χ² and Goodness of Fit

Louis Lyons
IC and Oxford

CERN Latin American School
March 2015

Least squares best fit

Resume of straight line

Correlated errors

Errors in x and in y

Goodness of fit with χ^2

Errors of first and second kind

Kinematic fitting

Toy example

THE paradox

LEAST SQUARES STRAIGHT LINE FITTING 1) DOES IT FIT STRAIGHT LINE ?

(HYPOTOESIS TESTING)

2) WHAT ME GRADIENT + INTERCEPT?

(PARAMETER DETERMINATIO,

N.B. L CAN BE USED FOR NON - "a+bx" e.g. a + 6 cos 2 8

N. B. Z. LEAST SQUARES NOT ONLY METHOD

5. SUPPOSED TO BE "ERROR ON TH."

TAKEN AS "ERROL ON EXPT"

- i) Makes algebra simpler
- ii) If theory weight, not to different

IF THEORY (& DATA) O.K.

Minimise S => best line

Value of S in to how good fit is.

Criterion:
$$S = \sum_{i} \frac{y_{i}(a,b) - y_{i}b}{An \ error \ for \ each \ jt}$$

Measurements
$$a_i \pm 5$$
;
 $a_i \pm 5$
 $a_i \pm 5$

Construct
$$S = \sum_{i=1}^{n} \left(\frac{\hat{a} - a_i}{\sigma_i}\right)^2$$

$$\frac{1}{2} \frac{\partial S}{\partial \hat{a}} = \sum \frac{\hat{a} - a_i}{\sigma_i^2} = 0$$

$$\frac{1}{62} = \sum_{i=1}^{n} \frac{1}{62}$$

Many params

Straight Line Fit

$$S = \sum_{i} \left(\frac{(\alpha + b \kappa_{i}) - y_{i}}{\sigma_{i}} \right)^{2}$$
i) Draw lots of lines \Rightarrow S for each
ii) Minimise $S = \left(\frac{b \kappa_{i} - y_{i}}{\sigma_{i}^{2}} \right) = 0$

$$\sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{(\alpha + b \kappa_{i} - y_{i}) \times 1}{\sigma_{i}^{2}} = 0$$

$$\sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{(\alpha + b \kappa_{i} - y_{i}) \times 1}{\sigma_{i}^{2}} = 0$$

$$\sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{(\alpha + b \kappa_{i} - y_{i}) \times 1}{\sigma_{i}^{2}} = 0$$

$$\sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{(\alpha + b \kappa_{i} - y_{i}) \times 1}{\sigma_{i}^{2}} = 0$$

$$\sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{(\alpha + b \kappa_{i} - y_{i}) \times 1}{\sigma_{i}^{2}} = 0$$

$$\sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{(\alpha + b \kappa_{i} - y_{i}) \times 1}{\sigma_{i}^{2}} = 0$$

$$\sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{(\alpha + b \kappa_{i} - y_{i}) \times 1}{\sigma_{i}^{2}} = 0$$

$$\sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{(\alpha + b \kappa_{i} - y_{i}) \times 1}{\sigma_{i}^{2}} = 0$$

$$\sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{(\alpha + b \kappa_{i} - y_{i}) \times 1}{\sigma_{i}^{2}} = 0$$

$$\sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{(\alpha + b \kappa_{i} - y_{i}) \times 1}{\sigma_{i}^{2}} = 0$$

$$\sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{(\alpha + b \kappa_{i} - y_{i}) \times 1}{\sigma_{i}^{2}} = 0$$

$$\sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{(\alpha + b \kappa_{i} - y_{i}) \times 1}{\sigma_{i}^{2}} = 0$$

$$\sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{(\alpha + b \kappa_{i} - y_{i}) \times 1}{\sigma_{i}^{2}} = 0$$

$$\sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{(\alpha + b \kappa_{i} - y_{i}) \times 1}{\sigma_{i}^{2}} = 0$$

$$\sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{(\alpha + b \kappa_{i} - y_{i}) \times 1}{\sigma_{i}^{2}} = 0$$

$$\sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{(\alpha + b \kappa_{i} - y_{i}) \times 1}{\sigma_{i}^{2}} = 0$$

$$\sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{(\alpha + b \kappa_{i} - y_{i}) \times 1}{\sigma_{i}^{2}} = 0$$

$$\sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{(\alpha + b \kappa_{i} - y_{i}) \times 1}{\sigma_{i}^{2}} = 0$$

$$\sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{\partial S}{\partial a} = 0$$

$$\sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{\partial S}{\partial a} = 0$$

$$\sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{\partial S}{\partial a} = 0$$

$$\sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{\partial S}{\partial a} = 0$$

$$\sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{\partial S}{\partial a} = 0$$

$$\sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{\partial S}{\partial a} = 0$$

$$\sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{\partial S}{\partial a} = 0$$

$$\sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{\partial S}{\partial a} = 0$$

$$\sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{\partial S}{\partial a} = 0$$

$$\sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{\partial S}{\partial a} = 0$$

$$\sum_{i} \frac{\partial S}{\partial a} = \sum_{i} \frac{\partial S}{\partial a}$$

Error on intercept and gradient

That is why track parameters specified at track 'centre'

COVARIANCE (a, 6) & - (x)

If no errors specified on y_i (!)

