 10:33:51

CPV in mixing
Kaons first (will come back to heavier mesons)
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Example: Time dependent charge-asymmetry in semileptonic X decay (“Xl3 decay”) 

Like δ above but now δ(t)

14/20 Lecture 2 (14/20)2013-06-03 10:33:57

setup

Assume beam has NX0
and NX̄0 of X0

and

¯X0

�(t) =
N+ �N�

N+ +N� where t is from distance from target/magic box

�(t) =
NX0 [�(X0(t) ! ⇡�e+⌫)� �(X0(t) ! ⇡+e�⌫)] +NX̄0 [�(X̄0(t) ! ⇡�e+⌫)� �(X̄0(t) ! ⇡+e�⌫)]

same but with + + ++ signs

yeach! real life is complicated...
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2.5. CPV 47

Figure 2.7: Charge asymmetry in semi-leptonic neutral kaon decays, from an
experiment by Gjesdal et al, [21]. The solid curve is a fit to the formula (2.12)
from which the parameters �S , �M , a and Re(✏) are extracted.

Exercises

Exercise 2.5.2-2: Use �(K0(t) ! ⇡�e+⌫) / |h⇡�e+⌫|HW |K0(t)i|2 and the assump-
tions that

(i) h⇡�e+⌫|HW |K0
(t)i = 0 = h⇡+e�⌫|HW |K0(t)i

(ii) h⇡�e+⌫|HW |K0(t)i = h⇡+e�⌫|HW |K0
(t)i

to show that

�(t) =

(NK0 � N
K

0)


|f+(t)|2 � |f�(t)|2 1

2

✓��� q
p

���
2

+
���p
q

���
2
◆�

+ 1
2 (NK0 + N

K
0)|f�(t)|2

✓���p
q

���
2

�
��� q
p

���
2
◆

(NK0 + N
K

0)


|f+(t)|2 + |f�(t)|2 1

2

✓��� q
p

���
2

+
���p
q

���
2
◆�

� 1
2 (NK0 � N

K
0)|f�(t)|2

✓���p
q

���
2

�
��� q
p

���
2
◆

Justify assumptions (i) and (ii).

The formula in the exercise is valid for any X0-X
0

system. We can simplify
further for kaons, using p/q = (1 + ✏)/(1 � ✏), a ⌘ (NK0 � N

K
0)/(NK0 + N

K
0) and

48 CHAPTER 2. NEUTRAL MESON MIXING AND CP ASYMMETRIES

�� ⇡ ��S . Then

�(t) =
a
⇥
|f

+

(t)|2 � |f�(t)|2
⇤
+ 4Re(✏)|f�(t)|2

[|f
+

(t)|2 + |f�(t)|2] � 4aRe(✏)|f�(t)|2

⇡
2ae� 1

2�St cos(�Mt) +
�
1 + e��St � 2e� 1

2�St cos(�Mt)
�
2
�
1 + a

2

�
Re(✏)

1 + e��St

(2.12)

Figure 2.7 shows the experimental measurement of the asymmetry [21]. The
solid curve is a fit to the formula (2.12) from which the parameters �S , �M , a and
Re(✏) are extracted. The fit to this figure gives �MK = (0.5287±0.0040)⇥1010 s�1.
The current value, from the PDG is �MK = (0.5293 ± 0.0009) ⇥ 1010 s�1.

2.6 CP-Asymmetries: Interference of Mixing and De-
cay

Very generically a CP-asymmetry a is defined as

a =
�(process) � �(CP conjugate process)

�(process) + �(CP conjugate process)
⌘ � � �

� + �
.

Under what conditions can this be non-zero? � ⇠ |hout|ini|2 and if hout|ini has
definite transformation properties under CP, e.g., hout|ini ��!

CP
±hout|ini, then

� = � and a = 0. We can get a non-zero asymmetry from interference between
two amplitudes with opposite, definite CP properties, one even and one odd under
CP: hout|ini = hout|ini

+

+ hout|ini� ! hout|ini
+

� hout|ini�. Then

a =
|hout|ini

+

+ hout|ini�|2 � |hout|ini
+

� hout|ini�|2
|hout|ini

+

+ hout|ini�|2 + |hout|ini
+

� hout|ini�|2 =
2Re(hout|ini

+

hout|ini⇤
�)

|hout|ini
+

|2 + |hout|ini�|2

One way to get an interference is to have two “paths” from |ini to |outi. For
example, consider an asymmetry constructed from � = �(X0 ! f) and � =

�(X
0 ! f), where f stands for some final state and f its CP conjugate. Then �

may get contributions either from a direct decay X0 ! f or it may first oscillate

into X
0

and then decay X
0 ! f . Note that this requires that both X0 and its

antiparticle, X
0

, decay to the same common state. Similarly for � we may get

contributions from both X
0 ! f and the oscillation of X

0

into X0 followed by a
decay into f . In pictures,

p/q = (1 + ✏)/(1� ✏)KAONS: a ⌘ (NK0 �NK̄0)/(NK0 +NK̄0) �� ⇡ ��S
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Fig. 2. The charge asymmetry as a function of the reconstructed decay time r' for the K~ decays. The experimental data are com- 
pared to the best fit as indicated by the solid line. 

The quoted error includes the statistical error as well as the uncertainties in the dilution factor. ×2 values per 
degree of freedom of 17/23 and 16/24 are obtained. 

