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• The only observable we are testing from the background solution is 

• All the rest, comes from the fluctuations

• For the fluctuations

–they are primordial

–they are scale invariant

–they have a tilt

–they are quite gaussian

–both scalar and maybe tensors 

How do we probe inflation
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Limits in terms of parameters of a Lagrangian
•.

• these are limits on the cutoff of the theory with Smith and Zaldarriaga, JCAP2010
Planck Collaboration 2013

with C. Cheung, P. Creminelli, L. Fitzpatrick, J. Kaplan JHEP 2008 



The 4-pt function from WMAP
• From EFT of single field inflation

with Zaldarriaga JHEP 2011 
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• From EFT of multifield inflation

with Zaldarriaga JHEP 2011 
• Signal associated to

• spontaneously broken global symmetries
• supersymmetry

• 3 independent shapes to analyze

with Smith and Zaldarriaga to appear
same code to be applied in Planck, by the collaboration



• Planck improve limits wrt WMAP by a factor of ~3.

• Since

• Given the absence of known or nearby threshold, this is not much.

• Planck was great

• but Planck was not good enough

–not Plank’s fault, but Nature’s faults

• Please complain with Nature

• Planck was an opportunity for a detection, not much an opportunity to change the 
theory in absence of detection (luckily WMAP had a tilt a 2.5     , so we got to 6      )

• On theory side, little changes

–contrary for example to LHC,  which was crossing thresholds

• Any result from LHC is changing the theory

What has Planck done to theory?
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• Tremendous progress has been made through observation of the primordial fluctuations

• In order to increase our knowledge of Inflation, we need more modes

• Planck will soon have observed all the modes from the CMB

• and then what?

• I will assume we are not lucky

–no B-mode detection

–no signs from the beginning of inflation

–no surprises

• Unless we find a way to get more modes, the game is over

• Large Scale Structures offer the only medium-term place for hunting for more modes

–but we are compelled to understand them

• I do not think, so far, we understand them well enough

Cosmology is going to change in a few months



• Euclid and LSST like: this is our only next chance

–we need to understand how many modes are available

–Need to understand short distances

–Similar as from LEP to LHC

What is next?



• Right now, LSS surveys provide information only for those quantities to which the 
CMB is largely insensitive (such as dark energy)

• To make progress on the early universe, it is not sufficient to do just better that now, we 
need to beat Planck!

• this means that log-log plots are not enough, we need percent plots

• We are very far from this level of precision

–in fact, the community has already kind of given up and focused on dark energy

» which theoretically we kind of know is going to be the Cosmological 
Costant

• experiments are named and designed for dark energy

– Dark Energy Survey (DES)

– Dark Energy Spectroscopic Instrument (DESI)

– Euclid is very much designed on dark energy

» in fact the proposed Sphirex is incredibly cheaper and more powerful

The situation is very serious



• In principle, we can simulate the clustering of dark matter with N-body sims

• But

• we cannot simulate baryons: we can only `model’ them

• simulations with dark matter are very slow

• very hard to get 1% precision

– I have personal experience about this: my group’s research program is kind of 
limited by the availability of precise data from N-body sims.

– very hard to debug

–As a proof, SDSS stops analyzing data at                             

• this is a very low k for the EFTofLSS

• and BOSS has been running for 10 years

• having simulations apparently was not enough to overcome the problems

–Intellectually: we should have a simple understanding 

• when the regime is quasi-linear

The case for an analytic understanding
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• If we push 

–then we rule out all theories of early universe but

• Single-Field Slow-Roll Inflation

• As all other theories are more interacting that this

– all interactions are so small that we are perturbatively close to slow roll 
inflation

– or exotic

• Huge discovery without a detection

• This is what we should aim for

What we should aim for?

with many authors 1412 



The Effective Field Theory of 
Cosmological Large Scale Structures

with Carrasco, Foreman and Green JCAP1407

with Baumann, Nicolis and Zaldarriaga JCAP 2012 
- Cosmological Non-linearities as an Effective Fluid

- The Effective Theory of Large Scale Structure (EFTofLSS)
with Carrasco and Hertzberg JHEP 2012 

- The 2-loop power spectrum and the IR safe integrand

- The Lagrangian-space EFTofLSS
with Porto and Zaldarriaga JCAP1405

- The EFTofLSS at 2-loops

with Carrasco, Foreman and Green JCAP1407

- The IR-resummed EFTofLSS with Zaldarriaga 1404

- The one-loop bispectrum in the EFTofLSS with Angulo, Foreman, Schmittful  1406
see also Baldauf, Mirbabayi, Mercolli,Pajer 1406