Summary of straight line fitting

- Plot data
 Bad points
 Estimate a and b (and errors)
- a and b from formula
- Errors on a' and b
- Cf calculated values with estimated
- Determine S_{min} (using a and b)
- v = n p
- Look up in χ^2 tables
- If probability too small, IGNORE RESULTS
- If probability a "bit" small, scale errors?

Measurements with correlated errors e.g. systematics?

Start with 2 uncorrelated measurements

$$S = \frac{(1-1pr)^2}{\sigma_1^2} + \frac{(2-2pr)^2}{\sigma_2^2}$$

Introduce correlations by $S = \frac{(1-1pr)^2}{\sigma_1^2} + \frac{(2-2pr)^2}{\sigma_2^2}$
 $S = \frac{(1-1pr)^2}{\sigma_1^2} + \frac{(2-2pr)^2}{\sigma_2^2} + \frac{(2-2pr)^2}{\sigma_2^2}$
 $S = \frac{1}{\sigma_1^2 \sigma_2^2 - cov(s,s)} \left[\frac{1}{\sigma_2^2} (r - r_{pr})^2 + \frac{1}{\sigma_1^2} (r - r_{pr})^2 (r - r_{pr})^2 + \frac{1}{\sigma_1^2} (r - r_{pr})^2 (r - r_{pr})^2 (r - r_{pr})^2 + \frac{1}{\sigma_1^2} (r - r_{pr})^2 (r - r_{p$

STRAIGHT LINE: Errors on x and on y

Comments on Least Squares method

1) Need to bin

Beware of too few events/bin

2) Extends to n dimensions

but needs lots of events for n larger than 2 or 3

- 3) No problem with correlated errors
- 4) Can calculate S_{min} "on line" i.e. single pass through data

$$\Sigma (y_i - a - bx_i)^2 / \sigma^2 = [y_i^2] - b [x_i y_i] - a [y_i]$$

- 5) For theory linear in params, analytic solution
- 6) Hypothesis testing

	Individual events (e.g. in cos θ)	$y_i \pm \sigma_i \vee x_i$ (e.g. stars)
1) Need to bin?	Yes	No need
4) χ ² on line	First histogram	Yes

14

	Moments	Max Like	Least squares
Easy?	Yes, if	Normalisation, maximisation messy	Minimisation
Efficient?	Not very	Usually best	Sometimes = Max Like
Input	Separate events	Separate events	Histogram
Goodness of fit	Messy	No (unbinned)	Easy
Constraints	No	Yes	Yes
N dimensions	Easy if	Norm, max messier	Easy
Weighted events	Easy	Errors difficult	Easy
Bgd subtraction	Easy	Troublesome	Easy
Error estimate	Observed spread, or analytic	$\left\{-\frac{\partial^2 I}{\partial p_i \partial p_j}\right\}^{-1/2}$	$\left\{\frac{\partial^2 S}{2\partial p_i \partial p_j}\right\}^{-1/2}$
Main feature	Easy	Best	Goodness of Fit

'Goodness of Fit' by parameter testing?

$$1+(b/a) \cos^2\theta$$
 Is $b/a = 0$?

'Distribution testing' is better

Goodness of Fit: χ^2 test

- 1) Construct S and minimise wrt free parameters
- 2) Determine v = no. of degrees of freedom

```
v = n - p

n = no. of data points

p = no. of FREE parameters
```

3) Look up probability that, for ν degrees of freedom, $\chi^2 \ge S_{\min}$

Works ASYMPTOTICALLY, otherwise use MC

[Assumes y_i are GAUSSIAN distributed with mean y_i^{th} and variance σ_i^2]

Fig. 2.6

Fig. 2.7 CF: Area in tails of Granssian

χ^2 with v degrees of freedom?

v = data - free parameters ?

