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Flavor Physics

• Flavor Physics? study the different types of quarks, a.k.a. “flavors,” their spectrum 
and transitions among them (interactions)
• More generally: leptons too!
• Transitions: strengths, symmetries (e.g., CP/P/T; continuous?)

• Why?
• Richness (much to do & understand)
• Stringent test of models/theory
• Closely tied to all observed CP violation (CPV)

• Many/diverse methods involved. Main challenge: 
strong interactions (to uncover flavor)
• EFT’s:

• Electro-weak (Fermi)
• Chiral-lagrangian
• HQET
• SCET

• Symmetries
• Non-perturbative (lattice)

What? Why? How?
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Since the SM works well, we will adopt it as our standard (no pun) paradigm. 
Review:

✓
“uL”
“dL”

◆
,

✓
“cL”
“sL”

◆
,

✓
“tL”
“bL”

◆
qL =

(3, 2) 1
6

uR, dR, eR;

(3, 1) 2
3

(3, 1)
� 1

3
(1, 2)

� 1
2

(1, 1)�1

(three families of each of:)

Dµ = @µ + igsAµT
a + ig2W

a
µ
�a

2
+ ig1BµYH, hHi = 1p

2

✓
0
v

◆

Flavor “Symmetry:” For �U,D,E = 0, L has U(3)5 symmetry

(a U(1) is anomalous, but we will mostly be concerned with SU(3) factors)

qiL ! Uq
i
jq

j
L, ui

R ! UU
i
ju

j
R, diR ! UD

i
jd

j
R, `iL ! U`

i
j`

j
L, eiR ! UE

i
je

j
R,

Tired of index gymnastics already? Use etc

Flavor symmetry is broken explicitly by Yukawa interactions

qL ! UqqL H̃ūR�
UqL

L = Lgauge +
X

 

 ̄i� ·D + |DµH|2 �
h
�UijH̃ūi

Rq
j
L + �DijHd̄iRq

j
L + �EijHēiR`

j
L + h.c.

i

(with qiL =

✓
ui
L

diL

◆
).

`L,

(1, 2) 1
2
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Keep track of pattern of symmetry breaking : treat Yukawa couplings as “spurions”

(spurions: as if couplings were fields, but are constant in spacetime)

H̃ūR�UqL ! H̃ūRU
†
U�

0
UUqqL

is 
invariant 

if 
�U ! �0

U = UU�UU
†
q

ūR�UqL ! ūR U†
UUU �0

U U†
qUq qL = ūR�UqLcheck: and analogously for other 

couplings.

Summarize: under the flavor group GF = SU(3)q ⇥ SU(3)U ⇥ SU(3)D
the SM is invariant with the assignments 

qL : (3, 1, 1)

uR : (1, 3, 1)

dR : (1, 1, 3)

�U : (3̄, 3, 1)

�D : (3̄, 1, 3)

As we will see: New interactions that break this “symmetry” tend 
to produce rates of flavor transformations that are

inconsistent with experimental observation
(absent tuning or large parametric suppression)

hence the usefulness of this 
symmetry

* This is a quark sector story. We will be mostly concerned with quarks.
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KM-model of CPV and the CKM matrix (review)

Unitary gauge: H =
1p
2

✓
0

v + h

◆
gives fermion masses 

�Lm =
vp
2

h
ūR�UuL + d̄R�DdL + ūL�

†
UuR + d̄L�

†
DdR

i

Diagonalize mass matrices (for simpler computation and interpretation)
By Field redefinitions that:

•  linear
•  leave                 invariant (properly normalized kinetic terms)

Hence: linear-unitary transformations (not GF = SU(3)3, but larger !!)

 ̄i� · @ 

uL ! VuLuL, dL ! VdLdL, uR ! VuRuR, dR ! VdRdR,

chosen so that 

V †
uR

�UVuL = �0
U = diagonal, real, positive

V †
dR

�DVdL = �0
D = diagonal, real, positiveand

Then 
�Lm =

vp
2

⇥
ū�0

Uu+ d̄�0
Dd

⇤

Exercise: Show that this can always be done.

) mU =
1p
2
v�0

U ,mD =
1p
2
v�0

D
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It is these fields and associated particles that we identify with the “flavors:” 

u, c, t, d, s, b
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Note that under the field redefinition the kinetic term is unchanged, by design:

ūLi�
µ@µuL ! ūLV

†
uL

i�µ@µVuLuL = ūL(V
†
uL

VuL)i�
µ@µuL = ūLi�

µ@µuL ☺︎ ☺︎ ☺︎

What about the gauge interactions?

�ūR(g3 /AaT a + 2
3g1 /B)uR ! �ūRV

†
uR

(g3 /AaT a + 2
3g1 /B)VuRuR = �ūR(g3 /AaT a + 2

3g1 /B)uR ☺︎

likewise for dR, and also for 

�q̄L(g3 /AaT a + 1
6g1 /B + 1

2g2 /W 3�3)qL = �ūL(g3 /AaT a + 1
6g1 /B + 1

2g2 /W 3)uL � d̄L(g3 /AaT a + 1
6g1 /B � 1

2g2 /W 3)dL

But W±  terms are off diagonal: �± ⌘ �1 ± i�2

p
2

W± ⌘ W 1 ⌥ iW 2

p
2

✓
�+ =

p
2

✓
0 1
0 0

◆◆

q̄L(
1
2g2

2X

a=1

/W a�a)qL = ūL
1p
2
g2 /W

+
dL + d̄L

1p
2
g2 /W

�
uL ! ūLV

†
uL

VdL
1p
2
g2 /W

+
dL + h.c.

CKM matrix: V ⌘ V †
uL

VdL

Since this plays such a central role in flavor physics we will spend 6 slides on it!      ☛
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Unitary 

CKM matrix:

V †V = V V † = 1

How many parameters? 
Freedom (leaving rest of Lagrangian unchanged, including mU,D diagonal and positive)

u ! diag(ei↵1 , ei↵2 , ei↵3)u d ! diag(ei�1 , ei�2 , ei�3) d

Only phase differences               enter in off diagonal terms: 5 independent ↵i � �j

Count parameters: 3x3 matrix, complex = 18; minus
Unitarity 9
Phases 5
Total 14

➠   4 parameters:      3-ANGLES + 1-PHASE

V =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A
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1. One irremovable phase  ⥤ CP is violated in ūLV /W
+
dL + d̄LV

† /W
�
uL

Under CP ūL�
µdL ! d̄L�µuL and W+µ ! W�

µ

so  CP   ⇒ V † = V

Four Comments:

2. Precise knowledge of the elements of V is necessary to 
constrain new physics (or to test the validity of the SM/CKM 
theory)
Will describe later how well we know and how. 
But for now, sketch the “texture:” 

V ⇠

0

@
✏0 ✏1 ✏3

✏1 ✏0 ✏2

✏3 ✏2 ✏0

1

A ✏ ⇠ 0.1

3.                                 ➠ rows (and columns) of V are ortho-normal vectorsV †V = V V † = 1

the sum of 3 complex numbers vanish ⇰ triangle in z-plane

look more closely

Exercise: If two entries in the (diagonal) matrix mU (or in mD) are equal, V can be brought into a real matrix
    (that is, in O(3), the group of orthogonal matrices)  

X

j

VijV
⇤
kj = 0 for i 6= k :
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⇠ ✏n

VudV
⇤
cd + VusV

⇤
cs + VubV

⇤
cb = 0 ✏+ ✏+ ✏5 = 0

VcdV
⇤
td + VcsV

⇤
ts + VcbV

⇤
tb = 0 ✏4 + ✏2 + ✏2 = 0

VudV
⇤
td + VusV

⇤
ts + VubV

⇤
tb = 0 ✏3 + ✏3 + ✏3 = 0

ik sum = 0 shape
(base normalized to 1)

12

23

13

✏4

✏2

These are “Unitarity Triangles.”
The most commonly discussed is the fat one in the 1-3 columns: 