- Bias in the EFTofLSS me alone 1406

- Redshift Space distortions in the EFTofLSS
with Zaldarriaga 1409

- Analytic Prediction of Baryon Effects from the EFTofLSS

- Halo Power and Bispectrum from the EFTofLSS

with Perko and Lewandowski 1412

with Angulo, Fasiello and Vlah to appear

- The EFTofLSS at high redshift with Foreman to appear



• Non-linearities at short scale
A well defined perturbation theory



• Non-linearities at short scale
A well defined perturbation theory



• Standard perturbation theory is not well defined

• Standard techniques

–perfect fluid 

–expand in                   and solve iteratively

• Perturbative equations break in the UV

– .

–no perfect fluid if we truncate

• All available techniques (LPT, RPT,REgPT,…) differ by this only by their 
treatment of IR modes, not of UV modes. So, all have these problems.

A well defined perturbation theory
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• Very complicated on atomic scales

• On long distances

–we can describe atoms with their gross characteristics

• polarizability                               : average response to electric field

–we are led to a uniform, smooth material, with just some macroscopic properties 

• we simply solve Maxwell dielectric equations, we do not solve for each atom.

• The universe looks like a dielectric

Consider a dielectric material
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–we can describe atoms with their gross characteristics
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–we are led to a uniform, smooth material, with just some macroscopic properties 

• we simply solve Maxwell dielectric equations, we do not solve for each atom.

• The universe looks like a dielectric
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• A well defined perturbation theory

• 2-loop in the EFT, with IR resummation

• Data go as                : naively factor of 200 more modes than before

Bottom line result
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If it holds, this is a revolution 
of our expectations
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…after constructing the 
Effective Field Theory…



• The resulting equations are equivalent to Eulerian fluid-like equations

– here it appears a non trivial stress tensor for the long-distance fluid

Connecting with the Eulerian Treatment
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• For local EFT, we need hierarchy of scales.

–In space we are ok

–In time we are not ok: all modes evolve with time-scale of order Hubble

•            The EFT is local in space, non-local in time
– Technically it does not affect much because the linear propagator is local in space

This EFT is non-local in time

goes as (k/kNL)2.8 for 0.2 h Mpc�1 . k . 0.6 h Mpc�1 , while it becomes steeper at lower k’s
(k/kNL)3.6 for 0.1 h Mpc�1 . k . 0.2 h Mpc�1 , to slowly asymptote to (k/kNL)9 for k’s smaller
than the equality scale. Notice that h!i✓i and h!i�i vanish because of rotation and/or parity
invariance.
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sḢM2
Pl (24)

g2
2

m2
h

⇠ 1

⇤2
U

) mh ⇠ g2 ⇥ ⇤U ⌧ ⇤U (25)

) mnew degree of freedom ⇠ g ⇥ ⇤U ⌧ ⇤U (26)

with Carrasco, Foreman and Green 1310

Carroll, Leichenauer, Pollak 1310



• When we solve iteratively these equations in                        , 

–this corresponds to expanding we in three parameters:

Connecting with the Eulerian Treatment
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Perturbation Theory 
with the EFT



• Regularization and renormalization of loops (scaling universe)

–evaluate with cutoff. By dim analysis:

Perturbation Theory within the EFT
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• Regularization and renormalization of loops (scaling universe)

–evaluate with cutoff. By dim analysis:

–absence of counterterm

Perturbation Theory within the EFT
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Pl


(@⇡)2 +

1

c2

s

⇡̇(@
i

⇡)2

�
) f

⇡̇(@i⇡)

2

NL

⇠ 1

c2

s

(19)

r = 16✏ ✏
⇡

= 0.2 ) ✏ ⇠ 0.2

16✏
⇡

. 1

10
, ) ✏

⇡

& 1

10
(20)

h⇣2i
⇡

= ✏
⇡

h⇣2i
�

(21)

b ⇠ 1

k
(22)

F (k
1

, k
2

, k
3

) =
1

(k
1

k
2

k
3

)2

(23)

N
X

⌧ 1

⇣2

(24)

N
t

N
s

⇠ ✏ ) r ⇠ ✏2 (25)

P
11

(k) =
1

k
NL

3

✓
k

k
NL

◆
n

(1)

✏
�<

⇠ ✏
s<

⇠ ✏
s>

(2)

⌧
ij

� c2

s

�⇢ (3)

⌧
ij

= p
0

�
ij

+ c2

s

�⇢ �
ij

+O �
@, �2, . . .