Why asymptotic (apart from Poisson \rightarrow Gaussian)?

a) Fit flatish histogram with

$$y = N \{1 + 10^{-6} \cos(x - x_0)\}$$
 $x_0 = \text{free param}$

b) Neutrino oscillations: almost degenerate parameters

$$y \sim 1 - A \sin^2(1.27 \Delta m^2 L/E)$$
 2 parameters
 $\longrightarrow 1 - A (1.27 \Delta m^2 L/E)^2$ 1 parameter

Goodness of Fit χ^2 : Very general Needs binning Not sensitive to sign of Run test Kol mogorov - Smirnov etc See: Aslam + Zech, Dusham 1911 Statistics Conf (2002) Maria Grazia Pin's group in Genoe

Goodness of Fit: Kolmogorov-Smirnov

Compares data and model cumulative plots Uses largest discrepancy between dists. Model can be analytic or MC sample

Uses individual data points

Not so sensitive to deviations in tails (so variants of K-S exist)

Not readily extendible to more dimensions

Distribution-free conversion to p; depends on n

(but not when free parameters involved – needs MC)

Goodness of fit: 'Energy' test

Assign +ve charge to data → ; -ve charge to M.C. ☆

Calculate 'electrostatic energy E' of charges

If distributions agree, E ~ 0

If distributions don't overlap, E is positive

Assess significance of magnitude of E by MC

N.B.

- 1) Works in many dimensions
- 2) Needs metric for each variable (make variances similar?)
- 3) $E \sim \Sigma q_i q_j f(\Delta r = |r_i r_j|)$, $f = 1/(\Delta r + \epsilon)$ or $-\ln(\Delta r + \epsilon)$ Performance insensitive to choice of small ϵ

See Aslan and Zech's paper at:

http://www.ippp.dur.ac.uk/Workshops/02/statistics/program.shtml

Wrong Decisions

Error of First Kind

Reject H0 when true Should happen x% of tests

Errors of Second Kind

Accept H0 when something else is true Frequency depends on

i) How similar other hypotheses are

e.g.
$$H0 = \mu$$

Alternatives are: $e \pi K p$

ii) Relative frequencies: 10⁻⁴ 10⁻⁴ 1 0.1 0.1

Aim for maximum efficiency ← Low error of 1st kind maximum purity ← Low error of 2nd kind As χ² cut tightens, efficiency ↑ and purity ↓ Choose compromise

How serious are errors of 1st and 2nd kind?

1) Result of experiment

e.g Is spin of resonance = 2?
Get answer WRONG

Where to set cut?

Small cut > Reject when correct
Large cut > Never reject anything

Depends on nature of H0 e.g.

Does answer agree with previous expt?
Is expt consistent with special relativity?

2) Class selector e.g. b-quark / galaxy type / γ -induced cosmic shower

Error of 1st kind: Loss of efficiency Error of 2nd kind: More background

Usually easier to allow for 1st than for 2nd

3) Track finding

Goodness of Fit: = Pattern Recognition

= Find hits that belong to track

Parameter Determination = Estimate track parameters (and error matrix)

KINEMATIC FITTING Test whether observed event consistent with specified reaction pp → pp 11+1-? Mw, jet pairings 1 -> /2 - form produ vertex 1 + 5 interest

. It is por from produ vert.

Kinematic Fitting: Why do it?

1) CHECK WHETHER EVENT CONSISTENT WITH
HYPOTHESIS [HYPOTHESIS TESTING] 2) CAN CALLULATE MISSING VARIABLES PARAM 3) GOOD TO HAVE TRACKS CONSERUNG E-1 [P.D] [P.D] 4) IMPROVES ERRORS

Kinematic Fitting: Why do it?

1) CHECK WHETHER EVENT CONSISTENT WITH HYPOTHESIS TESTING] Use Spin or No of constraints degrees of 2) CAN CALCULATE MISSING VARIABLES [PARAM e.g |P| for straight / short track / incoming v 3 nomentum of M, P, ... 3) Good TO HAVE TRACKS CONSERVING E-P [P.D] broom or from decay JP. D7 1 4) IMPROVES ERRORS "Adding Repretical Indust can improve error"

Measured variables

ゆるっかるです 本

4 momenta of each track

(ie. 3 momenta + assumed/measurd

track identity)

Then test hypothesis:
Observed event = example of reaction #

Testud by:

Observed tracks should conserve E-f

Can tracks be "siggled a bit" in order to

ie. $S_{min} = \sum_{\text{q-tracks}} \left(\frac{V_i^{\text{fitted}} - V_{\text{meas}, k}^{\text{meas}, k}}{6} \right) = 16 \text{ mustr.}$ $V_i^{\text{fitted}} - V_{\text{meas}, k}^{\text{meas}, k} = 16 \text{ mustr.}$ $V_i^{\text{fitted}} - V_{\text{meas}, k}^{\text{meas}, k} = 16 \text{ mustr.}$ $V_i^{\text{fitted}} - V_{\text{meas}, k}^{\text{meas}, k} = 16 \text{ mustr.}$ $V_i^{\text{fitted}} - V_{\text{meas}, k}^{\text{meas}, k} = 16 \text{ mustr.}$ $V_i^{\text{fitted}} - V_{\text{meas}, k}^{\text{meas}, k} = 16 \text{ mustr.}$ $V_i^{\text{fitted}} - V_{\text{meas}, k}^{\text{meas}, k} = 16 \text{ mustr.}$ $V_i^{\text{fitted}} - V_{\text{meas}, k}^{\text{meas}, k} = 16 \text{ mustr.}$ $V_i^{\text{fitted}} - V_{\text{meas}, k}^{\text{meas}, k} = 16 \text{ mustr.}$ $V_i^{\text{fitted}} - V_{\text{meas}, k}^{\text{meas}, k} = 16 \text{ mustr.}$ $V_i^{\text{fitted}} - V_{\text{meas}, k}^{\text{meas}, k} = 16 \text{ mustr.}$ $V_i^{\text{fitted}} - V_{\text{meas}, k}^{\text{meas}, k} = 16 \text{ mustr.}$ $V_i^{\text{fitted}} - V_{\text{meas}, k}^{\text{meas}, k} = 16 \text{ mustr.}$ $V_i^{\text{fitted}} - V_{\text{meas}, k}^{\text{meas}, k} = 16 \text{ mustr.}$ $V_i^{\text{fitted}} - V_{\text{meas}, k}^{\text{meas}, k} = 16 \text{ mustr.}$ $V_i^{\text{fitted}} - V_{\text{meas}, k}^{\text{meas}, k} = 16 \text{ mustr.}$ $V_i^{\text{fitted}} - V_{\text{meas}, k}^{\text{meas}, k} = 16 \text{ mustr.}$ $V_i^{\text{fitted}} - V_{\text{meas}, k}^{\text{meas}, k} = 16 \text{ mustr.}$

where vitted conserve 4-momenta

i.e. Minimisation subject to constraint

(involves Lagrange multipliers)

KINEMATIC FITTING

Angles of triangle:
$$\theta_1 + \theta_2 + \theta_3 = 180$$

 $\theta_1 \quad \theta_2 \quad \theta_3$
Measured 50 60 73±1 Sum = 183
Fitted 49 59 72 180
 $\chi^2 = (50-49)^2/1^2 + 1 + 1 = 3$
Prob $\{\chi^2_1 > 3\} = 8.3\%$
ALTERNATIVELY:
Sum =183 ± 1.7, while expect 180
Prob{Gaussian 2-tail area beyond 1.73 σ } = 8.3%

Toy example of Kinematic Fit

+ constraints:

1) Coplanet

2)
$$\beta_1$$
 at θ_2

2) β_1 at θ_2

4) θ_1 at θ_2

4) θ_1 at θ_2

Planet θ_2

Elastic scattes: $\theta_1 + \theta_2 = \pi/2$

Measured $\theta_1 + \theta_2 = \pi/2$

Minimise $S(\theta_1, \theta_2) = (\theta_1 - \theta_1)^2 + (\theta_2 - \theta_1)^2$

Subject to $C(\theta_1, \theta_2) = \theta_1 + \theta_2 - \pi/2 = 0$

Layrange: $\frac{\partial S}{\partial \theta_1} + \lambda \frac{\partial C}{\partial \theta_2} = \frac{\partial S}{\partial \theta_2} + \lambda \frac{\partial C}{\partial \theta_2} = 0$
 $\Rightarrow 3 \text{ egns for } \theta_1 + \theta_2 + \lambda \frac{\partial C}{\partial \theta_2} = 0$

Equal simple to solve because
$$C(\theta_1,\theta_2)$$
 linear in θ_1 , θ_2

i.e. KINEMATIC FIT =>

REDUCED ERRORS

PARADOX

Histogram with 100 bins Fit with 1 parameter S_{min} : χ^2 with NDF = 99 (Expected χ^2 = 99 ± 14)

For our data, $S_{min}(p_0) = 90$ Is p_2 acceptable if $S(p_2) = 115$?

- 1) YES. Very acceptable χ^2 probability
- 2) NO. σ_p from $S(p_0 + \sigma_p) = S_{min} + 1 = 91$ But $S(p_2) - S(p_0) = 25$ So p_2 is 5σ away from best value

Next time: Discovery and p-values

LHC moves us from era of 'Upper Limits' to that of DISCOVERIES!

Do's and Dont's with Likelihoods

Louis Lyons
IC and Oxford
CMS

CERN Latin American School March 2015

Topics

What it is

How it works: Resonance

Error estimates

Detailed example: Lifetime

Several Parameters

Extended maximum £

Simple example: Angular distribution

$$y = N \ (1 + \beta \ cos^2\theta)$$

$$y_i = N \ (1 + \beta \ cos^2\theta_i)$$

$$= \text{probability density of observing } \theta_i, \text{ given } \beta$$

$$L(\beta) = \Pi \ y_i$$

$$= \text{probability density of observing the data set } y_i, \text{ given } \beta$$
 Best estimate of β is that which maximises L Values of β for which L is very small are ruled out Precision of estimate for β comes from width of L distribution

