Measurement of the $t\bar{t}$ production cross section in the dilepton channel in pp collisions at $\sqrt{s}=8\text{TeV}$

GROUP A

Standard Model at the LHC

CLASHEP 2015

Ibarra-Ecuador

Image: A matrix and a matrix

arXiv 1312.7582

Q

Motivation

Top quark measurements are of central importance to the LHC physics program.

Top quark pair production is an important source of background in many searches for NP.

Measurement of $\sigma_{t\bar{t}}$

- Test QCD at NNLO level.
- Allows an estimation of $\alpha_s(M_Z)$ and m_t^{pole} .

Theoretical $\sigma_{t\bar{t}}$ estimation at 8TeV (m_t = 172.5 GeV):

NNLO in pQCD, including soft gluon resummation at NNLL order.

$$\sigma_{t\bar{t}} = 252.9^{+6.4}_{-8.6}$$
(scale) ± 11.7 (PDF + α_s)pb

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ . 三 . のへ(?)

Top quark pair production

・ロト ・日 ・ ・ ヨ ・ ・

æ

DQC

Top quark pair production

The CMS Collaboration arXiv 1312.7582

900

Image: A marked and A marked

▶ ◀ ≣

Event selection

$$2e, 2\mu, e + \mu; P_{T_1} > 17 \text{GeV} P_{T_2} > 8 \text{GeV}$$

↓

CMS PARTICLE-FLOW ALGORITHM

Two high P_T isolated opposite charge leptons

Both P_T > 20GeV, $|\eta_e| < 2.5$, $|\eta_\mu| < 2.1$

↓

The pair of leptons with the highest

 P_T is selected.

SQC

Dilepton candidates

• Isolation cone:
$$\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} < 0.3$$

• Relative isolation:

$$I_{rel} = \frac{\sum P_{T}(\text{particles reconstructed})}{P_{T}(\text{lepton candidate})} < 0.15$$

• Remove dilepton candidate events with an invariant mass $M_{\ell\ell} < 20$ GeV and $|M_{\ell\ell} - M_Z| < 15$ GeV.

< D > < B > < E > < E >

500

\mathcal{E}_T

Missing transverse energy $\mathcal{F}_T > 40$ GeV for e^-e^+ and $\mu^-\mu^+$. No required \mathcal{F}_T for $e^{\mp}\mu^{\pm}$.

Jet criteria

- JETS reconstructed with ANTI-k_T CLUSTERING ALGORITHM.
- At least 2 reconstructed jets $\Rightarrow P_T > 30$ GeV, $|\eta| < 2.5$
- There must be a b-jet in the event.

Background Estimation

Drell-Yan:

DY-MC normalization given by data inside Z mass window.

Single-Top-Quark and VV Events:

MC simulated

- Non-W/Z Leptons
 - ★ tī lepton+jet
 - Non-prompt leptons: can arise from decays of mesons or heavy-quark decays

Background Estimation

	Number of events			
Source	e^+e^-	$\mu^+\mu^-$	$e^{\pm}\mu^{\mp}$	
Drell–Yan	386 ± 116	492 ± 148	194 ± 58	
Non-W/Z leptons	25 ± 10	114 ± 46	185 ± 72	
Single top quark	127 ± 28	157 ± 34	413 ± 88	
VV	30 ± 8	39 ± 10	$94{\pm}21$	
Total background	569 ± 120	802 ± 159	886±130	
tī dilepton signal	2728 ± 182	3630 ± 250	9624 ± 504	
Data	3204	4180	9982	

Systematic Errors Uncertainties

Systematic Uncertainties

Source	e ⁺ e ⁻	$\mu^+\mu^-$	e [±] µ [∓]
Trigger efficiencies	4.1	3.0	3.6
Lepton efficiencies	5.8	5.6	4.0
Lepton energy scale	0.6	0.3	0.2
Jet energy scale	10.3	10.8	5.2
Jet energy resolution	3.2	4.0	3.0
b-jet tagging	1.9	1.9	1.7
Pileup	1.7	1.5	2.0
Scale (μ_F and μ_R)	5.7	5.5	5.6
Matching partons to showers	3.9	3.8	3.8
Single top quark	2.6	2.4	2.3
vv	0.7	0.7	0.5
Drell-Yan	10.8	10.3	1.5
Non-W/Z leptons	0.9	3.2	1.9
Total systematic	18.6	18.6	11.4
Integrated luminosity	6.4	6.1	6.2
Statistical	5.2	4.5	2.6