The above result is obtained assuming an incoherent mixture of K ° and ~o produced at the centre of the 
primary target. The following corrections account for the accumulated effects due to secondary interactions of 
the kaons in the beam line. These effects can be described as a common initial phase change of 0.4 ° +-0.3 ° [1 ] and 
results in a correction of (+0.0018 -+ 0.0013) × 1010 s -1 in Am. Kaons produced in the beam dump lead to an 
independent correction of (+0.0012 + 0.005) X 1010 s -1. Furthermore, Ke3 radiative decays cause a ( -0 .45 
-+ 0.1)% shift in the reconstructed kaon momentum implying a correction of (+0.0024 +- 0.0005) X 1010 s-1. 
The final corrected values of Am and the average from Ke3 and K~, 3 decays are: 

Am(Ke3 ) =(0.5341 +-0.0043) X 1010s -1 , Am(K3 ) = (0.529 + 0.010) × 1010 s -1 , 

Am(av) = (0.5334 +- 0.0040) × 1010 s -1 . 

The quoted error includes the estimated uncertainties of the corrections including the uncertainty in the back- 
ground subtraction of the K~3 data. In addition, a 0.3% systematic error has to be allotted to the uncertainty 
in the momentum calibration and the associated uncertainty in the K S lifetime [1 ]. 

The results compare well with an independent determination of Am by the two-regenerator method [5] 
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Their charge asymmetry is evaluated as a function of  T' and p '  in bins of  width At '  = 0.5 × 10-10s and p '  = 
f 2 GeV/c starting at rmi n = 2.25 × 10 -10 s and Pmin = 7 GeV/c. 

The mass difference Am is determined by a comparison of  the time dependence of  the measured charge asym- 
metry with the theoretical expectation fi(r', Am, y) for the set of  parameters to be determined. The theoretical 
function ~ and its derivatives are calculated by Monte Carlo techniques from eq. (2). This treatment accounts for 
the following: 

- The K~3 matrix elements according to V - A  theory with linear formfactors for the hadronic current [3] and 
radiative corrections [4].  

- The observed beam profile, and the experimental resolution and acceptance. 
- Transformation from the true kaon momentum p and lifetime r to the measured quantities p '  and r ' .  
- The shape of  the kaon momentum spectrum and the dilution factor A(p) as obtained in the K~2 analysis [1 ] 
The influence of  the actual form of  the matrix element on the charge asymmetry is weak. The shape of  the 

momentum spectrum enters only indirectly in the transformation from r to r ' .  The K S lifetime and the K L charge 
asymmetries are taken from previous results of  the same experiment [ 1 ,2 ] .  The results of  the best fits to the 
measured charge asymmetries are shown in figs. 1 and 2. The A S - A Q  fac tory  is left free in the fits. The uncor- 
rected values for the KL-K S mass difference are: 

Am(Ke3 ) = (0.5287 -+ 0.0040) × 1010 s -1 , A m ( K 3  ) = (0.526 + 0.0085) × 1010 s -1 . 
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Fig. 1. The charge asymmetry as a function of the reconstructed decay time r' for the Ke3 decays. The experimental data are 
compared to the best fit as indicated by the solid line. 
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muons:

The solid curve is a fit to the formula

of previous slide from which the parameters

�S , �M , a and Re(✏) are extracted.

http://inspirehep.net/author/Gjesdal%2C%20S.?recid=90193&ln=en
http://inspirehep.net/author/Gjesdal%2C%20S.?recid=90193&ln=en
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FIG. 25: Time-dependent asymmetry A(∆t) between unmixed and mixed events for hadronic B candidates with mES >
5.27 GeV/c2, a) as a function of ∆t; and b) folded as a function of |∆t|. The asymmetry in a) is due to the fitted bias in the
∆t resolution function.

systematic uncertainty due to this choice, we add an ad-
ditional component, with its own separate lifetime, that
is allowed to mix; the observed value of ∆md changes
by 0.001 ps−1 (f). Similarly, adding an additional Gaus-
sian distribution to the ∆t background resolution func-
tion changes ∆md by no more than 0.001 ps−1 (g).

Finally, the composition of the background changes
slightly as a function of mES, since the fraction of back-
ground due to continuum production slowly decreases
towards the B mass. As a result, the ∆t structure of
the background could change as well. To study this de-
pendence, we split the mES sideband region into seven
mutually exclusive, 10 MeV/c2-wide intervals, and repeat
the ∆md fit with each of these slices in turn. The vari-
ation of ∆md is then extrapolated as a function of the
position of the sideband slice relative to the B mass. We
correct the value of ∆md by −0.002 ps−1 obtained from
this extrapolation, and assign the statistical uncertainty
of 0.002 ps−1 of this procedure as a systematic error on
∆md (h).

A small fraction (about 1.5%) of the events attributed
to the B0 signal by the fit to the mES distribution con-
sists of B+ events, mainly due to the swapping of a soft
π0 with a charged pion as described in Section III C 1.
The uncertainty on this peaking fraction is propagated
to ∆md, yielding a systematic error of 0.002 ps−1 (i).

3. External parameters

An error in the boost of the Υ (4S) system (0.1%) or in
the knowledge of the z scale of the detector, as described
in Section V A, could bias the ∆md measurement be-
cause these parameters are used to reconstruct the decay
length difference ∆z and to convert it to the decay time
difference ∆t. The uncertainties on these quantities are
propagated to ∆md and lead to systematic uncertainties
of 0.001 ps−1 (l) and less than 0.002 ps−1 (j), respec-
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FIG. 26: a) Correlation between the event-by-event error on
∆t (σ∆t) and the mistag rate in the Kaon category from Monte
Carlo simulation; b) Dependence of mistag rate on σ∆t after
scaling the mistag rate by

√

∑

p2
t .

tively. In addition to these, we assign the difference of
0.001 ps−1 (k) in the value of ∆md obtained by using
the ∆z to ∆t conversion described in Eq. 20 instead of
Eq. 21 as a systematic error. Finally, in the likelihood
fit, we fix the B0 lifetime to the PDG value [11]. The
present uncertainty on this value of ±0.032 ps leads to a
systematic error of ∓0.006 ps−1 (m).