CRUCIAL to normalise y
$$N = 1/\{2(1 + \beta/3)\}$$

$$N = 1/\{2(1 + \beta/3)\}$$

(Information about parameter β comes from shape of exptl distribution of $\cos\theta$)

How it works: Resonance

Conventional to consider l - ln(x) = Ilmy; For large N , & -> Garysian "Proof" Taylor expand l'elent its namem $l = l_{max} + \frac{1}{2!} l'' \left[\delta \left(\frac{6}{\alpha} \right) \right]^2 + \cdots$ = lmax - 1 5 + ... => 2 ~ exp (- 52)

Maximum likelihood error

Range of likely values of param μ from width of \mathcal{L} or 1 dists. If $\mathcal{L}(\mu)$ is Gaussian, following definitions of σ are equivalent: 1) RMS of $\mathcal{L}(\mu)$

- 2) $1/\sqrt{(-d^2 \ln \mathcal{L}/d\mu^2)}$ (Mnemonic)
- 3) $ln(\mathcal{L}(\mu_0 \pm \sigma) = ln(\mathcal{L}(\mu_0))$ -1/2 If $\mathcal{L}(\mu)$ is non-Gaussian, these are no longer the same

"Procedure 3) above still gives interval that contains the true value of parameter μ with 68% probability"

Errors from 3) usually asymmetric, and asym errors are messy. So choose param sensibly e.g 1/p rather than p; τ or λ

LIFETIME DETERMINATION

$$\frac{dn}{dt} = \frac{1}{2} e^{-\frac{t}{2}}$$

Observe ti, to ta

$$\frac{\partial L}{\partial \tau} = \Sigma \left(+ \frac{t}{N} z^2 - \frac{1}{\tau} z \right) = 0 = \frac{\Sigma t}{\tau} - \frac{N}{\tau}$$

$$\Rightarrow \tau = \Sigma t / N = t$$

N.B. 1) Usual 1/TN behaviour

BENALE FOR AVERAGING RESULTS

In 2 - In Ther = Universal Fr of 2/2 new 1(2) = I-ti/2 - NIn 2 1(x)-1(xmx) = - Nxmx/x - Nh = = N[1+ ln (2mos/2)-2ms/2] .. For given N, 5, 45. are defined (~ That as N+00) For small N , 6, > 6. l(2m) = -N(1+ ln E) N. B. I (zone) depends only on E, bur not on distribution of ti Relevant for whether I may is useful for testing goodness of fit

Several Parameters

| form |
$$\frac{\partial L}{\partial p} = 0$$

$$\sigma_{p}^{2} = \frac{1}{(-\frac{\partial^{2}L}{\partial p^{2}})}$$

ERROR IS GIVEN BY

Extended Maximum Likelihood

Maximum Likelihood uses shape → parameters

Extended Maximum Likelihood uses shape and normalisation
i.e. EML uses prob of observing:

- a) sample of N events; and
- b) given data distribution in x,.....
 - → shape parameters and normalisation.

```
Example: Angular distribution

Observe N events total e.g 100

F forward 96

B backward 4

Rate estimates ML EML

Total --- 100±10

Forward 96±2 96±10

Backward 4+2 4+2
```

ML and EML

ML uses fixed (data) normalisation EML has normalisation as parameter

Example 1: Cosmic ray experiment

See 96 protons and

ML estimate $96 \pm 2\%$ protons EML estimate 96 ± 10 protons

4 heavy nuclei 4 ±2% heavy nuclei

4 ± 2 heavy nuclei

Example 2: Decay of resonance
Use ML for Branching Ratios
Use EML for Partial Decay Rates

a) Mar Like Prob for fixed N = Binomial

Prob for fixed N = Binomial

Fil 1

F! B! Maximise LP STE f = F/N Error a f: 1/62 = - 32 lm Pa $\approx \frac{N}{\hat{A}(1-\hat{k})}$ $f = \hat{k}$ => Estimate of F = NF = F± (FB/N = Completely B = N(1-4) = B = [FB/N anti-corr b) EML P = P x = x Presson for overall rate Maximise In P. (v. f) $\hat{f} = N \pm \sqrt{N} = uncorrelated$ $\hat{f} = \sqrt{f(1-f)} = uncorrelated$ For $\hat{F} = \hat{B}$, eiter propagate errors for $\hat{F} = \hat{v}\hat{f}$ $\hat{f} = \hat{v}\hat{f}$ OF resold egn \$ as product of 2 indep $\hat{F} = F \pm JF$ $\hat{A} = B \pm J\bar{B}$

DO'S AND DONT'S WITH £

- NORMALISATION FOR LIKELIHOOD
- JUST QUOTE UPPER LIMIT
- $\Delta(\ln \mathcal{L}) = 0.5 \text{ RULE}$
- L_{max} AND GOODNESS OF FIT

- BAYESIAN SMEARING OF £
- USE CORRECT £ (PUNZI EFFECT)

NORMALISATION FOR LIKELIHOOD

 $\int P(x|\mu) dx$ MUST be independent of μ

data param

e.g. Lifetime fit to t_1, t_2, \dots, t_n

$$[\tau = \sum t_i / N]$$

INCORRECT
$$P(t \mid \tau) = e^{-t/\tau}$$

Missing $1/\tau$

$$\tau = \infty$$

$$-- \tau$$
 too big

Reasonable τ

2) QUOTING UPPER LIMIT

"We observed no significant signal, and our 90% confupper limit is"

Need to specify method e.g.