Experimental:

- Leptons reconstruction and selection efficiency (1%-2%) in data and simulation.
- Dilepton trigger efficiency: Estimated from data
- Jet Energy Resolution and Jet Energy Scale
- b-Jet tagging and Mis-tag(2 % and 10 % respectively).

500

- Pileup and integrated luminosity.
- Theoretical: Matching partons to showers (MLM), μ_F and μ_R .

Image: Image:

Results

Simple counting analysis method after applying the selection criteria.

$$\sigma \cdot b_r = \frac{N_{events} - N_{bkg}}{A \cdot \epsilon \cdot L} \tag{1}$$

(3)

	e+e-	$\mu^+\mu^-$	e±µ∓
ϵ_{total} (%)	0.203 ± 0.012	0.270 ± 0.017	0.717 ± 0.033
$\sigma_{t\bar{t}}$ (pb)	$244.3 \pm 5.2 \pm 18.6 \pm 6.4$	$235.3 \pm 4.5 \pm 18.6 \pm 6.1$	$239.0 \pm 2.6 \pm 11.4 \pm 6.2$

Results

A combination of the 3 final states using the BLUE method yields a measured cross section of

$$\sigma_{t\bar{t}} = 239.0 \pm 2.1(stat) \pm 11.3(syst.) \pm 6.2(lum.)pb$$
(2)

for a top-quark mass of 172.5GeV.

$$\sigma_{ ext{t\bar{t}}} = ext{252.9}^{+6.4}_{-8.6}(ext{scale}) \pm ext{11.7}(ext{PDF} + lpha_{ ext{s}}) ext{pb}$$

Summary and Conclusions

- Measurement of top quark pair production cross section in proton-proton collisions at $\sqrt{s} = 8$ TeV for events containing a lepton pair (e⁺e⁻, $\mu^+\mu^-$, e[±] μ^\mp), at least two jets with at least one tagged as b-jet, and a large imbalance in transverse momentum in the final state.
- The cross-section dependence of the m_t in the range 160-185 GeV can be parametrized as:

$$\frac{\sigma_{t\bar{t}}}{\sigma_{t\bar{t}}(m_t = 172.5)} = 1.00 - 0.009 \cdot (m_t - 172.5) - 0.000168 \cdot (m_t - 172.5)^2$$
(4)

Image: A matrix and a matrix

500

Sorry for the LONG talk

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Andrés Baquero, Jaime Calderón, José Díaz, Jorge Fraga, Joaquín Grefa, David Hervas, Cristina Mantilla, Mauro Mendizábal, Raquel Quishpe, Stephany Vargas aaaaaaand Joel Jones

Backup

Backup Slides - Jet multiplicity

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

э

DQC

Backup Slides - DY Background Determination from data-driven method

DY is estimated using the R_{out/in} method: The events **outside** the Z mass window are obtained by normalising the event yield from simulation to the observed number of events inside the Z mass window.

$$N_{out/in}^{\ell^+\ell^-}(obs) = R_{out/in}^{\ell^+\ell^-}(N_{out/in}^{\ell^+\ell^-} - 0.5N_{in}^{e\mu}k_{\ell\ell})$$
(5)

• □ ▶ • □ ▶ • □ ▶ •

500

R_{out/in} is the ratio of the number of events outside/inside the Zveto region taken from a DY MC sample

• Data-to-simulation scale factor: 1.3 ± 0.4 for the $e^{\pm}u^{\mp}$ channel, 1.7 ± 0.5 and 1.6 ± 0.5 for the e^+e^- and $\mu^+\mu^-$ channels, respectively.

Backup Slides - m_t^{pole} and $\alpha_s(M_Z)$ estimation

The CMS Collaboration arXiv 1312.7582

Sar