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Least squares best fit 

       Resume of straight line 

       Correlated errors 

       Errors in x and in y 

Goodness of fit with χ2     

         Errors of first and second kind 

         Kinematic fitting 

                Toy example 

THE paradox   
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Straight Line Fit 

N.B. L.S.B.F. passes through (<x>, <y>) 
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Error on intercept and gradient 

That is why track parameters specified at track ‘centre’ 
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a 

b 

x 

y 

See Lecture 1 
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If no errors specified on yi (!) 
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Summary of straight line fitting 

• Plot data 

          Bad points 

          Estimate a and b (and errors) 

• a and b from formula 

• Errors on a’ and b 

• Cf calculated values with estimated 

• Determine Smin (using a and b) 

• ν = n – p 

• Look up in χ2 tables  

• If probability too small,  IGNORE RESULTS  

• If probability a “bit” small, scale errors?  

                    Asymptotically 
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Measurements with correlated errors    e.g. systematics? 
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STRAIGHT LINE: Errors on x and on y 



14 

Comments on Least Squares method 
1) Need to bin 

                Beware of too few events/bin 

2) Extends to n dimensions                                                               

                but needs lots of events for n larger than 2 or 3 

3) No problem with correlated errors  

4) Can calculate Smin “on line”    i.e. single pass through data 

         Σ (yi – a –bxi)
2 /σ2 = [yi

2] – b [xiyi] –a [yi] 

5) For theory linear in params, analytic solution              

                                                                                         y 

6) Hypothesis testing 

                                                                                                                    x   

Individual events 

(e.g. in cos θ )  

yi±σi  v  xi  

(e.g. stars) 

1) Need to bin? Yes No need 

4) χ2 on line First histogram Yes 
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Moments Max Like Least squares 

Easy? Yes, if… Normalisation, 

maximisation messy 

Minimisation 

Efficient? Not very Usually best Sometimes = Max Like 

Input Separate events Separate events Histogram 

Goodness of fit Messy No (unbinned) Easy 

Constraints No  Yes Yes 

N dimensions Easy if …. Norm, max messier Easy 

Weighted events Easy Errors difficult Easy 

Bgd subtraction Easy Troublesome Easy 

Error estimate Observed spread, 

or analytic 

   - ∂2l     -1/2 

   ∂pi∂pj 

     ∂2S      -1/2 

  2∂pi∂pj 

Main feature Easy Best Goodness of Fit 
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‘Goodness of Fit’ by parameter testing? 

 

1+(b/a) cos2θ     Is b/a = 0 ? 

‘Distribution testing’ is better 
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Goodness of Fit: χ2 test 

1) Construct S and minimise wrt free parameters 

2) Determine ν = no. of degrees of freedom 

                  ν = n – p 

                  n = no. of data points 

                  p = no. of FREE parameters 

3)    Look up probability that, for ν degrees of freedom, 

χ2 ≥ Smin 

Works ASYMPTOTICALLY, otherwise use MC 

[Assumes yi are GAUSSIAN distributed with mean yi
th 

and variance σi
2] 
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χ2 with ν degrees of freedom? 

ν = data – free parameters ? 

 

Why asymptotic (apart from Poisson  Gaussian) ? 

a) Fit flatish histogram with 

    y = N {1 + 10-6 cos(x-x0)}   x0 = free param 

 

b) Neutrino oscillations: almost degenerate parameters  

           y ~ 1 – A sin2(1.27 Δm2 L/E)        2 parameters 

                     1 – A (1.27 Δm2 L/E)2         1 parameter   
Small  Δm2 
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Goodness of Fit:  

Kolmogorov-Smirnov 

Compares data and model cumulative plots 

Uses largest discrepancy between dists. 

Model can be analytic or MC sample 

 

Uses individual data points 

Not so sensitive to deviations in tails    

          (so variants of K-S exist) 

Not readily extendible to more dimensions 

Distribution-free conversion to p; depends on n  

          (but not when free parameters involved – needs MC) 
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Goodness of fit: ‘Energy’ test  

Assign +ve charge to data       ; -ve charge to M.C. 