L

Chi-squared (data or theory error)

Frequentist (Central or upper limit)

Feldman-Cousins

Bayes with prior = const, $1/\mu$ $1/\sqrt{\mu}$ μ etc

"Show your £"

- 1) Not always practical
- 2) Not sufficient for frequentist methods

90% C.L. Upper Limits

$\Delta \ln \mathcal{L} = -1/2 \text{ rule}$

If $\mathcal{L}(\mu)$ is Gaussian, following definitions of σ are equivalent:

- 1) RMS of $\mathcal{L}(\mu)$
- 2) $1/\sqrt{(-d^2 \mathcal{L}/d\mu^2)}$
- 3) $ln(\mathcal{L}(\mu_0 \pm \sigma) = ln(\mathcal{L}(\mu_0)) 1/2$

If $\mathcal{L}(\mu)$ is non-Gaussian, these are no longer the same

"Procedure 3) above still gives interval that contains the true value of parameter μ with 68% probability"

Heinrich: CDF note 6438 (see CDF Statistics Committee Web-page)

Barlow: Phystat05

COVERAGE

How often does quoted range for parameter include param's true value?

N.B. Coverage is a property of METHOD, not of a particular exptl result

Coverage can vary with µ

Study coverage of different methods of Poisson parameter μ , from observation of number of events n

COVERAGE

If true for all μ : "correct coverage"

P< α for some μ "undercoverage" (this is serious!)

 $P>\alpha$ for some μ "overcoverage"

Conservative

Loss of rejection power

Coverage: £ approach (Not frequentist)

 $P(n,\mu) = e^{-\mu}\mu^n/n!$ (Joel Heinrich CDF note 6438)

 $-2 \ln \lambda < 1$ $\lambda = P(n,\mu)/P(n,\mu_{best})$ UNDERCOVERS

Frequentist central intervals, NEVER undercover

(Conservative at both ends)

Feldman-Cousins Unified intervals

Probability ordering

$$\chi^2 = (n-\mu)^2/\mu$$
 $\Delta \chi^2 = 0.1$ \longrightarrow 24.8% coverage?

NOT frequentist : Coverage = 0% → 100%

Unbinned \mathcal{L}_{max} and Goodness of Fit?

Find params by maximising $\mathcal L$

So larger \mathcal{L} better than smaller \mathcal{L}

So \mathcal{L}_{max} gives Goodness of Fit??

Monte Carlo distribution of unbinned \mathcal{L}_{\max}

e.g.
$$p(\lambda) = \lambda \exp(-\lambda t)$$

Example 1

Fit exponential to times t₁, t₂,t₃ [Joel Heinrich, CDF 5639]

$$\mathcal{L} = \Pi \lambda \exp(-\lambda t_i)$$

$$\ln \mathcal{L}_{\text{max}} = -N(1 + \ln t_{\text{av}})$$

i.e. Depends only on AVERAGE t, but is

INDEPENDENT OF DISTRIBUTION OF t (except for......)

(Average t is a sufficient statistic)

Variation of \mathcal{L}_{max} in Monte Carlo is due to variations in samples' average t, but

NOT TO BETTER OR WORSE FIT

Same average t \longrightarrow same \mathcal{L}_{max}

Example 2

$$\frac{dN}{d\cos\theta} = \frac{1 + \alpha\cos^2\theta}{1 + \alpha/3}$$

$$\mathcal{L} = \prod_{i} \frac{1 + \alpha \cos^2 \theta_i}{1 + \alpha/3}$$

pdf (and likelihood) depends only on $cos^2\theta_i$ Insensitive to sign of $cos\theta_i$

So data can be in very bad agreement with expected distribution e.g. all data with $\cos\theta < 0$ and \mathcal{L}_{max} does not know about it.

Example 3

Fit to Gaussian with variable μ , fixed σ

$$p df = \frac{1}{\sigma \sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^{2}\right\}$$

$$\ln \mathcal{L}_{\text{max}} = N(-0.5 \ln 2\pi - \ln \sigma) - 0.5 \Sigma (x_i - x_{\text{av}})^2 / \sigma^2$$

$$\uparrow \qquad \qquad \uparrow$$

$$\text{constant} \qquad \text{~variance}(x)$$

i.e. \mathcal{L}_{max} depends only on variance(x),

which is not relevant for fitting μ $(\mu_{est} = x_{av})$

Smaller than expected variance(x) results in larger \mathcal{L}_{max}

Worse fit, larger \mathcal{L}_{max}

Better fit, lower \mathcal{L}_{max}

\mathcal{L}_{max} and Goodness of Fit?