Babar, arXiv.org > hep-ex > arXiv:hep-ex/0201020

This is B0 (in hadronic decays)

http://arxiv.org/
http://arxiv.org/
http://arxiv.org/list/hep-ex/recent
http://arxiv.org/list/hep-ex/recent
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CP Asymmetries in Interference Mixing-Decay

16/20 Lecture 2 (16/20)2013-06-03 10:33:58

Mixing gives two paths to same final state.
If final state is a CP eigenstate this can test
for CPV in the two decays.

�(X0(t) ! f) = |f+(t)hf |Hw|X0i+ q
pf�(t)hf |Hw|X̄0i|2

⌘ |f+(t)Af + q
pf�(t)Āf |2

�(X̄0(t) ! f̄) = |pq f�(t)Af̄ + f+(t)Āf̄ |2

This we know:

This defines shorthand:

idem

Time-dependent asymmetry

(similar to  δ(t)) A(t) =
�(X̄0(t) ! f̄)� �(X0(t) ! f)

�(X̄0(t) ! f̄) + �(X0(t) ! f)
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1.Semileptonic (much like  δ(t)):     f = e− + any
b̄ ! c̄e+⌫ ) X0 ! e+ + any

b ! ce�⌫̄ ) X̄0 ! e� + any
Then Af = 0

Āf̄ = 0
�(X0(t) ! f) = | qpf�(t)Āf |2

�(X̄0(t) ! f̄) = |pq f�(t)Af̄ |2

ASL(t) =

���pq
���
2
�

��� qp
���
2

���pq
���
2
+

��� qp
���
2

• Directly probes |q/p|
• Time dependence?  time independent
• We already saw that in SM this is expected to vanish to good approximation (if  𝛤12 = 0)
• We did not try to improve on our approximation nor estimate deviations; guesstimate

• Experiment

20 12. CP violation in the quark sector

12.6. B and Bs Mesons

The upper bound on the CP asymmetry in semileptonic B decays [26] implies that CP

violation in B0 − B
0

mixing is a small effect (we use ASL/2 ≈ 1 − |q/p|, see Eq. (12.40)):

Ad
SL = (+0.7 ± 2.7) × 10−3 =⇒ |q/p| = 0.9997 ± 0.0013 . (12.83)

The Standard Model prediction is

Ad
SL = O

[

(m2
c/m2

t ) sinβ
]

∼< 0.001 . (12.84)

In models where Γ12/M12 is approximately real, such as the Standard Model, an
upper bound on ∆Γ/∆m ≈ Re(Γ12/M12) provides yet another upper bound on the
deviation of |q/p| from one. This constraint does not hold if Γ12/M12 is approximately
imaginary. (An alternative parameterization uses q/p = (1 − ϵ̃B)/(1 + ϵ̃B), leading to
ASL ≃ 4Re(ϵ̃B).)

The small deviation (less than one percent) of |q/p| from 1 implies that, at the present
level of experimental precision, CP violation in B mixing is a negligible effect. Thus, for
the purpose of analyzing CP asymmetries in hadronic B decays, we can use

λf = e
−iφM(B)(Af/Af ) , (12.85)

where φM(B) refers to the phase of M12 appearing in Eq. (12.45) that is appropriate

for B0 − B
0

oscillations. Within the Standard Model, the corresponding phase factor is
given by

e
−iφM(B) = (V ∗

tbVtd)/(VtbV
∗
td) . (12.86)

Some of the most interesting decays involve final states that are common to B0 and

B
0

decays [53,54]. It is convenient to rewrite Eq. (12.43) for B decays as [55–57]

Af (t) = Sf sin(∆mt) − Cf cos(∆mt) ,

Sf ≡
2 Im(λf )

1 +
∣

∣λf

∣

∣

2 , Cf ≡
1 −

∣

∣λf

∣

∣

2

1 +
∣

∣λf

∣

∣

2 , (12.87)

where we assume that ∆Γ = 0 and |q/p| = 1. An alternative notation in use is Af ≡ −Cf ,
but this Af should not be confused with the Af of Eq. (12.16).

A large class of interesting processes proceed via quark transitions of the form b → qqq′

with q′ = s or d. For q = c or u, there are contributions from both tree (t) and penguin
(pqu , where qu = u, c, t is the quark in the loop) diagrams (see Fig. 12.2) which carry
different weak phases:

Af =
(

V ∗
qbVqq′

)

tf +
∑

qu=u,c,t

(

V ∗
qubVquq′

)

pqu
f . (12.88)
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Bd: Bs:

26 12. CP violation in the quark sector

The method uses the decays B+ → D0K+, which proceeds via the quark transition

b → ucs, and B+ → D
0
K+, which proceeds via the quark transition b → cus, with

the D0 and D
0

decaying into a common final state. The decays into common final
states, such (π0KS)DK+, involve interference effects between the two amplitudes, with
sensitivity to the relative phase, δ + γ (δ is the relevant strong phase). The CP -conjugate
processes are sensitive to δ − γ. Measurements of branching ratios and CP asymmetries
allow the determination of γ and δ from amplitude triangle relations. The method
suffers from discrete ambiguities but involves no hadronic uncertainties. However, the
smallness of the CKM-suppressed b → u transitions makes it difficult at present to use
the simplest methods [61–63] to determine γ. These difficulties are overcome (and the
discrete ambiguities are removed) by performing a Dalitz plot analysis for multi-body
D decays [64]. The consistency between the range of γ determined by the B → DK
measurements and the range allowed by CKM fits (excluding these direct determinations)
provides further support to the Kobayashi-Maskawa mechanism. As more data becomes
available, determinations of γ from B0

s → D∓
s K± [65,66] and B0 → DK∗0 [67–70] are

expected to also give competitive measurements.