Calculate ‘electrostatic energy E’ of charges 

If distributions agree, E ~ 0 

If distributions don’t overlap, E is positive                  v2 

Assess significance of magnitude of E by MC 

                                                                                                                     

N.B.                                                                                                             v1                                                                                                         

1) Works in many dimensions 

2) Needs metric for each variable (make variances similar?) 

3) E ~ Σ qiqj f(Δr = |ri – rj|) ,    f = 1/(Δr + ε) or –ln(Δr + ε)  

      Performance insensitive to choice of small ε 

See Aslan and Zech’s paper at: 

http://www.ippp.dur.ac.uk/Workshops/02/statistics/program.shtml 
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Wrong Decisions 

Error of First Kind 
        Reject H0 when true 

        Should happen x% of tests 

 

Errors of Second Kind 
        Accept H0 when something else is true 

        Frequency depends on ……… 

            i) How similar other hypotheses are 

                                          e.g.   H0 = μ 

                           Alternatives are:     e           π   K     p 

             ii) Relative frequencies:     10-4 10-4  1  0.1  0.1 

 

Aim for maximum efficiency          Low error of 1st kind 

             maximum purity                 Low error of 2nd kind 

As χ2 cut tightens, efficiency    and purity  

Choose compromise 
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How serious are errors of 1st and 2nd kind? 

1) Result of experiment 
         e.g Is spin of resonance = 2? 

          Get answer WRONG 

 Where to set cut? 

          Small cut         Reject when correct 

          Large cut         Never reject anything 

Depends on nature of H0  e.g. 

          Does answer agree with previous expt? 

          Is expt consistent with special relativity? 

 

2) Class selector e.g. b-quark / galaxy type / γ-induced cosmic shower 

                    Error of 1st  kind:      Loss of efficiency 

                    Error of 2nd kind:      More background 

     Usually easier to allow for 1st than for 2nd  

 

3) Track finding 
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Goodness of Fit: = Pattern Recognition 

                            = Find hits that belong to track 

 

Parameter Determination = Estimate track parameters  

                                            (and error matrix) 
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Kinematic Fitting: Why do it? 
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Kinematic Fitting: Why do it? 
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KINEMATIC FITTING 

Angles of triangle: θ1 + θ2 + θ3 = 180 

                    θ1    θ2     θ3 

Measured    50     60     73±1     Sum = 183 

Fitted             49      59      72                     180 

χ2 = (50-49)2/12 + 1 + 1 =3 

Prob {χ2
1 > 3} = 8.3% 

ALTERNATIVELY: 

Sum =183 ± 1.7, while expect 180 

Prob{Gaussian 2-tail area beyond 1.73 σ} = 8.3% 
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Toy example of Kinematic Fit 
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PARADOX 

Histogram with 100 bins 

Fit with 1 parameter 

Smin: χ
2 with NDF = 99  (Expected χ2 = 99 ± 14) 

 

For our data, Smin(p0) = 90 

Is p2 acceptable if S(p2) = 115? 

 

1) YES.    Very acceptable χ2  probability 

 

2)  NO.      σp from S(p0 +σp) = Smin +1 = 91 

                  But S(p2) – S(p0) = 25 

                  So p2 is 5σ away from best value 
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Next time: 

Discovery and p-values 

                  

    LHC moves us from era of  

     ‘Upper Limits’ to that of  

       DISCOVERIES! 
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Do’s and Dont’s with 

Likelihoods  

                       Louis Lyons 

                     IC and Oxford 

                          CMS 

 
 

CERN Latin American School 

March 2015 
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Topics 

What it is 

How it works: Resonance 

Error estimates 

Detailed example: Lifetime 

Several Parameters 

Extended maximum L 

 

Do’s and Dont’s with L    **** 
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                Simple example:  Angular distribution  

 
                                 y = N (1 +  cos2) 