Conclusion:

Let has sensible properties with respect to parameters
NOT with respect to data

 \mathcal{L}_{max} within Monte Carlo peak is NECESSARY not SUFFICIENT

('Necessary' doesn't mean that you have to do it!)

Binned data and Goodness of Fit using *£*-ratio

$$\mathcal{L} = \prod_{j} P_{n_j}(\mu_j)$$

$$\mathcal{L}_{best} = \prod_{i} P_{n_{i}}(\mu_{i,best})$$
$$= \prod_{i} P_{n_{i}}(n_{i})$$

$$ln[\mathcal{L}-ratio] = ln[\mathcal{L}/\mathcal{L}_{best}]$$

$$\overrightarrow{large \mu i}$$
 -0.5 χ^2 i.e. Goodness of Fit

 M_{best} is independent of parameters of fit, and so same parameter values from \mathcal{L} or \mathcal{L} -ratio

L and pdf

Example 1: Poisson

pdf = Probability density function for observing n, given μ

$$P(n;\mu) = e^{-\mu} \mu^{n}/n!$$

From this, construct £ as

$$\mathcal{L}(\mu;n) = e^{-\mu} \mu^n/n!$$

i.e. use same function of μ and n, but for pdf, μ is fixed, but for \mathcal{L} , n is fixed

N.B. $P(n;\mu)$ exists only at integer non-negative n $\mathcal{L}(\mu;n)$ exists only as continuous function of non-negative μ

Example 2 Lifetime distribution

pdf
$$p(t;\lambda) = \lambda e^{-\lambda t}$$

So $L(\lambda;t) = \lambda e^{-\lambda t}$ (single observed t)

Here both t and λ are continuous

pdf maximises at t = 0

 \mathcal{L} maximises at $\lambda = t$

N.B. Functional form of P(t) and L(λ) are different

Example 3: Gaussian

$$pdf(x; \mu) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

$$L(\mu; x) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

N.B. In this case, same functional form for pdf and £

So if you consider just Gaussians, can be confused between pdf and £

So examples 1 and 2 are useful

Transformation properties of pdf and \mathcal{L}

Lifetime example: $dn/dt = \lambda e^{-\lambda t}$

Change observable from t to $y = \sqrt{t}$

$$\frac{dn}{dy} = \frac{dn}{dt} \frac{dt}{dy} = 2y\lambda e^{-\lambda y^2}$$

So (a) pdf changes, BUT

(b)
$$\int_{t_0}^{\infty} \frac{dn}{dt} dt = \int_{\sqrt{t_0}}^{\infty} \frac{dn}{dy} dy$$

i.e. corresponding integrals of pdf are INVARIANT

Now for £ikelihood

When parameter changes from λ to $\tau = 1/\lambda$

(a') £ does not change

$$dn/dt = (1/\tau) \exp\{-t/\tau\}$$

and so
$$\mathcal{L}(\tau;t) = \mathcal{L}(\lambda=1/\tau;t)$$

because identical numbers occur in evaluations of the two \mathcal{L} 's

BUT
$$\int_{0}^{\lambda_{0}} L(\lambda;t) d\lambda \neq \int_{\tau_{0}}^{\infty} L(\tau;t) d\tau$$

So it is NOT meaningful to integrate \mathcal{L}

(However,....)

	pdf(t;λ)	$\mathcal{L}(\lambda;t)$
Value of function	Changes when observable is transformed	INVARIANT wrt transformation of parameter
Integral of function	INVARIANT wrt transformation of observable	Changes when param is transformed
Conclusion	Max prob density not very sensible	Integrating £ not very sensible 80

CONCLUSION:

$$\int_{\rho_l}^{\rho_u} L d\rho = \alpha \quad \text{NOT recognised statistical procedure}$$

[Metric dependent:

 τ range agrees with τ_{pred} $\lambda \ range \ inconsistent \ with \ 1/\tau_{pred} \,]$

BUT

- 1) Could regard as "black box"
- 2) Make respectable by $\mathcal{L} \longrightarrow Bayes'$ posterior

Posterior(λ) ~ $\mathcal{L}(\lambda)$ * Prior(λ) [and Prior(λ) can be constant]