The experimental constraint on CP violation in B0
s − B

0
s mixing is somewhat weaker

than that in the B0 − B
0

system [26]

As
SL = (−17.1 ± 5.5) × 10−3 =⇒ |q/p| = 1.0086 ± 0.0028 . (12.98)

The Standard Model prediction is As
SL = O

[

(m2
c/m2

t ) sinβs
]

∼< 10−4. The tension
between the measurement and the prediction originates from a result for the inclusive
same-sign dimuon asymmetry, which deviates from the Standard Model prediction by
3.9σ [71,72]. As yet, this has not been confirmed by independent studies.

Attributing the dimuon asymmetry result to a fluctuation, we can again neglect the
deviation of |q/p| from 1, and use

λf = e−iφM (Bs)(Af/Af ) . (12.99)

Within the Standard Model,

e
−iφM(Bs) = (V ∗

tbVts)/(VtbV
∗
ts) . (12.100)

Note that ∆Γ/Γ = 0.116 ± 0.020 [27] and therefore y should not be put to zero
in Eqs. (12.33, 12.34). However, |q/p| = 1 is expected to hold to an even better
approximation than for B mesons. One therefore obtains

Af (t) =
Sf sin(∆mt) − Cf cos(∆mt)

cosh (∆Γt/2) − A∆Γ
f sinh (∆Γt/2)

,

A∆Γ
f ≡

−2Re(λf )

1 +
∣

∣λf

∣

∣

2 . (12.101)
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In what follows take 
����
p

q

���� = 1 and it makes sense to use 

Simplification: 
f±(t) = e�iMte��t

(
cos(

1
2�Mt)

�i sin( 12�Mt)

�� ⇡ 0



27

2. CPV in interference between a decay with mixing and a decay without mixing

16/20 Lecture 2 (16/20)2013-06-03 10:33:58

No distinction between final states Af̄ = Af Āf̄ = Āf

AfCP =
|pq f�(t)Af + f+(t)Āf |2 � |f+(t)Af + q

pf�(t)Āf |2

|pq f�(t)Af + f+(t)Āf |2 + |f+(t)Af + q
pf�(t)Āf |2

Divide by |A|2,  use |p/q| = 1 and define

�f =
q

p

Āf

Af

=
|f�(t) + f+(t)�f |2 � |f+(t) + f�(t)�f |2

|f�(t) + f+(t)�f |2 � |f+(t) + f�(t)�f |2

= �1� |�f |2

1 + |�f |2
cos(�Mt) +

2Im�f

1 + |�f |2
sin(�Mt)

⌘ �Cf cos(�Mt) + Sf sin(�Mt)
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Example: f = D+ D−

2.6. CP-ASYMMETRIES: INTERFERENCE OF MIXING AND DECAY 51

and Af = ±Af . Our formula for the asymmetry now takes the form

AfCP
=

|p
q f�(t)Af + f

+

(t)Āf |2 � |f
+

(t)Af + q
pf�(t)Āf |2

|p
q f�(t)Af + f

+

(t)Āf |2 + |f
+

(t)Af + q
pf�(t)Āf |2

Now, dividing by Af |2 and defining

�f =
q

p

Āf

Af

we have

AfCP =
|f�(t) + f

+

(t)�f |2 � |f
+

(t) + f�(t)�f |2
|f�(t) + f

+

(t)�f |2 � |f
+

(t) + f�(t)�f |2

= �1 � |�f |2
1 + |�f |2 cos(�Mt) +

2Im�f

1 + |�f |2 sin(�Mt)

⌘ �Cf cos(�Mt) + Sf sin(�Mt)

Here is what is amazing about this formula, for which Bigi and Sanda [22] were
awarded the Sakurai Prize for Theoretical Particle Physics: the coe�cients Cf and
Sf are independent of non-computable, non-perturbative matrix elements. The
point is that what most often frustrates us in extracting fundamental parameters
from experiment is our inability to calculate, that is, make a prediction that de-
pends on the parameter to be measured. I now explain this claim and its range of
validity.

The leading contributions to the processes B0 ! f and B
0 ! f in the case

f = D+D� are shown in the following figures:

b

c

d
c

d

W

B0

D+

D�

AD+D� / V ⇤
cbVcd

b

c

d
c

d

W

B
0

D�

D+

AD+D� / VcbV ⇤
cd

Either using CP symmetry of the strong interactions or noting that as far as the
strong interactions are concerned the two diagrams are identical, we have

Af

Af
=

VcbV
⇤
cd

V ⇤
cbVcd

.

Āf

Af
=

VcbV
⇤
cd

V ⇤
cbVcd

p

q
=

2M12

�M
=

�M

2M⇤
12

=
M12

|M12|
=

V ⇤
tbVtd

VtbV
⇤
td

We have already seen that

Putting these together

This is pure KM phase! No hadronic uncertainties. 

and

SD+D� = Im (�D+D�) = Im

✓
VcbV

⇤
cd

V ⇤
cbVcd

V ⇤
tbVtd

VtbV
⇤
td

◆
= Im(e2i�) = sin(2�)

|�D+D� | = 1
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Just as in direct CPV: Af = aT + bP

Āf = a⇤T + b⇤P
a, b = CKMs
T, P = M.E.s
(“tree” and “penguin”)

Suppose |P | = 0 ) �f =
q

p

a⇤

a

That’s just CKM’s.  No dependence on unknown M.E.s !