Dividing my middle element in sum 

VudV
⇤
ub + VcdV

⇤
cb + VtdV

⇤
tb = 0

VudV ⇤
ub

VcdV ⇤
cb

+ 1 +
VtdV ⇤

tb

VcdV ⇤
cb

= 0

⇢̄

⌘̄



Fat Skinny
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State of the art:
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Exercise

i. Show that

ii.  Show that these are invariant under phase redefinitions of quark fields (e.g., under remaining arbitrariness). 
Hence they are physical.

iii. Define the Jarlskog invariant J through the last equality in this expression for the area of the unitarity 
triangle

Show that J is the common area of all the unitarity triangles (before we normalized the base to unity).
 

iv.The area of the normalized triangle is J divided by the square of the magnitude of the largest side

� = � arg

✓
VudV ⇤

ub

VcdV ⇤
cb

◆
� = � arg

✓
VcdV ⇤

cb

VtdV ⇤
tb

◆

↵ = � arg

✓
VtdV ⇤

tb

VudV ⇤
ub

◆

As we’ll see, the area of the normalized triangle dictates the size of CP -asymmetries

Area = �1

2
Im

✓
VudV ⇤

ub

VcdV ⇤
cb

◆
= �1

2

1

|VcdV ⇤
cb|2

Im (VudV
⇤
ub V

⇤
cdVcb) ⌘ �1

2

1

|VcdV ⇤
cb|2

J
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4. Parametrization's of V

Standard: 
V = ABC A =

0

@
1 0 0
0 c23 s23
0 �s23 c23

1

A C =

0

@
c12 s12 0
�s12 c12 0
0 0 1

1

AB =

0

@
c13 0 s13e�i�

0 1 0
�s13ei� 0 c13

1

A

cij = cos ✓ij , sij = sin ✓ijwith and all angles in the first quadrant. 
The texture of V then gives small angles.
Exercise: Get the order of ε ∿ 0.1  of each of the angles θij. Estimate δ. 

Wolfenstein:

s12 = �, s23 = A�2, s13e
i� = A�3(⇢+ i⌘) =

a�3(⇢̄+ i⌘̄)
p
1�A2�4

p
1� �2[1�A2�4(⇢̄+ i⌘̄)]

Exercise:
i. Show that                                        ,  hence it is field re-phasing invariant.

ii.  Expand in λ ≪ 1 to show 

⇢̄+ i⌘̄ = �VudV ⇤
ub

VcdV ⇤
cb

V =

0

@
1� 1

2�
2 � A�3(⇢� i⌘)

�� 1� 1
2�

2 A�2

A�3(1� ⇢� i⌘) �A�2 1

1

A+O(�4)



Determination of CKM
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Magnitudes
(i) |Vud| nuclear transitions,

(ii) |Vus|, |Vcd|, |Vcs|, |Vub|, |Vcb|, semileptonic decays of mesons: M ! M 0`⌫ e.g., K+ ! ⇡0e+⌫

(iii) |Vtq|, (q = d, s, b) through 1-loop, as above, with issues similar to meson decays;

or t decays, perturbative

Semileptonic decays: under much better theoretical control than 
                                    purely hadronic decays.

hp0|V µ|pi = f+(q
2)(p+ p0)µ + f�(q

2)(p� p0)µNeed: 
(No Aµ by P-sym of strong interactions)

qµ = (p� p0)µ

A = hM 0(p0)`⌫L|
g22Vij

M2
W

ūi
L�

µdjLēL�µ⌫|M(p)i

Since qµ(ēL�µ⌫L) = 0 for me = 0, no f� in rate

Determination of CKM requires a priori knowledge of f+

Symmetry plays a huge role

V µ = ū�µd Aµ = ū�µ�5d

1. Exclusive decays: M ! M 0`⌫ (M, Mʹ′ pseudo-scalar mesons)
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WARM-UP: EM form factor
Suppose Vμ is a conserved current @µV

µ = 0 and take M’= M

e.g., 

Then 

h⇡(p0)|Jµ|⇡(p)i = f+(q
2)(p+ p0)µ + f�(q

2)(p� p0)µ

@µJ
µ = 0 ) f�(q

2) = 0 and f+(0) = Q

Exercise: Prove these!

K ! ⇡ SU(3)Use Gell-Mann

0

@
u
d
s

1

AThe triplet is:
This is also
called a flavor
symmetry: don’t 
get confused!

For processes with energies that cannot excite charm (or beauty or top or Ws....)
and neglecting masses of u,d,s:

L = ūi /Du+ d̄i /Dd+ s̄i /Ds

where D is only QCD.

Masses and charges break the symmetry.
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⇡,K, ⌘ Octet: degenerate in symmetry limit f�(q
2) = 0 and f+(0) = 1

Away from symmetry limit, Ademolo-Gatto theorem
Symmetry broken by quark masses                                and by charge (smaller effect)

f+(0) = 1 +O(ms) +O(m2
s)

mu ' md 6= ms

|Vus|f+(0) = 0.2163± 0.0005Combining data of neutral and charged semi-leptonic K decays:
Form factor from lattice QCD: f+(0) = 0.960± 0.005

PDG:

m2
s

⇤2
�

⇡
✓
0.1GeV

1 GeV

◆2

⇠ 1%

|Vus| = 0.2253± 0.0008
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(b ! c`⌫)

Heavy Quark (HQ) Symmetry (souped up with HQET)

b
●

c
●≈

The “brown muck” is in both cases
bound by an infinitely heavy color
triplet (static) source of color.

m ! 1For use instead

Heuristic: at zero recoil (max q2 !!) state does not change, just like in M’ = M case 

Exercise: Check that zero recoil is q2 = q2max  

vµ =
pµ

m
|vi = 1p

m
|pi

hD(v0)|V µ|B(v)i = ⇠(v · v0)(v + v0)µHQS: ⇠(1) = 1with
Isgur-Wise function

D is spin-0, D* is spin 1, correspond to singlet and triplet, and are related by HQ-symmetry.

If this seemed to fast, it was. I left many details out. 

B̄0(d̄b), B�(ūb), B̄s(s̄b), D
0(ūc), D+(d̄c), Ds(s̄c)B̄ ! D

 (q2 = q2max is v’.v = 1)

Exclusive decays.
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~ V„~=0.048+0.005+0.006 . (20)

Below, we will discuss the uncertainties in this determina-
tion of

~ V,z ~
associated with our calculation [the second

error in Eq. (20); the first is experimental and arises from
uncertainties in the B lifetime and semileptonic branch-
ing ratio].
Figure 6 shows our predicted spectrum for

B ~X„+ev„where X„+ is a ud meson belonging to any
of our eight lowest-lying meson families. It is clear that
the 1S, 1P, and 2S states (which include all states with
mz ~ 1.7 GeV/c ) do not in this case saturate the rate.
Recall, however, that our calculation does saturate the
contributions of B~X,ev, in a region at the end of the
spectrum where B~X,ev, vanishes. This fraction of the
spectrum is therefore all we need for determining (or for
setting an upper limit on)

~ V„b~. Note that our B~X„
spectrum is considerably softer than the free-quark spec-
trum.
In the Introduction it is clearly indicated why b~u

might not be saturated by these lowest-lying states, in
contrast with the other transitions we discuss. Recall
that (ignoring relative momentum in the decaying B)
free-quark decay populates recoiling masses mz in
the range from m +md up to [(m~+md )+ (md /mb )(m& —m~ ) ]' and that this range (0.02

light quark only carries momentum [md /(m, +md )]px.
The presence of the heavy c quark thus causes the form
factors to vary only a little over the available phase space.
Our D* branching fraction of 0.60 is consistent with

the preliminary measurements' of 0.8+0.3. It should be
noted that the rate for B~D*ev, is determined by three
form factors: f, g, and a+. The dependence on f, g, and
a+ can be partially separated ' by observing the polar-
izations of the D*'s produced in B~D*ev, . The pro-
duction rate of transversely polarized D*'s is independent
of a+, whilst the production rate of longitudinally polar-
ized D*'s does depend on a+. We predict fa+(t )=—1.00, which gives roughly equal amounts of longitu-
dinally and transversely polarized D*'s. As fa+(t ) is
increased, the rate for longitudinally polarized D*'s in-
creases. For example, at fa+ (t ) =0,
D*(longitudinal)/D*(transverse)=2. A recent measure-
ment of the D* polarization is consistent with the D*'s
in semileptonic B decay being purely longitudinal. Fur-
ther measurements of this polarization are needed as such
a situation may be dificult to reconcile with not only cal-
culations of the type presented here, but also the free-
quark decay model. (In this model one can predict in-
clusive probabilities for the production of hadronic sys-
tems recoiling with helicities +1 and 0 by using the fact
that the initial state has zero angular momentum so the
hadronic helicity must balance that of the ev, system. )
Anticipating that b~u/b~c will be small, our abso-

lute prediction for the total B semileptonic rate is

I (B -+X e v, )=l (B -+X e v, )
=0.41 X 10'