6) BAYESIAN SMEARING OF X "USE IN I FOR & 4 6 P SHEAR IT TO INCORORATE MX SYSTEMATIC UNCERTAINTIES" ENX SCENARIO: M = POISSON (M = SE + 6)
PARAM OF INTEREST TO BACKGROUND UNCERTAINTIES MEMBURED IN SUBSIDIARY EXPT $P(s, \epsilon | n) = P(n | s, \epsilon) T(s, \epsilon)$ P(sIn) = SP(s, e)n) de = $\int Z \pi(s) \pi(e) de$ 11 ds dee.g. $\pi(s) = truncated copt$. $\pi(e) \sim e$ [25 NARE] i.e. SHEAR Z (not ln Z) by prior for E

Getting £ wrong: Punzi effect

Giovanni Punzi @ PHYSTAT2003 "Comments on \mathcal{L} fits with variable resolution"

Separate two close signals, when resolution σ varies event by event, and is different for 2 signals

- e.g. 1) Signal 1 1+cos²θ
 Signal 2 Isotropic
 and different parts of detector give different σ
 - 2) M (or τ)
 Different numbers of tracks \rightarrow different σ_{M} (or σ_{τ})

Events characterised by x_i and σ_i

A events centred on x = 0

B events centred on x = 1

$$\mathcal{L}(f)_{\text{wrong}} = \Pi \left[f * G(x_i, 0, \sigma_i) + (1-f) * G(x_i, 1, \sigma_i) \right]$$

$$\mathcal{L}(f)_{right} = \Pi \left[f^* p(x_i, \sigma_i; A) + (1-f) * p(x_i, \sigma_i; B) \right]$$

$$\begin{aligned} p(S,T) &= p(S|T) * p(T) \\ p(x_i,\sigma_i|A) &= p(x_i|\sigma_i,A) * p(\sigma_i|A) \\ &= G(x_i,0,\sigma_i) * p(\sigma_i|A) \end{aligned}$$

So

$$\mathcal{L}(f)_{right} = \Pi[f * G(x_i, 0, \sigma_i) * p(\sigma_i|A) + (1-f) * G(x_i, 1, \sigma_i) * p(\sigma_i|B)]$$

If
$$p(\sigma|A) = p(\sigma|B)$$
, $\mathcal{L}_{right} = \mathcal{L}_{wrong}$

but NOT otherwise

Punzi's Monte Carlo for

A: $G(x,0,\sigma_A)$

B: $G(x,1,\sigma_B)$

$$f_A = 1/3$$

		$oldsymbol{\mathcal{L}}_{wrong}$		$oldsymbol{\mathcal{L}}_{right}$	
$\sigma_{\!\scriptscriptstyle A}$	σ_{B}	f_A	σ_{f}	f_A σ_f	
1.0	1.0	0.336(3)	0.08	Same	
1.0	1.1	0.374(4)	0.08	0.333(0) 0	
1.0	2.0	0.645(6)	0.12	0.333(0) 0	
1 → 2	1.5 →3	0.514(7)	0.14	0.335(2) 0.03	
1.0	1 > 2	0.482(9)	0.09	0.333(0) 0	

- 1) \mathcal{L}_{wrong} OK for $p(\sigma_A) = p(\sigma_B)$, but otherwise BIASSED
- 2) \mathcal{L}_{right} unbiassed, but \mathcal{L}_{wrong} biassed (enormously)!
- 3) \mathcal{L}_{right} gives smaller σ_{f} than \mathcal{L}_{wrong}

 $[N_A/N_B \text{ variable, but same for A and B events}]$

Fit gives upward bias for N_A/N_B because (i) that is much better for A events; and

(ii) it does not hurt too much for B events

Another scenario for Punzi problem: PID

Originally:

Positions of peaks = constant

K-peak \rightarrow π -peak at large momentum

$$\sigma_i$$
 variable, $(\sigma_i)_A \neq (\sigma_i)_B$

$$\sigma_i \sim constant, \quad p_K \neq p_{\pi}$$

COMMON FEATURE: Separation/Error ≠ Constant

Where else??

MORAL: Beware of event-by-event variables whose pdf's do not appear in $\boldsymbol{\mathcal{L}}$

Avoiding Punzi Bias

BASIC RULE:

Write pdf for ALL observables, in terms of parameters

Include p(σ|A) and p(σ|B) in fit
 (But then, for example, particle identification may be determined more by momentum distribution than by PID)

OR

• Fit each range of σ_i separately, and add $(N_A)_i \rightarrow (N_A)_{total}$, and similarly for B

Incorrect method using \mathcal{L}_{wrong} uses weighted average of $(f_A)_j$, assumed to be independent of j

Conclusions

How it works, and how to estimate errors

 $\Delta(\ln \mathcal{L}) = 0.5$ rule and coverage

Several Parameters

Likelihood does not guarantee coverage

*L*_{max} and Goodness of Fit

Use correct £ (Punzi effect)

Next time: χ^2 and Goodness of Fit

Least squares best fit

Resume of straight line

Correlated errors

Errors in x and in y

Goodness of fit with χ^2

Errors of first and second kind

Kinematic fitting

Toy example

THE paradox