For pointing this out I. Bigi and A. Sanda
received the Sakurai Prize 2004

… and a race to build B-factories was on!
(well, with the added idea of asymmetric
colliders)
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12. CP violation in the quark sector 23

Table 12.1: Summary of b → qqq′ modes with q′ = s or d. The second and third
columns give examples of final hadronic states. The fourth column gives the CKM
dependence of the amplitude Af , using the notation of Eqs. (12.89, 12.91, 12.93),
with the dominant term first and the subdominant second. The suppression factor
of the second term compared to the first is given in the last column. “Loop” refers
to a penguin versus tree-suppression factor (it is mode-dependent and roughly
O(0.2 − 0.3)) and λ = 0.23 is the expansion parameter of Eq. (12.51).

b → qqq′ B0 → f Bs → f CKM dependence of Af Suppression

b̄ → c̄cs̄ ψKS ψφ (V ∗
cbVcs)T + (V ∗

ubVus)P
u loop× λ2

b̄ → s̄ss̄ φKS φφ (V ∗
cbVcs)P

c + (V ∗
ubVus)P

u λ2

b̄ → ūus̄ π0KS K+K− (V ∗
cbVcs)P

c + (V ∗
ubVus)T λ2/loop

b̄ → c̄cd̄ D+D− ψKS (V ∗
cbVcd)T + (V ∗

tbVtd)P
t loop

b̄ → s̄sd̄ KSKS φKS (V ∗
tbVtd)P

t + (V ∗
cbVcd)P

c
∼< 1

b̄ → ūud̄ π+π− ρ0KS (V ∗
ubVud)T + (V ∗

tbVtd)P t loop

for Sf in terms of CKM phases can be deduced from the fourth column of Table 12.1 in
combination with Eq. (12.86) (and, for b → qqs decays, the example in Eq. (12.92)). Here
we consider several interesting examples.

For B → J/ψKS and other b → ccs processes, we can neglect the Pu contribution to
Af , in the Standard Model, to an approximation that is better than one percent:

λψKS
= −e−2iβ ⇒ SψKS

= sin 2β , CψKS
= 0 . (12.94)

In the presence of new physics, Af is still likely to be dominated by the T term, but
the mixing amplitude might be modified. We learn that, model-independently, Cf ≈ 0
while Sf cleanly determines the mixing phase (φM − 2 arg(VcbV

∗
cd)). The experimental

measurement [27], SψK = +0.682 ± 0.019, gave the first precision test of the Kobayashi-
Maskawa mechanism, and its consistency with the predictions for sin 2β makes it very
likely that this mechanism is indeed the dominant source of CP violation in the quark
sector.

For B → φKS and other b → sss processes (as well as some b → uus processes), we
can neglect the subdominant contributions, in the Standard Model, to an approximation
that is good to the order of a few percent:

λφKS
= −e−2iβ ⇒ SφKS

= sin 2β , CφKS
= 0 . (12.95)

In the presence of new physics, both Af and M12 can get contributions that are
comparable in size to those of the Standard Model and carry new weak phases. Such a
situation gives several interesting consequences for penguin-dominated b → qqs decays
(q = u, d, s) to a final state f :
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Figure 13.3: Summary of the results [27] of time-dependent analyses of b → qqs
decays, which are potentially sensitive to new physics.

Sππ ≈ sin 2α + 2Re(RPT ) cos 2α sin α , Cππ ≈ 2 Im(RPT ) sinα . (13.97)

Note that RPT is mode-dependent and, in particular, could be different for π+π− and
π0π0. If strong phases can be neglected, then RPT is real, resulting in Cππ = 0. The size
of Cππ is an indicator of how large the strong phase is. The present experimental average
is Cπ+π− = −0.31 ± 0.05 [27]. As concerns Sππ, it is clear from Eq. (13.97) that the
relative size or strong phase of the penguin contribution must be known to extract α.
This is the problem of penguin pollution.

The cleanest solution involves isospin relations among the B → ππ amplitudes [76]:

1√
2
Aπ+π− + Aπ0π0 = Aπ+π0 . (13.98)

The method exploits the fact that the penguin contribution to P t
ππ is pure ∆I = 1/2

(this is not true for the electroweak penguins which, however, are expected to be small),
while the tree contribution to Tππ contains pieces that are both ∆I = 1/2 and ∆I = 3/2.
A simple geometric construction then allows one to find RPT and extract α cleanly from
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Real life, |P | 6= 0

22 12. CP violation in the quark sector

d or s

b q

q′

q

V∗qb

Vqq′

B0
or
Bs f

(a) tf

d or s

b q′

q

q

V∗qub Vquq′

qu
B0
or
Bs f

(b) pfqu

Figure 12.2: Feynman diagrams for (a) tree and (b) penguin amplitudes
contributing to B0 → f or Bs → f via a b → qqq′ quark-level process.

Cf is small. If such a second contribution is not suppressed, Sf depends on hadronic
parameters and, if the relevant strong phase is large, Cf is large.

A summary of b → qqq′ modes with q′ = s or d is given in Table 12.1. The b → ddq
transitions lead to final states that are similar to the b → uuq transitions and have similar
phase dependence. Final states that consist of two-vector mesons (ψφ and φφ) are not
CP eigenstates, and angular analysis is needed to separate the CP -even from the CP -odd
contributions.

The cleanliness of the theoretical interpretation of Sf can be assessed from the
information in the last column of Table 12.1. In case of small uncertainties, the expression
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columns give examples of final hadronic states. The fourth column gives the CKM
dependence of the amplitude Af , using the notation of Eqs. (12.89, 12.91, 12.93),
with the dominant term first and the subdominant second. The suppression factor
of the second term compared to the first is given in the last column. “Loop” refers
to a penguin versus tree-suppression factor (it is mode-dependent and roughly
O(0.2 − 0.3)) and λ = 0.23 is the expansion parameter of Eq. (12.51).

b → qqq′ B0 → f Bs → f CKM dependence of Af Suppression

b̄ → c̄cs̄ ψKS ψφ (V ∗
cbVcs)T + (V ∗

ubVus)P
u loop× λ2

b̄ → s̄ss̄ φKS φφ (V ∗
cbVcs)P

c + (V ∗
ubVus)P

u λ2

b̄ → ūus̄ π0KS K+K− (V ∗
cbVcs)P

c + (V ∗
ubVus)T λ2/loop

b̄ → c̄cd̄ D+D− ψKS (V ∗
cbVcd)T + (V ∗

tbVtd)P
t loop

b̄ → s̄sd̄ KSKS φKS (V ∗
tbVtd)P

t + (V ∗
cbVcd)P

c
∼< 1

b̄ → ūud̄ π+π− ρ0KS (V ∗
ubVud)T + (V ∗

tbVtd)P t loop

for Sf in terms of CKM phases can be deduced from the fourth column of Table 12.1 in
combination with Eq. (12.86) (and, for b → qqs decays, the example in Eq. (12.92)). Here
we consider several interesting examples.