�
(4)

k ' 0.1 hMpc�1 (5)

S =

Z
d4x

h
M2

Pl
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• Regularization and renormalization of loops (scaling universe)

–evaluate with cutoff. By dim analysis:

–absence of counterterm

Perturbation Theory within the EFT

UV convergent. If we regularize it with a cuto↵ ⇤, dimensional analysis allows us to conclude
that, after integration, P I
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where all the coe�cients c...
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are expected to be numbers of order one. In the above formula, we
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the overall factor of (2⇡) in (9). We will consider the “reducible” diagrams8 in the next subsection.
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• Each loop-order      contributed a finite, calculable term of order 

–each higher-loop is smaller and smaller

• This happens after canceling the divergencies with counterterms

• each loop contributes the same

• Up to 2-loops, we need only the 1-loop counterterm

Lesson from Renormalization

Appendix

A One and Two-Loop Results in the Scaling Universe

In this appendix we collect some results from calculations in the scaling universe. For the n = �2
scaling universe, the 1-loop diagrams are given by13 [6]
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For comparison, the two loop result is given by
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For the n = �3/2 scaling universe, the results are slightly more surprising. At 1-loop, one has
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We see that there will be a significant cancelation between P
22

and P
13

in computing P
1-loop

. These
results become more dramatic when we consider two-loops,

P
n=�3/2

2-loop

(k) =
(2⇡)4

k3

NL

⇣ k

k
NL

⌘

3/2

[(�2.3)
⇤

k
� (2⇡)⇥ 0.044 + (9.3)

k1/2k
3/2

NL

⇤2

] . (66)

cfinite

1

= 0.044 (67)

L (68)

(69)

The small size of the ⇤-independent term might be surprising, given our loop counting we expected
O(2⇡), but the small number can be understood as cancellations due to the relative sizes of 2P

22

and P
13

, which is the combination that appears in reducible diagrams not yet heavily suppressed
at 2-loops.

13Our conventions for k
NL

di↵er from [6] by kours
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= (4⇡)1/(3+n) ktheirs

NL

.
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• In a scaling universe                                   , 

• But our universe has features. It is full of scales.

• After IR-resummation, and after renormalization, each loop goes as power of 

Perturbation Theory in our Universe
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Figure 1: Parameters measuring the amplitude of non-linear correction on a mode of wavenumber k.
They quantify the motions created by modes longer (✏

s<

) and shorter (✏
s>

) than k and the tides
from larger scales (✏

�<

).

Given the importance of resumming corrections of size ✏
s<

and that these terms will be relevant
to get an accurate power spectrum even around the non-linear scale it is useful to gain additional
intuition by studying a simple toy model. We will consider a case, analog to CMB lensing, in which
the density field is a Gaussian random field �

L

which is shifted by a displacement field  which is
also a Gaussian. The field �

L

has power spectrum P

L

(k) and the field  has power spectrum P

 

(k).
For simplicity, we will work in one spatial dimension and take � and  as uncorrelated. This is a
good model to understand the issues as the displacements are dominated by long modes and thus
are approximately uncorrelated with fluctuations on the small scales. What the toy model is lacking
in the dynamical e↵ects from the long modes, the e↵ects of the tides.

The model is then
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In this toy model the correlation function can be computed exactly

⇠(x) = h�(x)�(0)i =
Z

dk

2⇡
P

L

(k)eikxheik( (x)� (0))i

=
Z

dk

2⇡
P

L

(k)eikx

e

�k

2
� (x)/2

, (9)

4

On the other hand for modes k

0 � k the dominant e↵ect comes from P
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, that scales as:
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That is to say, non-linear corrections depend on the variance of the density fluctuations produced
by modes with k

0
< k (✏

�<

) and depend on the displacements produced by modes with k

0
> k (�s

>

)
through ✏

s>

= (k �s

>

)2. The fact that modes larger and smaller than k a↵ect the power spectrum
through di↵erent parameters is what allows SPT to be non-divergent for equal time correlators power
law Universes in the range �3 < n < �1. In this range both ✏

�<

and ✏

s>

are finite. Of course the
fact that the result is finite does not guarantee that it is converging to the correct result.