                                 yi = N (1 +  cos2i) 

                                    = probability density of observing i, given   

                 L() =  yi 

                                    = probability density of observing the data set yi, given  

Best estimate of  is that which maximises L 

    Values of  for which L is very small are ruled out 

     Precision of estimate for  comes from width of L distribution 

 

    CRUCIAL  to normalise y           N = 1/{2(1 + /3)} 

(Information about parameter  comes from shape of exptl distribution of cos) 

cos                          cos                                                                                           

 = -1                    large                                   L 
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How it works: Resonance 

y ~               Γ/2 

        (m-M0)
2 + (Γ/2)2 

 

 

 

 

 

 

                              m                                                           m 

 

            Vary M
0

                                                       Vary Γ 
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Maximum likelihood error 

Range of likely values of param μ from width of L or l dists. 

If L(μ) is Gaussian, following definitions of σ are equivalent: 

1) RMS of L(µ) 

2) 1/√(-d2lnL / dµ2)    (Mnemonic)   
3) ln(L(μ0±σ) = ln(L(μ0)) -1/2 

If L(μ) is non-Gaussian, these are no longer the same 

 

“Procedure 3) above still gives interval that contains the 
true value of parameter μ with 68% probability” 

 
Errors from 3) usually asymmetric, and asym errors are messy. 

So choose param sensibly  

e.g 1/p rather than p;       τ or λ       
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Several Parameters 
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     Extended Maximum Likelihood 

 
Maximum Likelihood uses shape  parameters 

Extended Maximum Likelihood  uses shape and normalisation 

i.e. EML uses prob of observing: 

       a) sample of N events;    and 

       b) given data distribution in x,……  

                 shape parameters and normalisation. 

 

Example:   Angular distribution 

       Observe N events total               e.g  100 

                      F forward                               96 

                      B backward                              4 

Rate estimates        ML            EML 

                Total         ---          10010 

             Forward    962          9610 

            Backward    42             4 2 
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              ML and EML 

 
ML uses fixed (data) normalisation 

EML has normalisation as parameter 

 

Example 1:  Cosmic ray experiment  

                          See 96 protons     and    4 heavy nuclei  

        ML estimate      96 ± 2% protons      4 ±2% heavy nuclei 

      EML estimate      96 ± 10 protons       4 ± 2 heavy nuclei 

 

 

Example 2:  Decay of resonance 

     Use ML  for Branching Ratios 

     Use EML for Partial Decay Rates 
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• NORMALISATION FOR LIKELIHOOD 

 

• JUST QUOTE UPPER LIMIT 

 

• (ln L) = 0.5 RULE 

 

• Lmax AND GOODNESS OF FIT 

 

•  

 

• BAYESIAN SMEARING OF L 

 

• USE CORRECT L  (PUNZI EFFECT) 

90.0 dp 
p

p
U

L

 L

DO’S AND DONT’S WITH L 
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NORMALISATION FOR LIKELIHOOD 

 dx )|P (x 

  data         param 

  e.g.  Lifetime fit to t1, t2,………..tn 

 

 

 

 

 

 

 

 

 

 

             

t 



b ig  to o

 R e a s o na b le

MUST be independent of  

        

  / 1   Missing                                                

     

          

                                

                   /      ) | (       

 

  

 

-  t e t P INCORRECT 
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2) QUOTING UPPER LIMIT 

“We observed no significant signal, and our 90% conf 

upper limit is …..” 

Need to specify method   e.g. 

      L 

      Chi-squared (data or theory error) 

      Frequentist  (Central or upper limit) 

     Feldman-Cousins 

     Bayes with prior = const,  

“Show your L” 

       1) Not always practical 

       2) Not sufficient for frequentist methods  

 

 

 

e tc                  1 /          /1 
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90% C.L. Upper Limits 

x 

 

x0 
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ΔlnL = -1/2 rule 
If L(μ) is Gaussian, following definitions of σ are 

equivalent: 

1) RMS of L(µ) 

2) 1/√(-d2L/dµ2)   

3) ln(L(μ0±σ) = ln(L(μ0)) -1/2 

If L(μ) is non-Gaussian, these are no longer the same 

“Procedure 3) above still gives interval that contains the 

true value of parameter μ with 68% probability” 

 

Heinrich: CDF note 6438 (see CDF Statistics 

Committee Web-page) 

Barlow: Phystat05 
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                                     COVERAGE 

How often does quoted range for parameter include param’s true value? 