~ V, ~
sec

From the experimental value of this rate' ' we find
that

0.4—
L

0.2—

free

I

l

I

I

1

I

I

t

I

I

I

I

0.5 1.0 1.5

Ee (GeV)

2.0 2.5

FIG. 6. (1/I '"")(dI /dE, ) for B~X„+e v, showing the
contributions of m., p, the 1P states, and the 2S states ~' and p';
also shown as a dashed line is the free quark curve
(1/I "')(dl "'/dE, ). Absolute rates can be obtained by using
I ""=1.18X10'

~ V„&~ sec '. The partial rates to exclusive
channels, in units of 10'

~ V» ~' sec ' are I (8~sr(151) =0.021,
I (B p(1S))=0.083, 1"(B P )=0.007, I (B P, )=0.093,
1 (B P )=0.007, (I B 'P, )=0.059, I (B m(2S))=0. 110,
and 1"(B—+p(2S)) =0.053. Thus the 1S, 1P, and 2S states corn-
puted account for a rate of 0.43 X 10'~~ V„b ~

sec

GeV/c for s~u, 0.15 GeV/c for c~s, 0.26 GeV/c
for c~u, 0.16 GeV/c for b~c, and 0.72 GeV/c for
b ~u) is considerably smaller than the typical orbital ex-
citation energy of 0.5 GeV in every case except that of
b ~u, where it is actually greater. (A more realistic esti-
mate, taking into account the mean momentum in the B
wave function, gives a range in b~u of more than 1
GeV/c .) It is therefore not at all surprising that there
are, for example, significant 2S components in the b ~u
spectrum; nor should we be surprised that our truncated
calculation is incomplete. We have nevertheless checked
this point explicitly by extending our calculation for
pseudoscalar mesons to higher masses by computing
B ~n(Sn) ve„wh. ere ~(nS) is the nth pion state. A
description of the calculation is given in Appendix C;
Fig. 7 displays the results, which exhibit the convergence
conjectured in Refs. 3 and 4. Note that the 1S and 2S
levels already give about two-thirds of the total pseudos-
calar contribution, suggesting that a complete calculation
would converge, as described in the Introduction, to a
d I /dE, comparable to the free-quark rate at low E,.
Since our end-point spectrum is considerably softer

than the free-quark decay electron spectrum, we expect
that a complete sum over Anal states X„would lead to a
total semileptonic decay rate that is somewhat smaller
than the corresponding free-quark rate. It should be re-
called, however, that the b~u free-quark rate [see Eq.
(4)] it itself quite uncertain, since the effective value of mb
entering in this equation is not well known.
To extract a value (or limit) for V„b using our predicted
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a)

QJ
L3

3
L

O b)

0.2
I

0.4
I

0.6
I

0.8
I

1.0

Ee ( Gev)

FIG. 3. dl"/dE, for D~X,e+v, from Fig. 2 boosted to cor-
respond to D's from $137701 decay and compared to the data of
Ref. 20. The integrated theoretical and experimental rates have
been roughly adjusted to agree in order to facilitate a compar-
ison of the spectral shapes. Note that these data contain a small
contamination of D~Xd e +v, .
D+ and D electron spectra; these differences are ignored
in Figs. 4, but see Appendix D.

C. B~Xe v,

We now turn to the cases of interest for extracting
~ V„b ~ l~ V,b ~

. We first discuss B~X,e v„where X, is
a charmed meson with mass mz &mz. Our present cal-
culations extend only up to I&-2.5 GeV/c, but as can
be seen from Fig. 5, which shows how our predicted spec-
trum is built up out of contributing resonances, the full
rate appears to be rapidly saturated by the lowest-lying
states. We show the surprisingly similar shape of the
free-quark decay spectrum for comparison. Our spec-
trum is once again dominated by the 1'So and 1 S&
states with the D(1870) and D*(2020) contributing 27%
and 60% (respectively) of our total spectrum.
Of the predictions made in this paper, we believe that

those for B~De v, and B~D 'e v, are the most reliable.
In the limit where the c- and b-quark masses are treated
as large compared with the u- and d-quark masses, the
form factors at threshold t=t contain an overlap of
wave functions that is unity, independent of the potential
model. Also, in this limit the masses that appear in the
form factors f+(t ), f(t ), g(t ), and a+(t ) are
heavy-quark masses whose values are insensitive to the
choice of potential model. The suppression of the form
factors for t « t arises because momentum must be
transferred to the light quark in the recoiling X=D or
D* state. However, if the momentum of X is p~, the

0.2 0.80.60 O4
E, (GeV)

FIG. 4. (a) (1/l )(dI /dE, ) for D ~Xde+v, showing the
contributions of ~, p, and the total contribution from all 1S, 1P,
and 2S states; also shown is the corresponding free quark curve.
Absolute rates can be obtained by using I =0. 18
X10'

~ Vd~ sec ' and I "'=0.54X10'2~ V,„~~sec '. Note that
~ and p constitute 43% and 52%, respectively, of the total rate.
(b) (1/I )(dI /dE, ) for D+—+Xde+v, showing the contribu-
tions of ~, g, g', p, co, and the total contribution from all 1S, 1P,
and 2S states; also shown is the corresponding free quark curve.
Absolute rates can be obtained by using I =0. 17
X10'

~ V,d~'sec ' and I ""'=0.54X10"~V,„~ sec '. Note that
I (D+—+Xde+v, )/I (D ~Xd e+v, )=0.93 mainly from the
effects of the g and g' channels which are especially evident at
the highest E„and that m, g, q', p, and co constitute, respective-
ly, 23%, 12%, 5%, 28%%uo, and 27% of the total rate.

0.8—

0.6—
tU
L3

uJ'
0.4—

Lo

0.2—

0.5 1.0 1.5 2.0
1

2.5

e (&ev)

FIG. 5. (1/I )(dI /dE, ) for B~X,e v, showing the contri-
butions of D, D*, and the total contribution from all 1S, 1P, and
2S states; also shown as a dashed curve is the corresponding free
quark curve. Absolute rates can be obtained by using
1 =0.41X10' ~V,b( sec ' and I ""=0.49X10' ~V,b~ sec

21

2. (semi-)Inclusive decays B̄ ! X`⌫

quark-hadron duality �(B̄ ! Xc`⌫) = �(b ! c`⌫)

�(B̄ ! Xu`⌫) = �(b ! u`⌫)QCD+HQET+OPE 
provided sufficiently 

integrated

b ! u`⌫ headaches

• No HQS for 

• Hides under charm
for 

(except at endpoint)

B ! ⇡`⌫

b ! u`⌫
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~ V„~=0.048+0.005+0.006 . (20)

Below, we will discuss the uncertainties in this determina-
tion of

~ V,z ~
associated with our calculation [the second

error in Eq. (20); the first is experimental and arises from
uncertainties in the B lifetime and semileptonic branch-
ing ratio].
Figure 6 shows our predicted spectrum for