The displacements produced by modes with k

0
< k (�s
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) do not appear in the equal time
correlators we have discussed. They do however change the final location of those small scale modes
and thus can significantly a↵ect some statistics through the parameter ✏
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and P
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but ✏

s<

cancels in the final answer, as it must be so for general reasons ultimately based on
general relativity [13, 8]. This is not true for unequal time correlators as in that case P

22

and
P

13

have a di↵erent time dependence. What is even more interesting is that in fact it is basically
✏

s<

that is responsible the broadening of the acoustic peak that degrades the BAO technique even
when we are considering equal time correlators. This is so because in ⇤CDM the BAO peak appear
as k-space oscillations in P

11

(k) and the derivation of P

22

in (7) is inaccurate to treat oscillatory
features 1. We will discuss that in what follows.

Figure 1 shows the sizes of these ✏-parameters. Given that the EFTofLSS is expanding
in this parameters, convergence can be achieve only up to where these parameters are
order one 2. It is also clear that to achieve a desired accuracy one needs to keep more orders in some
of these parameters than in others. The biggest of the parameters are those related to displacements
which are dominated by large scale modes and thus are very amenable to perturbation theory. LPT
does not expand in ✏

s<

which in our Universe controls the largest non-linearity in the range of scales
of interest for the BAO. We will show in this paper that it is crucial to keep very high orders in ✏

s<

in order to obtain the desired accuracy in ⇤CDM cosmologies. Thus we will provide formulas where
one is not expanding ✏

s<

.
1The fact that IR-displacements are responsible for the BAO broadening is already quite well

known in the literature (see for example [14, 15, 16, 9]), but, as we describe later, a satisfactory
treatment in perturbation theory is not yet available.

2Notice that there are order one ambiguities in the definition of these parameters. It is
therefore impossible, without a precise calculation, to determine precisely the convergence
radius of perturbation theory.
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• In Eulerian treatment

The Effect of Long-modes on Shorter ones

xEulerian

x0

t0
δρshort wavelength



• Add a long `trivial’ force (trivial by GR)

• This tells you that one can resum the IR modes: this is the Lagrangian treatment

The Effect of Long-modes

δρshort wavelength

x0

xEulerian

x0

t0
δρshort wavelength

t1

time

∇⃗Φlong wavelenght

xEulerian

Big `trivial’ Perturbation



• For equal time matter correlators, naively no effect from IR displacements

• But the universe has features!

• Even on equal time correlators, IR modes of order the BAO scale do not cancel!

–In Fourier space these are the wiggles

• To compute the width, IR-BAO modes are relevant

• But they just do kinematics, so we can resum them!
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• The derivation is highly technical (so only for close friends or aficionados):

• This formula is different from former ones, because it resums the BAO effects 
without changing the UV behavior of the theory

• so that the result agrees with the Scoccimarro & Friemann theorem

Non-perturbative treatment
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Figure 2: For q = 100 Mpc/h, we plot P
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) has a typical Guassian-like shape, with width of order 10 Mpc, as expected from
simple estimates of the long distance displacements in our universe. In Figure 2 we provide a plot of
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) for N � j = 0, 1, 2. Notice that P
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are not definite positive, simply in order

to avoid overcounting for the probability of a given displacement.
For numerical reasons, it is actually more convenient to compute directly the power spectrum.
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This formula is also extremely simple. The problem of resumming the displacement fields has been
reduced to computing the matrixes M||N�j
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), that are related to the Fourier transform of
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and then multiply them by the Eulerian results. In a sense, we have reduced the Lagrangian
calculation to become a simple upgrade of the Eulerian one. For equal time matter correlators, in
the limit in which M||N�j

(k, k

0; t
1

, t

1

) is a �-function in k-space, we obtain the usual Eulerian results.
This means that the e↵ects of the IR-resummation on the equal-time matter power spectrum can
be seen in Fourier space as a mixing of Fourier modes, a sort of convolution in momentum space.
As we will see in the next section, this will have very good consequences for reproducing correctly
the Baryon Acoustic Oscillations (BAO).