 

N.B. Coverage is a property of METHOD, not of a particular exptl result 

 

Coverage can vary with μ 

 

Study coverage of different methods of Poisson parameter  μ, from 

observation of number of events n 

 

Hope for: 

 

 

 

 

Nominal 

value 

100% 



)(C
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                        COVERAGE  

If true for all      :      “correct coverage”  

 P<     for some        “undercoverage”                                 
(this is serious !)   

  P>     for some        “overcoverage”   

Conservative 

Loss of rejection 

power 
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Coverage : L approach (Not frequentist) 

 

P(n,μ) = e-μμn/n!    (Joel Heinrich CDF note 6438) 

-2 lnλ< 1         λ = P(n,μ)/P(n,μbest)       UNDERCOVERS 
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Frequentist central intervals, NEVER 

undercover 

(Conservative at both ends)  
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Feldman-Cousins Unified intervals 

 
Frequentist, so NEVER undercovers 
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Probability ordering 

 
Frequentist, so NEVER undercovers 
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 χ2 = (n-µ)2/µ         Δ χ2 = 0.1              24.8% coverage? 

   

 NOT frequentist :  Coverage = 0%  100% 
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Great? Good? Bad 

Lmax 

Frequency 

     Unbinned Lmax and Goodness of Fit? 

Find params by maximising L 

So larger L better than smaller L  

So Lmax gives Goodness of Fit?? 

Monte Carlo distribution 

of unbinned Lmax 
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Not necessarily:                                                       pdf 

        L(data,params)  

                                                        

          fixed    vary                                                                L     

Contrast    pdf(data,params)                param 

 

                        vary  fixed 

                                                                                         
                                                                                                           

 

e.g. p(λ) = λ exp(-λt)                                                                                    data 

  

 

 

 

            Max at t = 0                                                                                Max at λ=1/t 

   p                                                                                   L 

 

 

         

                     t                                                                                   λ                                                       


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Example 1 

 

Fit exponential to times t1, t2 ,t3 …….            [ Joel Heinrich, CDF 5639 ] 

L =  Π λ exp(-λti) 

lnLmax = -N(1 + ln tav) 

i.e. Depends only on AVERAGE t, but is 

INDEPENDENT OF DISTRIBUTION OF t      (except for……..) 

(Average t is a sufficient statistic) 

 

Variation of Lmax in Monte Carlo is due to variations in samples’ average t , but 

NOT TO BETTER OR WORSE FIT 

    

                                                                                 pdf 

Same average t            same Lmax 

                                                                                                     t 
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Example 2 

 

 

 

L = 

 

                                                                                              cos θ 

 

pdf (and likelihood) depends only on cos2θi 

Insensitive to sign of cosθi 

So data can be in very bad agreement with expected distribution 

e.g. all data with cosθ < 0  

and Lmax does not know about it. 

 

Example of general principle 

 

3/1

cos1

cos

2






d

dN

 



i
3/1

cos1 i
2
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Example 3 

Fit to Gaussian with variable μ, fixed σ 

 

 

 

lnLmax = N(-0.5 ln2π – lnσ) – 0.5 Σ(xi – xav)
2 /σ2 

 

                       constant           ~variance(x) 

i.e. Lmax depends only on variance(x), 

which is not relevant for fitting μ      (μest = xav) 

Smaller than expected variance(x) results in larger Lmax 

 

 
 

 

                                                   
x 

                                                                                    
x 

 

      Worse fit, larger Lmax                              Better fit, lower Lmax   

}{
2

2

1
e xp

2

1











-
-




x
p d f
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            Lmax and Goodness of Fit? 