For B → J/ψKS and other b → ccs processes, we can neglect the Pu contribution to
Af , in the Standard Model, to an approximation that is better than one percent:

λψKS
= −e−2iβ ⇒ SψKS

= sin 2β , CψKS
= 0 . (12.94)

In the presence of new physics, Af is still likely to be dominated by the T term, but
the mixing amplitude might be modified. We learn that, model-independently, Cf ≈ 0
while Sf cleanly determines the mixing phase (φM − 2 arg(VcbV

∗
cd)). The experimental

measurement [27], SψK = +0.682 ± 0.019, gave the first precision test of the Kobayashi-
Maskawa mechanism, and its consistency with the predictions for sin 2β makes it very
likely that this mechanism is indeed the dominant source of CP violation in the quark
sector.

For B → φKS and other b → sss processes (as well as some b → uus processes), we
can neglect the subdominant contributions, in the Standard Model, to an approximation
that is good to the order of a few percent:

λφKS
= −e−2iβ ⇒ SφKS

= sin 2β , CφKS
= 0 . (12.95)

In the presence of new physics, both Af and M12 can get contributions that are
comparable in size to those of the Standard Model and carry new weak phases. Such a
situation gives several interesting consequences for penguin-dominated b → qqs decays
(q = u, d, s) to a final state f :
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(for this observation, I got no prize; Phys.Lett. B229 (1989) 280)
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ACP (B0 → ωK∗
2(1430)0) = −0.37 ± 0.17

ACP (B0 → K+π−π0) = (0 ± 6) × 10−2

ACP (B0 → ρ−K+) = 0.20 ± 0.11
ACP (B0 → ρ(1450)−K+) = −0.10 ± 0.33
ACP (B0 → ρ(1700)−K+) = −0.4 ± 0.6
ACP (B0 → K+π−π0nonresonant) = 0.10 ± 0.18
ACP (B0 → K0π+π−) = −0.01 ± 0.05
ACP (B0 → K∗(892)+π−)ACP (B0 → K∗(892)+π−)ACP (B0 → K∗(892)+π−)ACP (B0 → K∗(892)+π−) = −0.22 ± 0.06
ACP (B0 → (Kπ)∗+0 π−) = 0.09 ± 0.07
ACP (B0 → (Kπ)∗00 π0) = −0.15 ± 0.11
ACP (B0 → K∗0π0) = −0.15 ± 0.13
ACP (B0 → K∗(892)0π+π−) = 0.07 ± 0.05
ACP (B0 → K∗(892)0ρ0) = −0.06 ± 0.09
ACP (B0 → K∗0 f0(980)) = 0.07 ± 0.10
ACP (B0 → K∗+ρ−) = 0.21 ± 0.15
ACP (B0 → K∗(892)0K+K−) = 0.01 ± 0.05
ACP (B0 → a−1 K+) = −0.16 ± 0.12
ACP (B0 → K0K0) = −0.6 ± 0.7
ACP (B0 → K∗(892)0φ) = (0 ± 4) × 10−2

ACP (B0 → K∗(892)0K−π+) = 0.2 ± 0.4
ACP (B0 → φ(K π)∗00 ) = 0.12 ± 0.08
ACP (B0 → φK∗

2(1430)0) = −0.11 ± 0.10
ACP (B0 → K∗(892)0γ) = −0.002 ± 0.015
ACP (B0 → K∗

2(1430)0γ) = −0.08 ± 0.15
ACP (B0 → ρ+π−) = 0.13 ± 0.06 (S = 1.1)
ACP (B0 → ρ−π+) = −0.08 ± 0.08
ACP (B0 → a1(1260)±π∓) = −0.07 ± 0.06
ACP (B0 → b−1 π+) = −0.05 ± 0.10
ACP (B0 → ppK∗(892)0) = 0.05 ± 0.12
ACP (B0 → pΛπ−) = 0.04 ± 0.07
ACP (B0 → K∗0 ℓ+ ℓ−) = −0.05 ± 0.10
ACP (B0 → K∗0 e+ e−) = −0.21 ± 0.19
ACP (B0 → K∗0µ+µ−) = −0.07 ± 0.04
CD∗−D+ (B0 → D∗(2010)−D+) = −0.01 ± 0.11

SD∗−D+ (B0 → D∗(2010)−D+)SD∗−D+ (B0 → D∗(2010)−D+)SD∗−D+ (B0 → D∗(2010)−D+)SD∗−D+ (B0 → D∗(2010)−D+) = −0.72 ± 0.15
CD∗+ D− (B0 → D∗(2010)+D−) = 0.00 ± 0.13 (S = 1.3)

SD∗+ D− (B0 → D∗(2010)+D−)SD∗+ D− (B0 → D∗(2010)+D−)SD∗+ D− (B0 → D∗(2010)+D−)SD∗+ D− (B0 → D∗(2010)+D−) = −0.73 ± 0.14
CD∗+ D∗− (B0 → D∗+D∗−) = 0.01 ± 0.09 (S = 1.6)