B ~X„+ev„where X„+ is a ud meson belonging to any
of our eight lowest-lying meson families. It is clear that
the 1S, 1P, and 2S states (which include all states with
mz ~ 1.7 GeV/c ) do not in this case saturate the rate.
Recall, however, that our calculation does saturate the
contributions of B~X,ev, in a region at the end of the
spectrum where B~X,ev, vanishes. This fraction of the
spectrum is therefore all we need for determining (or for
setting an upper limit on)

~ V„b~. Note that our B~X„
spectrum is considerably softer than the free-quark spec-
trum.
In the Introduction it is clearly indicated why b~u

might not be saturated by these lowest-lying states, in
contrast with the other transitions we discuss. Recall
that (ignoring relative momentum in the decaying B)
free-quark decay populates recoiling masses mz in
the range from m +md up to [(m~+md )+ (md /mb )(m& —m~ ) ]' and that this range (0.02

light quark only carries momentum [md /(m, +md )]px.
The presence of the heavy c quark thus causes the form
factors to vary only a little over the available phase space.
Our D* branching fraction of 0.60 is consistent with

the preliminary measurements' of 0.8+0.3. It should be
noted that the rate for B~D*ev, is determined by three
form factors: f, g, and a+. The dependence on f, g, and
a+ can be partially separated ' by observing the polar-
izations of the D*'s produced in B~D*ev, . The pro-
duction rate of transversely polarized D*'s is independent
of a+, whilst the production rate of longitudinally polar-
ized D*'s does depend on a+. We predict fa+(t )=—1.00, which gives roughly equal amounts of longitu-
dinally and transversely polarized D*'s. As fa+(t ) is
increased, the rate for longitudinally polarized D*'s in-
creases. For example, at fa+ (t ) =0,
D*(longitudinal)/D*(transverse)=2. A recent measure-
ment of the D* polarization is consistent with the D*'s
in semileptonic B decay being purely longitudinal. Fur-
ther measurements of this polarization are needed as such
a situation may be dificult to reconcile with not only cal-
culations of the type presented here, but also the free-
quark decay model. (In this model one can predict in-
clusive probabilities for the production of hadronic sys-
tems recoiling with helicities +1 and 0 by using the fact
that the initial state has zero angular momentum so the
hadronic helicity must balance that of the ev, system. )
Anticipating that b~u/b~c will be small, our abso-

lute prediction for the total B semileptonic rate is

I (B -+X e v, )=l (B -+X e v, )
=0.41 X 10'

~ V, ~
sec

From the experimental value of this rate' ' we find
that
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FIG. 6. (1/I '"")(dI /dE, ) for B~X„+e v, showing the
contributions of m., p, the 1P states, and the 2S states ~' and p';
also shown as a dashed line is the free quark curve
(1/I "')(dl "'/dE, ). Absolute rates can be obtained by using
I ""=1.18X10'

~ V„&~ sec '. The partial rates to exclusive
channels, in units of 10'

~ V» ~' sec ' are I (8~sr(151) =0.021,
I (B p(1S))=0.083, 1"(B P )=0.007, I (B P, )=0.093,
1 (B P )=0.007, (I B 'P, )=0.059, I (B m(2S))=0. 110,
and 1"(B—+p(2S)) =0.053. Thus the 1S, 1P, and 2S states corn-
puted account for a rate of 0.43 X 10'~~ V„b ~

sec

GeV/c for s~u, 0.15 GeV/c for c~s, 0.26 GeV/c
for c~u, 0.16 GeV/c for b~c, and 0.72 GeV/c for
b ~u) is considerably smaller than the typical orbital ex-
citation energy of 0.5 GeV in every case except that of
b ~u, where it is actually greater. (A more realistic esti-
mate, taking into account the mean momentum in the B
wave function, gives a range in b~u of more than 1
GeV/c .) It is therefore not at all surprising that there
are, for example, significant 2S components in the b ~u
spectrum; nor should we be surprised that our truncated
calculation is incomplete. We have nevertheless checked
this point explicitly by extending our calculation for
pseudoscalar mesons to higher masses by computing
B ~n(Sn) ve„wh. ere ~(nS) is the nth pion state. A
description of the calculation is given in Appendix C;
Fig. 7 displays the results, which exhibit the convergence
conjectured in Refs. 3 and 4. Note that the 1S and 2S
levels already give about two-thirds of the total pseudos-
calar contribution, suggesting that a complete calculation
would converge, as described in the Introduction, to a
d I /dE, comparable to the free-quark rate at low E,.
Since our end-point spectrum is considerably softer

than the free-quark decay electron spectrum, we expect
that a complete sum over Anal states X„would lead to a
total semileptonic decay rate that is somewhat smaller
than the corresponding free-quark rate. It should be re-
called, however, that the b~u free-quark rate [see Eq.
(4)] it itself quite uncertain, since the effective value of mb
entering in this equation is not well known.
To extract a value (or limit) for V„b using our predicted
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☞ 1% determination of |Vcb|

(as example, but also D decays)
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PDG:

11. CKM quark-mixing matrix 15

η̄ = 0.348 ± 0.014 [128]. The fit results for the magnitudes of all nine CKM elements are

VCKM =

⎛

⎝
0.97427± 0.00015 0.22534 ± 0.00065 0.00351+0.00015

−0.00014

0.22520± 0.00065 0.97344 ± 0.00016 0.0412+0.0011
−0.0005

0.00867+0.00029
−0.00031 0.0404+0.0011

−0.0005 0.999146+0.000021
−0.000046

⎞

⎠ , (11.27)

and the Jarlskog invariant is J = (2.96+0.20
−0.16) × 10−5.

Figure 11.2 illustrates the constraints on the ρ̄, η̄ plane from various measurements
and the global fit result. The shaded 95% CL regions all overlap consistently around the
global fit region. This consistency gets noticeably worse if B → τ ν̄ is included in the fit.

11.5. Implications beyond the SM

The effects in B, K, and D decays and mixings due to high-scale physics (W , Z, t, h in
the SM, and new physics particles) can be parameterized by operators made of SM fields,
obeying the SU(3)×SU(2)×U(1) gauge symmetry. The beyond SM (BSM) contributions
to the coefficients of these operators are suppressed by powers of the scale of new physics.
At lowest order, there are of order a hundred flavor-changing operators of dimension-6,
and the observable effects of BSM interactions are encoded in their coefficients. In the
SM, these coefficients are determined by just the four CKM parameters, and the W ,
Z, and quark masses. For example, ∆md, Γ(B → ργ), and Γ(B → Xdℓ

+ℓ−) are all
proportional to |VtdV

∗
tb|

2 in the SM, however, they may receive unrelated contributions
from new physics. The new physics contributions may or may not obey the SM relations.
(For example, the flavor sector of the MSSM contains 69 CP -conserving parameters and
41 CP -violating phases, i.e., 40 new ones [129]). Thus, similar to the measurements of
sin 2β in tree- and loop-dominated decay modes, overconstraining measurements of the
magnitudes and phases of flavor-changing neutral-current amplitudes give good sensitivity
to new physics.

To illustrate the level of suppression required for BSM contributions, consider a
class of models in which the unitarity of the CKM matrix is maintained, and the
dominant effect of new physics is to modify the neutral meson mixing amplitudes [130]
by (zij/Λ2)(qiγ

µPLqj)
2 (for recent reviews, see [131,132]). It is only known since the

measurements of γ and α that the SM gives the leading contribution to B0 –B0

mixing [6,133]. Nevertheless, new physics with a generic weak phase may still contribute
to neutral meson mixings at a significant fraction of the SM [134,127]. The existing
data imply that Λ/|zij |1/2 has to exceed about 104 TeV for K0 –K0 mixing, 103 TeV for
D0 –D0 mixing, 500TeV for B0 –B0 mixing, and 100TeV for B0

s –B0
s mixing [127,132].