It is straightforward to derive that the same formula holds for the cross correlation of matter
and momentum
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This formula is also extremely simple. The problem of resumming the displacement fields has been
reduced to computing the matrixes M||N�j

(k, k

0; t
1

, t

2

), that are related to the Fourier transform of
the probability of ending up at distance ~r from distance ~q:

M||N�j
(k, k

0; t
1

, t

2

) =
1
4⇡

Z
d

3

r d

3

q P

int||0(r|q; t
1

, t

2

) e

i

~

k·~r
e

�i

~

k

0·~q
, (56)

and then multiply them by the Eulerian results. In a sense, we have reduced the Lagrangian
calculation to become a simple upgrade of the Eulerian one. For equal time matter correlators, in
the limit in which M||N�j
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) is a �-function in k-space, we obtain the usual Eulerian results.
This means that the e↵ects of the IR-resummation on the equal-time matter power spectrum can
be seen in Fourier space as a mixing of Fourier modes, a sort of convolution in momentum space.
As we will see in the next section, this will have very good consequences for reproducing correctly
the Baryon Acoustic Oscillations (BAO).

It is straightforward to derive that the same formula holds for the cross correlation of matter
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P

� ⇡

(k; t
1

, t

2

)|
N

=
NX

j=0

Z
d

3

k

0

(2⇡)3
M||N�j

(k, k

0; t
1

, t

2

) P

� ⇡, j

(k0; t
1

, t

2

) , (57)

15

where



Results for Dark Matter



• Well defined and manif. converg.

• Every perturbative order improves the agreement as it should

• We know when we should fail, and we fail when we should

EFT of Large Scale Structures
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Figure 7: Comparisons between 1-loop EFT (solid red), 2-loop EFT (solid blue) and SPT at tree
level (dotted green), one loop (dashed red), and two loops (dashed blue). The left plot shows the results
normalized to non-linear data (solid black) while dotted and dashed black lines are the 2-� limits associated
with 1 and 2 percent agreement (1-�) with the non-linear data. The red and blue bands show the 2-�
errors on the 1 and 2 loop EFT parameters respectively. The right plot is the same information without
the normalization to the non-linear data, and with the low-k region omitted for readability.
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Figure 4: Top: The prediction of the IR-resummed EFT at one-loop (in thick red) and two-loops (in thick
blue). In thin dashed are the predictions from the Eulerian EFT, that is without IR-resummation, with the
same colors respectively. The green band represents the estimated theoretical error from three-loops. The
one- and two-loops results have been renormalized at k

ren

= 0.2 h Mpc�1 , and c

2

s(1) has been approximately
fit up to k ' 0.5 h Mpc�1 . Since the equal-time matter power spectrum is IR-safe, we see that the e↵ect of the
IR-resummation is just to a↵ect the oscillations, which are indeed now correctly taken into account. We see
that the one-loop result matches to percent level the data up to k ' 0.3 h Mpc�1 , while at two-loop matches
all the way up to k ' 0.6 h Mpc�1 . The spike at k ' 0.05 h Mpc�1 is due to the numerical interpolator,
against which we compare, not to the EFT. It is also important to notice that the match stops exactly the
three-loop term is estimated to become relevant. Bottom: We compare the predictions of the IR-resummed
EFT with the ones of SPT. In thick magenta, red and blue we plot respectively the IR-resummed linear, one-
loop and two-loops predictions of the EFT. With the same colors, but simply dashed, the same quantities in
SPT. As we go to higher orders, SPT does not increase the agreement with the data. Furthermore, we notice
that SPT has the same oscillatory features as the Eulerian EFT. In contrast, the IR-resummed EFTofLSS
correctly predicts the size of the oscillations, and, at each order in perturbation theory, it improves the UV
match to the data. Importantly, in the EFTofLSS, order by order in perturbation theory, it is possible to
estimate up to where the theory should match the data.
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• The lines with oscillations are obtained without resummation in the IR