 

Conclusion: 

 

L has sensible properties with respect to parameters 

                                NOT with respect to data 

 

Lmax within Monte Carlo peak is NECESSARY 

                                            not  SUFFICIENT 

 

(‘Necessary’ doesn’t mean that you have to do it!)  
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Binned data and Goodness of Fit using L-ratio 

 

i

iP ni
)(

     ni                                               L = 

  

               μi                                                      Lbest   

 

 

                            x 

 

ln[L-ratio] = ln[L/Lbest] 

                   large μi   -0.5c2       i.e. Goodness of Fit     

Μbest  is independent of parameters of fit, 

and so same parameter values from L or L-ratio 

 

                                     Baker and Cousins, NIM A221 (1984) 437 

)(

)
,

(

i

i

n

i

nP

bestiP ni

i





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L and pdf 

Example 1: Poisson 
pdf = Probability density function for observing n, given μ 

            P(n;μ) = e -μ μn/n! 

From this, construct L as 

            L(μ;n) = e -μ μn/n! 

i.e. use same function of μ and n, but            .  .  .  .  .  .  .  .  .  . pdf 

      for pdf, μ is fixed,   but 

      for L,    n is fixed                             μ                     L 

 

                                                                                            

                                                                                            n 

N.B. P(n;μ) exists only at integer non-negative n 

        L(μ;n) exists only as continuous function of non-negative μ 
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Example 2      Lifetime distribution 

 

pdf     p(t;λ) = λ e -λt  

So       L(λ;t) = λ e –λt      (single observed t) 

Here both t and λ are continuous 

pdf maximises at t = 0 

L maximises at λ = t 

 N.B. Functional form of P(t) and L(λ) are different 

 

 

                           Fixed λ                                                              Fixed t 

       p                                                                 L 

 

 

 

                                    t                                                                 λ 
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Example 3:     Gaussian 

 

 

 

 

 

 

N.B. In this case, same functional form for pdf and L 

 

So if you consider just Gaussians, can be confused between pdf and L 

 

So examples 1 and 2 are useful  

 

 

}{
2

2

2
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2

1
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

-
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Transformation properties of pdf and L  

 

Lifetime example:  dn/dt = λ e –λt 

 

Change observable from t to y = √t 

 

 

So (a) pdf changes, BUT 

      (b)  

 

 

 

i.e. corresponding integrals of pdf are 
INVARIANT 

2
2 yey

dy

dt

dt

dn

dy

dn -

dy
dy

dn
dt

dt

dn

tt 




00
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Now for Likelihood 

When parameter changes from λ to τ = 1/λ  

(a’) L does not change 

dn/dt = (1/τ) exp{-t/τ}  

and so L(τ;t)  =  L(λ=1/τ;t) 

because identical numbers occur in evaluations of the two L’s 

 

BUT 

(b’)  

So it is NOT meaningful to integrate L 

 

(However,………) 

 










0

0

);();(
0

dtLdtL
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pdf(t;λ) L(λ;t) 

Value of 

function 

Changes when 

observable is 

transformed 

INVARIANT wrt 

transformation 

of parameter 

Integral of 

function 

INVARIANT wrt 

transformation 

of observable 

Changes when 

param is 

transformed 

Conclusion Max prob 

density not very 

sensible 

Integrating L 

not very 

sensible 
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CONCLUSION: 

 

                         NOT recognised statistical procedure 

  

[Metric dependent: 

                 τ range agrees with τpred 

                            λ range inconsistent with 1/τpred ] 

 

                    BUT 

1)  Could regard as “black box” 

2)  Make respectable by L                 Bayes’ posterior  

 

                  Posterior(λ) ~ L(λ)* Prior(λ)             [and Prior(λ) can be constant] 

 
u

l

p

p

dpL
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Getting L wrong: Punzi effect 