(Some other operators are even better constrained [127].) The constraints are the
strongest in the kaon sector, because the CKM suppression is the most severe. Thus, if
there is new physics at the TeV scale, |zij | ≪ 1 is required. Even if |zij | are suppressed
by a loop factor and |V ∗

tiVtj |2 (in the down quark sector), similar to the SM, one expects
percent-level effects, which may be observable in forthcoming flavor physics experiments.
To constrain such extensions of the SM, many measurements irrelevant for the SM-CKM

fit, such as the CP asymmetry in semileptonic B0
d,s decays, Ad,s

SL , are important [135]. A
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Figure 11.2: Constraints on the ρ̄, η̄ plane. The shaded areas have 95% CL.

The CKM matrix elements can be most precisely determined by a global fit that
uses all available measurements and imposes the SM constraints (i.e., three generation
unitarity). The fit must also use theory predictions for hadronic matrix elements, which
sometimes have significant uncertainties. There are several approaches to combining the
experimental data. CKMfitter [6,101] and Ref. 124 (which develops [125,126] further) use
frequentist statistics, while UTfit [108,127] uses a Bayesian approach. These approaches
provide similar results.

The constraints implied by the unitarity of the three generation CKM matrix
significantly reduce the allowed range of some of the CKM elements. The fit for the
Wolfenstein parameters defined in Eq. (11.4) gives

λ = 0.22535± 0.00065 , A = 0.811+0.022
−0.012 ,

ρ̄ = 0.131+0.026
−0.013 , η̄ = 0.345+0.013

−0.014 . (11.26)

These values are obtained using the method of Refs. [6,101]. Using the prescription
of Refs. [108,127] gives λ = 0.22535 ± 0.00065, A = 0.817 ± 0.015, ρ̄ = 0.136 ± 0.018,
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Jarlskog

Wolfenstein

(magnitudes)

For phases we need more (soon to come). But here are the PDG results:
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FCNC= Flavor Changing Neutral Currents
but  is used more generally to mean FCN-transitions 

FC-transitions in the SM:

1. Tree level: Only W±

e.g., n ! pe⌫̄

10/14 Lecture 1 (10/14)2013-06-03 10:31:21

But Z0 and h interactions are diagonal in flavor:

10/14 Lecture 1 (10/14)2013-06-03 10:31:21

2. 1-loop: Can we have FCNC’s? Say  b ! s�?

YES!!

10/14 Lecture 1 (10/14)2013-06-03 10:31:21

➠ FCNCs are suppressed in SM relative to tree level by ⇠ g22
16⇡2

=
↵

4⇡c2w
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GIM
GIM-mechanism: more suppression of FCNC in SM!!
(GIM=Glashow-Iliopolus-Maiani)

(i) “Old:” Lets imagine a world with mu < mc < mt ⌧ MW

Without explicit computation of integrals we can see that

11/14 Lecture 1 (11/14)2013-06-03 10:31:21

I =
X

u,c,t

VibV
⇤
isF ( m2

i

M2
W
)where

Expand in Taylor series F (x) = F (0) + xF

0(0) + · · ·
X

u,c,t

VibV
⇤
is = 0and use

I =
X

u,c,t

VibV
⇤
isF (0) +

X

u,c,t

VibV
⇤
is

m2
i

M2
W
F 0(0) + · · ·

X

u,c

VibV
⇤
is = �VtbV

⇤
tsMoreover, since I = F 0(0)

X

u,c

VibV
⇤
is
m2

i �m2
t

M2
W

+ · · ·then

➠ FCNCs suppressed, in addition to 1-loop, by ⇠ VubV
⇤
us

m2
u �m2

t

M2
W

+ VcbV
⇤
cs
m2

c �m2
t

M2
W

⇠ ✏4
m2

t

M2
W

+ ✏2
m2

t

M2
W

That is, both by ✏2 and
m2

t

M2
W
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(ii) “Modern” GIM: 

Of course mt ⌧ MW is not a good approximation, but the suppression by ϵ2   is still there

I =
X

u,c,t

VibV
⇤
isF ( m2

i

M2
W
) = �

X

u,c

VibV
⇤
is

⇣
F ( m2

t

M2
W
)� m2

i

M2
W

⌘
⇠ ✏2

⇣
F ( m2

t

M2
W
)� m2

c

M2
W

⌘

It turns out that F(x) is an increasing function, with F(1) ~ O(1),  so                 can be neglected

☛  virtual t-quark exchange dominates this amplitude. 

m2
c/M

2
W

Exercise: Show that for                   it is no longer true that t-quark exchange dominates
the amplitude, in fact, that c and t quark exchange give numerically (roughly) the same
amplitude.

s ! d�

So why do we bother to explain “old” GIM? In models of new physics (NP) you
will encounter examples of GIM-like cancellation. 
A good tool in your toolbox!



Flavor Symmetry 
and New Physics.
A First Look and 

Minimal Flavor Violation
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Bounds on NP, by (rough) example

ANP

ASM
. 10%

  Extend SM by an interaction, e.g., 

So, roughly, 

Since the SM prediction agrees well with experiment, requiring 

⇤2 & vM2
Wp

2mb

s2w
|VtbV ⇤

ts| ↵
4⇡

1

0.1
! ⇤ > 70 TeV

ANP

ASM
⇠

vp
2⇤2

VtbV ⇤
ts

↵
4⇡s2w

mb

M2
W

�L =
g

⇤2
Bµ⌫Hb̄R�

µ⌫

✓
cL
sL

◆
! evp

2⇤2
Fµ⌫ b̄R�

µ⌫sL



• Standard Model Fields
• Extend by adding dim>4 (local, Poincare and gauge invariant, hermitian) operators

• This is the Effective Field Theory (EFT) setup.
• Additionally: require invariance under GF = U(3)3  - including spurions λU and  λD

This is the “principle of Minimal Flavor Violation (MFV).” 
• Take, for example:

Go to mass eigenstate basis, study flavor changing interactions:

29

�L =
X

i

CiOi

O1 = Ga
µ⌫H̃ūRT

a�µ⌫�UqL O2 = q̄L�
µ�†

U�UqL d̄R�µ�D�†
DdRand

O1 ! Ga
µ⌫H̃ūRT

a�µ⌫V †
uR

�U

✓
VuLuL

VdLdL

◆

= Ga
µ⌫H̃ūRT

a�µ⌫V †
uR

�UVuL

✓
uL

V †
uL

VdLdL

◆

= Ga
µ⌫H̃ūRT

a�µ⌫�0
U

✓
uL

V dL

◆

The neutral interaction (u to u) does not change flavor (“flavor diagonal”); 
the charged interaction (d to u) changes flavor as determined by CKM matrix
and mass matrix through �0

UV

Minimal Flavor Violation
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Similarly for O2 = q̄L�
µ�†

U�UqL d̄R�µ�D�†
DdR

O2 ! q̄0L�
µ(�0

U )
2q0L d̄R�µ(�

0
D)2dR where q0L =

✓
uL

V dL

◆

(and we’ve used that the mass matrices are now real and diagonal)

Note there is now a flavor non-diagonal neutral transition, involving the current

d̄L�
µ[V †(�0

D)2V ]dL

Exercise: Show that it is generally  true that the CKM matrix determines the flavor changing 
interactions. More specifically,  that flavor change is determined by 

�0
UV or V �0

D

Extensions of the SM in which the only breaking of U(3)3 is by  λU and λD 
automatically satisfy MFV. 

They are least constrained by flavor changing and CPV observables.



31

Bounds on NP, by (rough) example (again)
(i) No MFV:  extend SM by, eg, 

So, roughly, 

and, since the SM prediction agrees well with experiment, requiring ANP

ASM
. 10%

⇤2 & vM2
Wp

2mb

s2w
|VtbV ⇤

ts| ↵
4⇡

1

0.1
! ⇤ > 70 TeV

ANP

ASM
⇠

vp
2⇤2

VtbV ⇤
ts

↵
4⇡s2w

mb

M2
W

(ii) With MFV: �L =
g

⇤2
Bµ⌫Hd̄R�D�µ⌫qL ! 0 flavor diagonal!