–Getting the BAO peak wrong

EFT of Large Scale Structures
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Figure 4: Top: The prediction of the IR-resummed EFT at one-loop (in thick red) and two-loops (in thick
blue). In thin dashed are the predictions from the Eulerian EFT, that is without IR-resummation, with the
same colors respectively. The green band represents the estimated theoretical error from three-loops. The
one- and two-loops results have been renormalized at k
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s(1) has been approximately
fit up to k ' 0.5 h Mpc�1 . Since the equal-time matter power spectrum is IR-safe, we see that the e↵ect of the
IR-resummation is just to a↵ect the oscillations, which are indeed now correctly taken into account. We see
that the one-loop result matches to percent level the data up to k ' 0.3 h Mpc�1 , while at two-loop matches
all the way up to k ' 0.6 h Mpc�1 . The spike at k ' 0.05 h Mpc�1 is due to the numerical interpolator,
against which we compare, not to the EFT. It is also important to notice that the match stops exactly the
three-loop term is estimated to become relevant. Bottom: We compare the predictions of the IR-resummed
EFT with the ones of SPT. In thick magenta, red and blue we plot respectively the IR-resummed linear, one-
loop and two-loops predictions of the EFT. With the same colors, but simply dashed, the same quantities in
SPT. As we go to higher orders, SPT does not increase the agreement with the data. Furthermore, we notice
that SPT has the same oscillatory features as the Eulerian EFT. In contrast, the IR-resummed EFTofLSS
correctly predicts the size of the oscillations, and, at each order in perturbation theory, it improves the UV
match to the data. Importantly, in the EFTofLSS, order by order in perturbation theory, it is possible to
estimate up to where the theory should match the data.
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• we fit until                                           , as where we should stop fitting

–there are 200 more quasi linear modes than previously believed!

EFT of Large Scale Structures
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• Comparison with Standard Treatment

–all other treatments (RPT, RegPT, etc), if done right, have same UV reach as SPT 

• feel free to ask

• Only one parameter used to fit in the EFTofLSS.
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Figure 4: Top: The prediction of the IR-resummed EFT at one-loop (in thick red) and two-loops (in thick
blue). In thin dashed are the predictions from the Eulerian EFT, that is without IR-resummation, with the
same colors respectively. The green band represents the estimated theoretical error from three-loops. The
one- and two-loops results have been renormalized at k

ren

= 0.2 h Mpc�1 , and c

2

s(1) has been approximately
fit up to k ' 0.5 h Mpc�1 . Since the equal-time matter power spectrum is IR-safe, we see that the e↵ect of the
IR-resummation is just to a↵ect the oscillations, which are indeed now correctly taken into account. We see
that the one-loop result matches to percent level the data up to k ' 0.3 h Mpc�1 , while at two-loop matches
all the way up to k ' 0.6 h Mpc�1 . The spike at k ' 0.05 h Mpc�1 is due to the numerical interpolator,
against which we compare, not to the EFT. It is also important to notice that the match stops exactly the
three-loop term is estimated to become relevant. Bottom: We compare the predictions of the IR-resummed
EFT with the ones of SPT. In thick magenta, red and blue we plot respectively the IR-resummed linear, one-
loop and two-loops predictions of the EFT. With the same colors, but simply dashed, the same quantities in
SPT. As we go to higher orders, SPT does not increase the agreement with the data. Furthermore, we notice
that SPT has the same oscillatory features as the Eulerian EFT. In contrast, the IR-resummed EFTofLSS
correctly predicts the size of the oscillations, and, at each order in perturbation theory, it improves the UV
match to the data. Importantly, in the EFTofLSS, order by order in perturbation theory, it is possible to
estimate up to where the theory should match the data.
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Measuring Parameters from 
small N-body Simulations



• The EFT parameters can be measured from small N-body simulations, using UV theory

–similar to what happens in QCD: lattice sims

• As you change smoothing scale, the result changes

• Perfect agreement with fitting at low energies

–like measuring       from lattice sims and          scattering

Measuring parameters from N-body sims.
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• The EFT parameters can be measured from small N-body simulations, using UV theory

–similar to what happens in QCD: lattice sims

• As you change smoothing scale, the result changes

• Perfect agreement with fitting at low energies

–like measuring       from lattice sims and          scattering

–UV dof

Measuring parameters from N-body sims.
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Other Observables



• Momentum is not IR safe

–IR-modes do not contribute just for oscillations

–after IR-resummation

• with (practically) no additional parameter

– it works as it should (up to                                at one loop )

Momentum with Zaldarriaga 1404
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Ḣ(@
µ

⇡)2 + M
4

4

�
⇡̇4 + ⇡̇2(@

µ

⇡)2

�i
(7)

� (8)

H , or g
weak

H (9)

f
NL

& 1 (10)

� H2

M2

Pl

(11)

✏(t), c
s

(t) (12)

dE
t

d⌦d!
⇠ 1

(2⇡)3

M2

M2

Pl

(13)

dE
s

d⌦d!
⇠ 1

(2⇡)3

M2

✏M2

Pl

(14)

m ⇠ H (15)

✏
⇡

. 1 (16)

S =

Z
d4x ⇡̇O (17)

f orthog.