Giovanni Punzi @ PHYSTAT2003 

“Comments on L fits with variable resolution” 
 

Separate two close signals, when resolution σ varies event 
by event, and is different for 2 signals 

e.g. 1) Signal 1     1+cos2θ    

           Signal 2      Isotropic 

           and different parts of detector give different σ 

 

         2) M (or τ) 

             Different numbers of tracks  different σM (or στ) 
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Events characterised by xi and σi 

A events centred on x = 0 

B events centred on x = 1 

L(f)wrong = Π [f * G(xi,0,σi) + (1-f) * G(xi,1,σi)] 

L(f)right = Π [f*p(xi,σi;A) + (1-f) * p(xi,σi;B)] 

 

                               p(S,T) = p(S|T) * p(T) 

                               p(xi,σi|A) = p(xi|σi,A) * p(σi|A) 

                                               = G(xi,0,σi) * p(σi|A) 

So 

L(f)right = Π[f * G(xi,0,σi) * p(σi|A) + (1-f) * G(xi,1,σi) * p(σi|B)] 

 

If p(σ|A) = p(σ|B), Lright = Lwrong 

         but NOT otherwise 
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Punzi’s Monte Carlo for             A :  G(x,0,A) 

                                                  B :  G(x,1,B) 

                                                  fA   = 1/3  

                                                                     Lwrong                                         Lright          

            A   B                                            fA        f                                  fA            f  

 

         1.0               1.0                    0.336(3)    0.08             Same 

         1.0  1.1                    0.374(4)    0.08      0. 333(0)    0 

         1.0  2.0                      0.645(6)    0.12     0.333(0)     0 

       1  2        1.5 3                 0.514(7)    0.14             0.335(2)   0.03 

         1.0            1  2                 0.482(9)    0.09             0.333(0)    0 

 1)  Lwrong   OK for  p(A)  p(B) , but otherwise BIASSED 

 2)  Lright  unbiassed, but  Lwrong  biassed  (enormously)! 

 3)  Lright  gives smaller σf than Lwrong 
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Explanation of Punzi bias 

σA = 1          σB = 2 

 

                                           A events with σ = 1 

 

 

 

 

                                           B events with σ  = 2 

 

 

                                     x                                                                       x  

        ACTUAL DISTRIBUTION                             FITTING FUNCTION 

                                                                        [NA/NB variable, but same for A and B events] 

Fit gives upward bias for NA/NB because  (i) that is much better for A events; and  

(ii) it does not hurt too much for B events   
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Another scenario for Punzi problem: PID 

 

                A      B                                       π      K 

 

 

 

                   M                                            TOF 

Originally: 

Positions of peaks = constant            K-peak  π-peak at large momentum 

σi variable,   (σi)A  =  (σi)B                σi ~ constant,    pK  =  pπ 

COMMON FEATURE: Separation/Error = Constant 

                            Where else?? 

MORAL: Beware of event-by-event variables whose pdf’s do not  

               appear in L 
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Avoiding Punzi Bias 

BASIC RULE: 

Write pdf for ALL observables, in terms of parameters 

 

• Include p(σ|A) and p(σ|B) in fit 
     (But then, for example, particle identification may be determined more 

by momentum distribution than by PID)  

                        OR 

• Fit each range of σi separately, and add (NA)i  
(NA)total, and similarly for B 

 

    Incorrect method using Lwrong uses weighted average 
of (fA)j, assumed to be independent of j  

 
Talk by Catastini at PHYSTAT05 
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Conclusions 

How it works, and how to estimate errors 

(ln L) = 0.5 rule and coverage 

Several Parameters 

Likelihood does not guarantee coverage 

Lmax and Goodness of Fit 

Use correct L  (Punzi effect) 
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Next time: χ2 and Goodness of Fit 

Least squares best fit 

       Resume of straight line 

       Correlated errors 

       Errors in x and in y 

Goodness of fit with χ2     

         Errors of first and second kind 

         Kinematic fitting 

                Toy example 

THE paradox   

 