SD∗+ D∗− (B0 → D∗+D∗−)SD∗+ D∗− (B0 → D∗+D∗−)SD∗+ D∗− (B0 → D∗+D∗−)SD∗+ D∗− (B0 → D∗+D∗−) = −0.59 ± 0.14 (S = 1.8)
C+ (B0 → D∗+D∗−) = 0.00 ± 0.10 (S = 1.6)
S+ (B0 → D∗+D∗−)S+ (B0 → D∗+D∗−)S+ (B0 → D∗+D∗−)S+ (B0 → D∗+D∗−) = −0.73 ± 0.09
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C− (B0 → D∗+D∗−) = 0.19 ± 0.31
S− (B0 → D∗+D∗−) = 0.1 ± 1.6 (S = 3.5)
C (B0 → D∗(2010)+D∗(2010)−K0

S ) = 0.01 ± 0.29
S (B0 → D∗(2010)+D∗(2010)−K0

S ) = 0.1 ± 0.4
CD+ D− (B0 → D+D−) = −0.46 ± 0.21 (S = 1.8)

SD+ D− (B0 → D+D−)SD+ D− (B0 → D+D−)SD+ D− (B0 → D+D−)SD+ D− (B0 → D+D−) = −0.99+0.17
−0.14

CJ/ψ(1S)π0 (B0 → J/ψ(1S)π0) = −0.13 ± 0.13

SJ/ψ(1S)π0 (B0 → J/ψ(1S)π0)SJ/ψ(1S)π0 (B0 → J/ψ(1S)π0)SJ/ψ(1S)π0 (B0 → J/ψ(1S)π0)SJ/ψ(1S)π0 (B0 → J/ψ(1S)π0) = −0.94 ± 0.29 (S = 1.9)

C
D

(∗)
CP

h0
(B0 → D

(∗)
CP h0) = −0.23 ± 0.16

S
D

(∗)
CP

h0
(B0 → D

(∗)
CP h0) = −0.56 ± 0.24

CK0 π0 (B0 → K0π0) = 0.00 ± 0.13 (S = 1.4)

SK0 π0 (B0 → K0π0)SK0 π0 (B0 → K0π0)SK0 π0 (B0 → K0 π0)SK0 π0 (B0 → K0 π0) = 0.58 ± 0.17
Cη′(958)K0

S
(B0 → η′(958)K0

S ) = −0.04 ± 0.20 (S = 2.5)

Sη′(958)K0
S

(B0 → η′(958)K0
S ) = 0.43 ± 0.17 (S = 1.5)

Cη′K0 (B0 → η′K0) = −0.05 ± 0.05

Sη′ K0 (B0 → η′K0)Sη′ K0 (B0 → η′K0)Sη′ K0 (B0 → η′K0)Sη′ K0 (B0 → η′K0) = 0.60 ± 0.07

CωK0
S

(B0 → ωK0
S) = −0.30 ± 0.28 (S = 1.6)

SωK0
S

(B0 → ωK0
S ) = 0.43 ± 0.24

C (B0 → K0
S π0π0) = 0.2 ± 0.5

S (B0 → K0
S π0π0) = 0.7 ± 0.7

Cρ0 K0
S

(B0 → ρ0K0
S ) = −0.04 ± 0.20

Sρ0 K0
S

(B0 → ρ0K0
S ) = 0.50+0.17

−0.21

C
f0 K0

S
(B0 → f0(980)K0

S ) = 0.29 ± 0.20

S
f0 K0

S
(B0 → f0(980)K0

S )S
f0 K0

S
(B0 → f0(980)K0

S )S
f0 K0

S
(B0 → f0(980)K0

S )S
f0 K0

S
(B0 → f0(980)K0

S ) = −0.50 ± 0.16

S
f2 K0

S
(B0 → f2(1270)K0

S ) = −0.5 ± 0.5

C
f2 K0

S
(B0 → f2(1270)K0

S ) = 0.3 ± 0.4

S
fx K0

S
(B0 → fx (1300)K0

S ) = −0.2 ± 0.5

C
fx K0

S
(B0 → fx (1300)K0

S ) = 0.13 ± 0.35

SK0 π+ π− (B0 → K0 π+π−nonresonant) = −0.01 ± 0.33
CK0 π+ π− (B0 → K0 π+π−nonresonant) = 0.01 ± 0.26
C

K0
S

K0
S

(B0 → K0
S K0

S ) = 0.0 ± 0.4 (S = 1.4)

S
K0

S
K0

S
(B0 → K0

S K0
S ) = −0.8 ± 0.5

C
K+ K−K0

S
(B0 → K+K−K0

S nonresonant) = 0.06 ± 0.08

HTTP://PDG.LBL.GOV Page 23 Created: 8/21/2014 13:13+ two more pages

26 13. CP violation in the quark sector

sin(2βeff) ≡ sin(2φe
1
ff)  vs  CCP ≡ -ACP

Contours give -2∆(ln L) = ∆χ2 = 1, corresponding to 60.7% CL for 2 dof

-0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

sin(2βeff) ≡ sin(2φe
1
ff)

CCP ≡ -ACP

b→ccs

φ K0

η′ K0

KS KS KS

π0 KS

ρ0 KS

ω KS

f0 K
0

K+ K- K0

H F A GH F A G
Moriond 2014
PRELIMINARY

Figure 13.3: Summary of the results [27] of time-dependent analyses of b → qqs
decays, which are potentially sensitive to new physics.

Sππ ≈ sin 2α + 2Re(RPT ) cos 2α sin α , Cππ ≈ 2 Im(RPT ) sinα . (13.97)

Note that RPT is mode-dependent and, in particular, could be different for π+π− and
π0π0. If strong phases can be neglected, then RPT is real, resulting in Cππ = 0. The size
of Cππ is an indicator of how large the strong phase is. The present experimental average
is Cπ+π− = −0.31 ± 0.05 [27]. As concerns Sππ, it is clear from Eq. (13.97) that the
relative size or strong phase of the penguin contribution must be known to extract α.
This is the problem of penguin pollution.