NL

(18)

⇡̇4 (19)

n
s

� 1 ⇠ 6✏� 4⌘ +
ċ
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–very non-trivial function of two variables!

–use only same counterterm as in power spectrum (so already measured there)

–because of           counting additional counterterms are smaller than 2-loop terms

–.

–because of complexity, limit of goodness of fit is very sharp

– no risk of overfitting

–it works as it should (up to                                at one loop ) 
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–very non-trivial function of two variables!

–use only same counterterm as in power spectrum (so already measured there)

–because of           counting additional counterterms are smaller than 2-loop terms

–.

–because of complexity, limit of goodness of fit is very sharp

– no risk of overfitting

–it works as it should (up to                                at one loop ) 
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ċ
s

Hc
s

⇠ 4⇥ 10�2 ) c
s

⇠ 1 (22)

r = 16✏c
s

= 0.2 ) c
s

& 0.2

16✏
(23)

S =

Z
d4x ḢM2
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• Momentum is a natural quantity, as connected to density by conservation law 

• Velocity is not a natural quantity

• It is a local composite operator: needs its own new counterterms:

–no new counterterm for the equations

• Because of this, and because it is a viscous fluid, we generate vorticity

–from local counterterm

–from viscosity

• Predicted result seems to be verified in sims
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• It is a local composite operator: needs its own new counterterms:
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M2
Pl

✓
V 0

V

◆2

, M2
Pl

V 00

V
(21)

⌦K . 3⇥ 10�3 (22)

⇣(~x) = ✏e�ciency

 
�(~x)

M
+ c2

✓
�(~x)

M

◆2

+ . . .

!
) f loc.

NL ⇠
1

✏e�ciency

& 1 (23)



• Momentum is a natural quantity, as connected to density by conservation law 

• Velocity is not a natural quantity

• It is a local composite operator: needs its own new counterterms:

–no new counterterm for the equations

• Because of this, and because it is a viscous fluid, we generate vorticity

–from local counterterm

–from viscosity

• Predicted result seems to be verified in sims
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Hahn, Angulo, Abel, to appear



• Momentum is a natural quantity, as connected to density by conservation law 

• Velocity is not a natural quantity

• It is a local composite operator: needs its own new counterterms:

–no new counterterm for the equations

• Because of this, and because it is a viscous fluid, we generate vorticity

–from local counterterm

–from viscosity

• Predicted result seems to be verified in sims

• Former analytic techniques got zero
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End to SPT-like resummations

Hahn, Angulo, Abel, to appear
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�ḢM2

Pl(@µ⇡)2 + M4⇡̇2 + M̄3H(@i⇡)2 + M̃2(@2⇡)2
i

(19)

H(t + ⇡) ) Ḧ⇡2 (20)
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Analytic Prediction of Baryon Effects
with Lewandoski and Perko 1412



• Main idea for EFT fro dark matter:

–since in history of universe Dark Matter moves about                                 

•             it is an effective fluid-like system with mean free path ~

•   Baryons heat due to star formation, but they do not move much: 

–indeed, from observations in cluster, we know that they move

•             it is an effective fluid with similar free path 

–Universe with CDM+Baryons            EFTofLSS with 2 species

Baryons
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than the equality scale. Notice that h!i✓i and h!i�i vanish because of rotation and/or parity
invariance.
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ċ
s

Hc
s

⇠ 4⇥ 10�2 ) c
s

⇠ 1 (24)

r = 16✏c
s

= 0.2 ) c
s

& 0.2

16✏
(25)

S =

Z
d4x ḢM2
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ċ
s

Hc
s

⇠ 4⇥ 10�2 ) c
s

⇠ 1 (25)

r = 16✏c
s

= 0.2 ) c
s

& 0.2

16✏
(26)

S =

Z
d4x ḢM2
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invariance.
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• The two species conserve mass, but exchange momentum (through gravity):

Baryons



• The two species conserve mass, but exchange momentum (through gravity):

Baryons

Source of gravity



• The two species conserve mass, but exchange momentum (through gravity):

Baryons

Each-species’ mass conservation



• The two species conserve mass, but exchange momentum (through gravity):

Baryons

Stress tensor like term: 
two derivatives from momentum conservation



• The two species conserve mass, but exchange momentum (through gravity):

Baryons

No-Stress tensor like term: 
only one derivative term,
it cancel in the sum (overall momentum cons.)