But we can have �L =
g

⇤2
Bµ⌫Hd̄R�D(�†

U�U )�
µ⌫qL ! evp

2⇤2
�0
b(�

0
t)

2VtbV
⇤
tsFµ⌫ b̄R�

µ⌫sL

Now ANP

ASM
⇠

(�0
t)

2

p
2⇤2

↵
4⇡s2w

1
M2

W

→ ⇤2 & 1p
2
M2

W (�0
t)

2s2w
4⇡

↵

1

0.1
! ⇤ > 4 TeV

MFV is “protected” because it incorporates modern GIM.

�L =
g

⇤2
Bµ⌫Hb̄R�

µ⌫

✓
cL
sL

◆
! evp

2⇤2
Fµ⌫ b̄R�

µ⌫sL
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Flavor Physics: an important constraint on all new BSM models

Flavor Structure in the SM and Beyond

�
U

V
[T

eV
]

101

102

103

104

105

(b� d)(s� d) (b� s) (c� u)
�md, sin 2��mK , �K �ms, As

SL

CP

D – D̄

LSM +
1

�2
UV

(Q̄iQj)(Q̄iQj)

Generic bounds without a flavor symmetry

Generic bounds without a flavor symmetry

[Neubert, EPS2011]

Exercise: from these determine bounds with MFV assumption

Note: CPV in K mixing gives strongest constraints: we should (will) spend time on it
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Examples:

1. SUSY-SM
In the absence of SUSY-breaking this is MFV

L =

Z
d4✓ [

¯QeV Q+

¯UeV U +

¯DeV D] +

Z
d2✓W↵W↵ + other kin terms� (

Z
d2✓W + h.c.)

W = H1U�UQ+H2D�DQ+ non-quark terms

with superpotential:

Here the chiral superfields are:

Q ⇠ (3, 2) 1
6

U ⇠ (3̄, 1)� 2
3

D ⇠ (3̄, 2) 1
3

H1 ⇠ (1, 2) 1
2

H2 ⇠ (1, 2)� 1
2

Add soft SUSY-breaking: �L = �⇤
qM2

q�q + �⇤
uM2

u�u + �⇤
dM2

d�q + �h1�ugu�q + �h2�dgd�q + h.c.

For generic                       new flavor changing interactions are present and large 
(they can be suppressed by making the squarks heavy). 

M2
q,u,d, gu,d

Not so if, e.g., M2
q,u,d / 1, gu,d / �u,d (in accord with MFV)

This is the motivation for gauge mediated SUSY breaking

SUSY
brkg

SUSY
SM

gauge
interaction

The gauge interactions are flavor blind

[Severe problem in gravity mediated SUSY-breaking]
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2. “MFV Fields”

Recently observed anomalous t-FB asymmetry. Possibly explained by

(i)s-channel, e.g., axigluon

(ii)t-channel, e.g., scalar

9/14 Lecture 1 (9/14)2013-06-03 10:31:20

9/14 Lecture 1 (9/14)2013-06-03 10:31:20

Won’t explain why axigluon breaks U(3)3 (roughly needs opposite sign couplings to u and t).
Concentrate on t-channel models: clearly  𝝓tu coupling (flavor off-diagonal) breaks U(3)3 .

Unless one fine-tunes, there are also large uc and ct couplings, and if coupling is to L-quarks
also ds, db and sb couplings.

Solution: construct U(3)3 symmetric model by introducing multiplet of scalars transforming
under U(3)3. For example, one can have

q̄L�uR with � ! Uq�U
†
U (and a 2� 1

2
under SU(2)w ⇥ U(1)Y )

This actually works!

Exercise: classify all possible dim-4 interactions                         and corresponding transformation laws
for the scalar field under U(3)3 and the SM-gauge-group (i) to order                 and (ii) up to order 

⇠ � ̄ 0

(�U,D)0 (�U,D)1
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End Lecture 1



Flavor and Higgs:
Standard and Nonstandard
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1/7 Schladming higgs (#6)2014-03-02 16:20:55
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Blankenburga, Ellis & Isidori, 1202. 5704
Harnik, Kopp & Zupan 1209.1397

to the SM Higgs interpretation of the 125 GeV hint, and in some of these cases relatively large
flavour-changing couplings become a significant possibility. This is the case, for example, of the
pseudo-dilaton Higgs boson look-alike discussed in [3], which is quite compatible with the hint
observed by ATLAS and CMS. Flavour-changing decays of h are expected also in the case of a
composite Higgs [4] in models where the Yukawa couplings are functions of the Higgs field [5]
and in several other extensions of the SM with more than one Higgs field (see, e.g., Ref. [6] and
references therein). It is therefore important to explore the possible existence and the allowed
magnitudes of flavour-changing couplings of a neutral 125 GeV scalar particle h, looking for
possible deviations from SM predictions.

In this paper we adopt a phenomenological bottom-up approach, analyzing the flavour-
changing couplings of the hypothetical h particle allowed by low-energy data. Several previous
studies of this type have been presented in the recent literature, see, e.g., [6–11]. However, a
systematic analysis of both the quark and lepton sectors and their implications for the h decays
was still missing. As we will show, the available experimental constraints on flavour-changing
neutral-current (FCNC) interactions provide strong bounds on many possible quark- and lepton-
flavor-changing couplings. However, there are instances where relatively large flavour-changing
h couplings are still allowed by present data, cases in point being the h⌧̄µ and h⌧̄e couplings
(as already noticed in [10, 11]). Specifically, we find that current experimental upper limits on
lepton-flavour-violating processes allow the branching ratio B(h ! ⌧ µ̄+µ̄⌧) = O(10%), and that
this can be obtained without particular tuning of the e↵ective couplings. It is also possible that
B(h ! ⌧ ē+ ē⌧) = O(10%), though this possibility could be realized only at the expense of some
fine-tuning of the corresponding couplings and, if realized, would forbid a large B(h ! ⌧ µ̄+ µ̄⌧).
The bound on the µe modes are substantially stronger, implying B(h ! µ̄e+ ēµ) = O(10�9) in
the absence of fine-tuned cancellations.

We note that CMS currently reports a 68% CL range of 0.8+1.2
�1.3 for a possible h ! ⌧+⌧�

signal relative to its SM value [2], and that in the SM B(h ! ⌧+⌧�) ⇠ 6.5% for a SM Higgs
boson weighing 125 GeV. It therefore seems that dedicated searches in the LHC experiments
might already be able to explore flavour-changing leptonic beyond the limits imposed by searches
for lepton-flavour-violating processes.

On the other hand, the indirect upper bounds on possible quark-flavour-violating couplings
of a scalar with mass 125 GeV are much stronger, and the detection of hadronic flavour-changing
decays are much more challenging, so these o↵er poorer prospects for direct detection at the
LHC.

2 E↵ective Lagrangian

We employ here a strictly phenomenological approach, considering the following e↵ective La-
grangian to describe the possible flavour-changing couplings of a possible neutral scalar boson
h to SM quarks and leptons:

Le↵ =
X

i,j=d,s,b (i 6=j)

cij d̄iLd
j
Rh+

X

i,j=u,c,t (i 6=j)

cij ūiLu
j
Rh+

X

i,j=e,µ,⌧ (i 6=j)

cij ¯̀i
L`

j
Rh+H.c. (1)

The field h can be identified with the physical Higgs boson of the SM or, more generally, with
a mass eigenstate resulting from the mixing of other scalar fields present in the underlying
theory with the SM Higgs (if it exists). Therefore, the operators in (1) are not necessarily

2

Figure 1: Left: Tree-level diagram contributing to �F = 2 amplitudes. Right: One-loop

diagram contributing to anomalous magnetic moments and electric dipole moments of charged

leptons (i = j), or radiative LFV decay modes (i 6= j).