The cleanest solution involves isospin relations among the B → ππ amplitudes [76]:

1√
2
Aπ+π− + Aπ0π0 = Aπ+π0 . (13.98)

The method exploits the fact that the penguin contribution to P t
ππ is pure ∆I = 1/2

(this is not true for the electroweak penguins which, however, are expected to be small),
while the tree contribution to Tππ contains pieces that are both ∆I = 1/2 and ∆I = 3/2.
A simple geometric construction then allows one to find RPT and extract α cleanly from

August 21, 2014 13:17
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State of the art:

Exercise: you should be able to understand these shapes

EPILOGUE



The End
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6/10 Unnamed Doc (6/10)2014-02-23 15:50:11
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9/10 Unnamed Doc (9/10)2014-02-23 15:50:12



39
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40

Fermi Theory

8/20 Lecture 2 (8/20)2013-06-03 10:33:53

! � ig22
2M2

W

V ⇤
udVus ū�

µPLs d̄�µPLu

✓
� ig2p

2
V ⇤
udd̄�

µPLu

◆✓
�i

gµ⌫ � qµq⌫/M2
W

q2 �M2
W

◆✓
� ig2p

2
Vusū�

⌫PLs

◆

H�S=1
e↵ =

g22
2M2

W

V ⇤
udVus ūL�

µsL d̄L�µuLSo you can use this

in M12 = M�12 + h1|H|2i+
X

n

0
PP

h1|H|nihn|H|2i
M � En

+ · · ·

The intermediate states are pions, rho-mesons, … “long-distance contributions”

Graphs with u replaced by c, t...
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 (i) It seems difficult to evaluate
(ii)  We have used a very effective approximation mK ≪ MW, why not mK ≪ mt or even mK ≪ mc?

X
PP · · ·

11/20 Lecture 2 (11/20)2013-06-03 10:33:56

“short distance contributions”

Sweet: use 1st order M12 = h1|H|2i+ · · ·

short distance: difficult long distance: way more difficult

is CPV ⇒  non-zero requires c, t quarks ⇒ short distance ⇒ doableIm(M12)

Do this, leave Re for lattice; see, e.g., 1212.5931. Use, for numerics, Re(M12) =
1
2�M from data

9/20 Lecture 2 (9/20)2013-06-03 10:33:54
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• f(x,y): can compute, Feynman diagrams
• double GIM!
• non-zero Im-part form CKM’s only

Exercise: show the matrix element is real (use CP of strong interactions)
• std parametrization: Vud and Vus real need at least one c or t-quark
• EFT not valid with 1 or 2 u-quarks, but these very suppressed (EFT explanation is cleanest, but 

for now think GIM again)
• Left with c,t contributions. But

• Last we need M.E. We parametrize our ignorance using the “vacuum insertion approximation:

where BK = 1 in vacuum insertion approx. 
Exercise: Use

X
VqdV

⇤
qs = 0 ImVudV

⇤
us = 0 ImVcdV

⇤
cs = �ImVtdV

⇤
ts = A2�5⌘and

hK0|d̄L�µsL d̄L�µsL|K̄0i = 2
3f

2
Km2

KBK

hK0|d̄L�µsL d̄L�µsL|K̄0i ! hK0|d̄L�µsL|0ih0|d̄L�µsL|K̄0i+ hK0|d̄aL�µsLb|0ih0|d̄bL�µsLa|K̄0i
and

h0|d̄L�µsL|K̄0i = 1
2pµfK

to show BK = 1 in vacuum insertion approx. Note: here we are using the relativistic normalization of states 
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Ready to put it all together?

where, using 
xi =

m

2
i

M

2
W

f(mc,mt) = xc


ln

xc

xt
� 3xt

4(1� xt)
� 3x2

t lnxt

4(1� xt)2

�
xc ⌧ 1used

f(m) =
4x� 11x2 + x

3

4(1� x)2
� 3x3 lnx

2(1� x)3

Finally

✏K = ei⇡/4C✏ A
2�5⌘

⇥
A2�5(1� ⇢)f(mt)� �(f(mc)� f(mc,mt))

⇤

C✏ =
G2

F f
2
KmKM2

WBK

6
p
2⇡2�mK

⇡ 3⇥ 104BK

ImM12 = �2A2�5⌘ 2
3BK

G2
Fm

2
Kf2

K

4⇡2

⇥
A2�5(1� ⇢)f(mt)� �f(mc) + �f(mc,mt)

⇤
1

2mK

Instead of detailed numerics, let’s check order of magnitude: A2�5 ⇠ (0.2)5 ⇠ 3⇥ 10�4

A2�5(1� ⇢)f(mt) ⇠ (0.2)5 ⇠ 3⇥ 10�4

�f(mc) ⇠ �f(mc,mt) ⇠ (0.2)

✓
1.5

80

◆2

⇠ ⇥10�4

) ✏ ⇠ 3⇥ 10�3

) ✏ ⇠ ⇥10�3

All give contributions of the right order of magnitude! 
This is a great success of the SM!!! (how many exclamations marks do we need?)
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Before we move in, there is a sticky point...

11/20 Lecture 2 (11/20)2013-06-03 10:33:56

We have replaced and expanded in powers of 1/MW

while pretending we have kept strong interactions exact. But these are QCD, we know. And what about

11/20 Lecture 2 (11/20)2013-06-03 10:33:56

Graphs with gluons connecting external legs accounted for:

11/20 Lecture 2 (11/20)2013-06-03 10:33:56

EFT organizes the computation, factorizing 

long distance contributions 
(that go into M.E.) × short distance contributions 

(computable)

and allows RGE to resum  logs, eg,                                 , systematically, ⇠
P

n(
↵s
⇡ ln M

µ )n

✏K = ei⇡/4C✏ A
2�5⌘

⇥
⌘2A

2�5(1� ⇢)f(mt)� �(⌘1f(mc)� ⌘3f(mc,mt))
⇤

⌘1,2,3 ⇡ 0.7, 0.6, 0.4