Operator E↵. couplings 95% C.L. Bound Observables

|ce↵ | |Im(ce↵)|
(s̄R dL)(s̄LdR) csd c⇤ds 1.1⇥ 10�10 4.1⇥ 10�13 �mK ; ✏K

(s̄R dL)2, (s̄LdR)2 c2ds, c2sd 2.2⇥ 10�10 0.8⇥ 10�12

(c̄R uL)(c̄LuR) ccu c⇤uc 0.9⇥ 10�9 1.7⇥ 10�10 �mD; |q/p|,�D

(c̄R uL)2, (c̄LuR)2 c2uc, c2cu 1.4⇥ 10�9 2.5⇥ 10�10

(b̄R dL)(b̄LdR) cbd c⇤db 0.9⇥ 10�8 2.7⇥ 10�9 �mBd ; SBd! K

(b̄R dL)2, (b̄LdR)2 c2db, c2bd 1.0⇥ 10�8 3.0⇥ 10�9

(b̄R sL)(b̄LsR) cbs c⇤sb 2.0⇥ 10�7 2.0⇥ 10�7 �mBs

(b̄R sL)2, (b̄LsR)2 c2sb, c2bs 2.2⇥ 10�7 2.2⇥ 10�7

Table 1: Bounds on combinations of the flavour-changing h couplings defined in (1) obtained

from �F = 2 processes [12], assuming that mh = 125 GeV.

SU(2)L ⇥ U(1)Y invariant. However, they may be regarded as resulting from higher-order
SU(2)L ⇥ U(1)Y -invariant operators after the spontaneous breaking of SU(2)L ⇥ U(1)Y .

By construction, the e↵ective couplings described by (1) are momentum-independent. In
principle, higher-order operators with derivative couplings could also appear, leading to moment-
um-dependent terms, or e↵ective form factors for the flavour-changing vertices. We assume here
that any such e↵ects are subleading, though it is clear that direct observation of h decays would,
in general, provide much more stringent constraints on such momentum dependence than could
be provided by the indirect low-energy constraints considered below.

3 Bounds in the Quark Sector

In the quark sector, strong bounds on all the e↵ective couplings in (1) involving light quarks
(i.e., excluding the top) can be derived from the tree-level contributions to meson-antimeson
mixing induced by diagrams of the type shown in the left panel of Fig. 1. Using the bounds
on dimension-six �F = 2 operators reported in [12], we derive the indirect limits on di↵erent
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E↵. couplings Bound Constraint

|csb|2, |cbs|2 2.9⇥ 10�5 [*] B(Bs ! µ+µ�) < 1.4⇥ 10�8

|cdb|2, |cbd|2 1.3⇥ 10�5 [*] B(Bd ! µ+µ�) < 3.2⇥ 10�9

Table 2: Bounds on combinations of the flavour-changing h couplings defined in (1) obtained

from experimental constraints on rare B decays [13], assuming that mh = 125 GeV. (Here and

in subsequent Tables, the [*] denotes bounds obtained under the assumption that the flavour-

diagonal couplings of h are the same as the corresponding SM Yukawa couplings.)

Operator E↵. couplings Bound Constraint

(µ̄R eL)(q̄LqR), (µ̄L eR)(q̄LqR) |cµe|2, |ceµ|2 3.0⇥ 10�8 [*] Bµ!e(Ti) < 4.3⇥ 10�12

(⌧̄R µL)(µ̄LµR), (⌧̄L µR)(µ̄LµR) |c⌧µ|2, |cµ⌧ |2 2.0⇥ 10�1 [*] �(⌧ ! µµ̄µ) < 2.1⇥ 10�8

(⌧̄R eL)(µ̄LµR), (⌧̄L eR)(µ̄LµR) |c⌧e|2, |ce⌧ |2 4.8⇥ 10�1 [*] �(⌧ ! eµ̄µ) < 2.7⇥ 10�8

(⌧̄R eL)(µ̄LeR), (⌧̄L eR)(µ̄LeR) |cµec⇤e⌧ |, |cµec⌧e| 0.9⇥ 10�4 �(⌧ ! µ̄ee) < 1.5⇥ 10�8

(⌧̄R eL)(µ̄ReL), (⌧̄L eR)(µ̄ReL) |c⇤eµc⇤e⌧ |, |c⇤eµc⌧e|
(⌧̄R µL)(ēLµR), (⌧̄L µR)(ēLµR) |ceµc⇤µ⌧ |, |ceµc⌧µ| 1.0⇥ 10�4 �(⌧ ! ēµµ) < 1.7⇥ 10�8

(⌧̄R µL)(ēRµL), (⌧̄L µR)(ēRµL) |c⇤µec⇤µ⌧ |, |c⇤µec⌧µ|

Table 3: Bounds on combinations of the flavour-changing h couplings defined in (1) obtained

from charged-lepton-flavour-violating decays, assuming that mh = 125 GeV.

combinations of cij couplings reported in Table 1. As we discuss in Section 5, these bounds forbid
any flavour-changing decay of the h into a pair of quarks with a branching ratio exceeding 10�3.

The �F = 1 bounds on the cij also prevent sizable Higgs-mediated contributions in �F = 1
amplitudes, if the flavour-diagonal couplings of the h are the same as the SM Yukawa couplings.
In Table 2 we report the bounds on the cij couplings obtained from Bs,d ! µ+µ� obtained
under this assumption, namely setting cµµ =

p
2mµ/v with v ⇡ 246 GeV 1. As can be seen,

these �F = 1 bounds are weaker than those in Table 1. This would not be true if the flavour-
diagonal couplings of h were enhanced with respect to the SM Yukawa couplings, or if there were
some extra contribution cancelling h-exchange in the �F = 2 amplitudes. The latter happens,
for instance, in some two-Higgs doublet models, because of the destructive interference of scalar
and pseudo-scalar exchange amplitudes: see, e.g., [6, 14].

4 Bounds in the Lepton Sector

In the lepton sector we do not have an analogous of the �F = 2 constraints, leaving more room
for sizeable non-standard contributions.

1 This assumption is not true in general. For example, in the pseudo-dilaton scenario of [3] the flavour-diagonal

h couplings are in general suppressed by a universal factor c < 1, in which case the bounds in Table 2 would be

weakened by a factor 1/c > 1.
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E↵. couplings Bound Constraint

|csb|2, |cbs|2 2.9⇥ 10�5 [*] B(Bs ! µ+µ�) < 1.4⇥ 10�8

|cdb|2, |cbd|2 1.3⇥ 10�5 [*] B(Bd ! µ+µ�) < 3.2⇥ 10�9

Table 2: Bounds on combinations of the flavour-changing h couplings defined in (1) obtained

from experimental constraints on rare B decays [13], assuming that mh = 125 GeV. (Here and

in subsequent Tables, the [*] denotes bounds obtained under the assumption that the flavour-

diagonal couplings of h are the same as the corresponding SM Yukawa couplings.)

Operator E↵. couplings Bound Constraint

(µ̄R eL)(q̄LqR), (µ̄L eR)(q̄LqR) |cµe|2, |ceµ|2 3.0⇥ 10�8 [*] Bµ!e(Ti) < 4.3⇥ 10�12

(⌧̄R µL)(µ̄LµR), (⌧̄L µR)(µ̄LµR) |c⌧µ|2, |cµ⌧ |2 2.0⇥ 10�1 [*] �(⌧ ! µµ̄µ) < 2.1⇥ 10�8

(⌧̄R eL)(µ̄LµR), (⌧̄L eR)(µ̄LµR) |c⌧e|2, |ce⌧ |2 4.8⇥ 10�1 [*] �(⌧ ! eµ̄µ) < 2.7⇥ 10�8

(⌧̄R eL)(µ̄LeR), (⌧̄L eR)(µ̄LeR) |cµec⇤e⌧ |, |cµec⌧e| 0.9⇥ 10�4 �(⌧ ! µ̄ee) < 1.5⇥ 10�8

(⌧̄R eL)(µ̄ReL), (⌧̄L eR)(µ̄ReL) |c⇤eµc⇤e⌧ |, |c⇤eµc⌧e|
(⌧̄R µL)(ēLµR), (⌧̄L µR)(ēLµR) |ceµc⇤µ⌧ |, |ceµc⌧µ| 1.0⇥ 10�4 �(⌧ ! ēµµ) < 1.7⇥ 10�8

(⌧̄R µL)(ēRµL), (⌧̄L µR)(ēRµL) |c⇤µec⇤µ⌧ |, |c⇤µec⌧µ|

Table 3: Bounds on combinations of the flavour-changing h couplings defined in (1) obtained

from charged-lepton-flavour-violating decays, assuming that mh = 125 GeV.

combinations of cij couplings reported in Table 1. As we discuss in Section 5, these bounds forbid
any flavour-changing decay of the h into a pair of quarks with a branching ratio exceeding 10�3.

The �F = 1 bounds on the cij also prevent sizable Higgs-mediated contributions in �F = 1
amplitudes, if the flavour-diagonal couplings of the h are the same as the SM Yukawa couplings.
In Table 2 we report the bounds on the cij couplings obtained from Bs,d ! µ+µ� obtained
under this assumption, namely setting cµµ =

p
2mµ/v with v ⇡ 246 GeV 1. As can be seen,

these �F = 1 bounds are weaker than those in Table 1. This would not be true if the flavour-
diagonal couplings of h were enhanced with respect to the SM Yukawa couplings, or if there were
some extra contribution cancelling h-exchange in the �F = 2 amplitudes. The latter happens,
for instance, in some two-Higgs doublet models, because of the destructive interference of scalar
and pseudo-scalar exchange amplitudes: see, e.g., [6, 14].

4 Bounds in the Lepton Sector

In the lepton sector we do not have an analogous of the �F = 2 constraints, leaving more room
for sizeable non-standard contributions.

1 This assumption is not true in general. For example, in the pseudo-dilaton scenario of [3] the flavour-diagonal

h couplings are in general suppressed by a universal factor c < 1, in which case the bounds in Table 2 would be

weakened by a factor 1/c > 1.
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Although I will speak little about leptons, 
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Figure 1: Left: Tree-level diagram contributing to �F = 2 amplitudes. Right: One-loop

diagram contributing to anomalous magnetic moments and electric dipole moments of charged

leptons (i = j), or radiative LFV decay modes (i 6= j).

Operator E↵. couplings 95% C.L. Bound Observables

|ce↵ | |Im(ce↵)|
(s̄R dL)(s̄LdR) csd c⇤ds 1.1⇥ 10�10 4.1⇥ 10�13 �mK ; ✏K

(s̄R dL)2, (s̄LdR)2 c2ds, c2sd 2.2⇥ 10�10 0.8⇥ 10�12

(c̄R uL)(c̄LuR) ccu c⇤uc 0.9⇥ 10�9 1.7⇥ 10�10 �mD; |q/p|,�D

(c̄R uL)2, (c̄LuR)2 c2uc, c2cu 1.4⇥ 10�9 2.5⇥ 10�10

(b̄R dL)(b̄LdR) cbd c⇤db 0.9⇥ 10�8 2.7⇥ 10�9 �mBd ; SBd! K

(b̄R dL)2, (b̄LdR)2 c2db, c2bd 1.0⇥ 10�8 3.0⇥ 10�9

(b̄R sL)(b̄LsR) cbs c⇤sb 2.0⇥ 10�7 2.0⇥ 10�7 �mBs

(b̄R sL)2, (b̄LsR)2 c2sb, c2bs 2.2⇥ 10�7 2.2⇥ 10�7

Table 1: Bounds on combinations of the flavour-changing h couplings defined in (1) obtained

from �F = 2 processes [12], assuming that mh = 125 GeV.

SU(2)L ⇥ U(1)Y invariant. However, they may be regarded as resulting from higher-order
SU(2)L ⇥ U(1)Y -invariant operators after the spontaneous breaking of SU(2)L ⇥ U(1)Y .

By construction, the e↵ective couplings described by (1) are momentum-independent. In
principle, higher-order operators with derivative couplings could also appear, leading to moment-
um-dependent terms, or e↵ective form factors for the flavour-changing vertices. We assume here
that any such e↵ects are subleading, though it is clear that direct observation of h decays would,
in general, provide much more stringent constraints on such momentum dependence than could
be provided by the indirect low-energy constraints considered below.

3 Bounds in the Quark Sector

In the quark sector, strong bounds on all the e↵ective couplings in (1) involving light quarks
(i.e., excluding the top) can be derived from the tree-level contributions to meson-antimeson
mixing induced by diagrams of the type shown in the left panel of Fig. 1. Using the bounds
on dimension-six �F = 2 operators reported in [12], we derive the indirect limits on di↵erent

3

E↵. couplings Bound Constraint

|ce⌧ c⌧e| (|ceµcµe|) 1.1⇥ 10�2 (1.8⇥ 10�1) |�me| < me

|Re(ce⌧ c⌧e)| (|Re(ceµcµe)|) 0.6⇥ 10�3 (0.6⇥ 10�2) |�ae| < 6⇥ 10�12

|Im(ce⌧ c⌧e)| (|Im(ceµcµe)|) 0.8⇥ 10�8 (0.8⇥ 10�7) |de| < 1.6⇥ 10�27 ecm

|cµ⌧ c⌧µ| 2 |�mµ| < mµ

|Re(cµ⌧ c⌧µ)| 2⇥ 10�3 |�aµ| < 4⇥ 10�9

|Im(cµ⌧ c⌧µ)| 0.6 |dµ| < 1.2⇥ 10�19 ecm

|ce⌧ c⌧µ|, |c⌧ecµ⌧ | 1.7⇥ 10�7 B(µ ! e�) < 2.4⇥ 10�12

|cµ⌧ |2, |c⌧µ|2 0.9⇥ 10�2 [*] B(⌧ ! µ�) < 4.4⇥ 10�8

|ce⌧ |2, |c⌧e|2 0.6⇥ 10�2 [*] B(⌧ ! e�) < 3.3⇥ 10�8

Table 4: Bounds on combinations of the flavour-changing h couplings defined in (1) obtained

from the naturalness requirement |�m`| < m` (assuming ⇤ = 1 TeV), from the contributions to

a` and d` (` = e, µ), and from radiative LFV decays (in all cases we set mh = 125 GeV.

We start by analyzing the tree-level contributions of h to the lepton-flavour violating (LFV)
decays of charged leptons and µ ! e conversion in nuclei. In most cases bounds on the e↵ective
couplings in (1) can be derived only with an Ansatz about the flavour-diagonal couplings. Here
we assume again that the flavour-diagonal couplings are the SM Yukawas,

c`` = y` ⌘
p
2m`

v
. (2)

This leads to the bounds reported in Table 3, where we have used the limits of the corresponding
dimension-six operators reported in [15], updating the results on various ⌧ decay modes from
Ref. [16]. As can be seen, all the bounds except that derived from µ ! e conversion2 are quite
weak.3 Note in particular that if we impose cµe, ceµ < yµ ⇡ 6 ⇥ 10�4 we have essentially no
bounds on the flavour-violating couplings involving the ⌧ lepton. Note also that we cannot
profit from the strong experimental bound on �(µ ! eēe), since the corresponding amplitude is
strongly suppressed by the electron Yukawa coupling.

Next we proceed to analyze one-loop-induced amplitudes. At the one-loop level the flavour-
violating couplings in (1) induce: (i) logarithmically-divergent corrections to the lepton masses;
(ii) finite contributions to the anomalous magnetic moments and the electric-dipole moments
(edms) of charged leptons; and (iii) finite contributions to radiative LFV decays of the type
li ! lj� (see the right panel of Fig. 1).

As far as the mass corrections are concerned, in the leading-logarithmic approximation we

2 The bound from µ ! e conversion has been derived following the recent analysis of Ref. [17]: the dominant

constraint follows from Bµ!e(Ti) and, in order to derive a conservative bound, we have set y = 2hN |s̄s|Ni/hN |d̄d+
ūu|Ni = 0.03.

3 As commented previously, in the scenario of Ref. [3] the flavour-diagonal h couplings are in general suppressed

by a universal factor c < 1, in which case the first three bounds in Table 3 would be weakened by a factor 1/c > 1.
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In fact SAME AS FOR HIGGS in SM