• The effective force on baryons: expand force in long-wavelength fields: 

• Size of          determines different power counting

• The stress tensor can now depend also on the center-of-mass velocity

• but only at higher order (because of units)

Baryons

@
i

(@⌧
⇢

)i

b

� @
i

(�)i

b

(a, ~x) = (1)

c2

b,g

(a)
H2

k2

NL

�
w

c

@2�
c

+ w
b

@2�
b

�
+ (c2

b,v

(a) + c2

?

(a))
H2

k2

NL

@2�
b

+ . . . ,

1/k
NL

(B)

⇠ 1/k
NL

⇠ 10 Mpc (2)

1/k
NL

⇠ 10 Mpc (3)

(✏
�<

)L (4)

@i@j⌧
ij

= (2⇡)c2

s

� + c
2

�2 + . . . (5)

(2⇡) (6)

k ' 0.3 hMpc�1 (7)

P
11

(k) =
1

k
NL

3

✓
k

k
NL

◆
n

(8)

✏
�<

⇠ ✏
s<

⇠ ✏
s>

⇠
✓

k

k
NL

◆
3+n

(9)

⌧
ij

� c2

s

�⇢ (10)

⌧
ij

= p
0

�
ij

+ c2

s

�⇢ �
ij

+O �
@, �2, . . .

�
(11)

k ' 0.1 hMpc�1 (12)

S =

Z
d4x

h
M2

Pl
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Ḣ(@
µ

⇡)2 + M
4

4

�
⇡̇4 + ⇡̇2(@

µ

⇡)2

�i
(14)

� (15)

H , or g
weak

H (16)

f
NL

& 1 (17)

� H2

M2

Pl

(18)

✏(t), c
s

(t) (19)

dE
t

d⌦d!
⇠ 1

(2⇡)3

M2

M2

Pl

(20)

dE
s

d⌦d!
⇠ 1

(2⇡)3

M2

✏M2

Pl

(21)

m ⇠ H (22)

✏
⇡

. 1 (23)

S =

Z
d4x ⇡̇O (24)

f orthog.

NL

(25)

⇡̇4 (26)



• Relative motions matter           larger set of expansion parameters

• Baryons and CDM have different initial conditions that decay slowly (iso mode)

•           Also IR-relative motions need to be resummed (at high-redshift)

• this is the so-called Baryon Advection Effect (friendly Tselik-Hirata effect)

• done systematically

Baryons
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(k/kNL)3.6 for 0.1 h Mpc�1 . k . 0.2 h Mpc�1 , to slowly asymptote to (k/kNL)9 for k’s smaller
than the equality scale. Notice that h!i✓i and h!i�i vanish because of rotation and/or parity
invariance.
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–The functional form is predicted by the EFTofLSS

– Different curves are different star-formation models

–they only differ by the size of          , as it should 

–The theory  match until size of theory error (in this ratio particularly small)

–Awesome!

Baryons
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Figure 6: We fit to the simulations that include various baryonic e↵ects by comparing the quantity R =
PA

with baryon

/PA
DM only

as calculated in the EFT to the same quantity calculated from the data. Each simulation
has a di↵erent best-fit value of �c̄2

A. Here, we obtain a range of �c̄2

A: �c̄2

A ' 0.5 (hMpc�1)�2 is the blue curve,
which is the AGN data, while �c̄2

A ' 0.07 (hMpc�1)�2 is the yellow curve, which is the NOSN NOZCOOL
simulation. The rest of the curves are DMBLIMFV 1618 (dark red), NOSN (dark green), NOZCOOL
(cyan), REF (dark yellow), WDENS (purple), WML1V 848 (red), WML4 (green). The green region is the
size of the theoretical error, which we have calculated by estimating the size of the two loop corrections that
we have not included, using Eqs. (5.10) and (5.11). The dashed line is the same theoretical error after adding
in quadrature a 1% error for unknown systematics. This has only been plotted for the AGN simulation to
avoid clutter.
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We are interested in calculating this ratio to within a few percent. The leading terms that we did
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–The functional form is predicted by the EFTofLSS

– Different curves are different star-formation models

–they only differ by the size of          , as it should 

–The theory  match until size of theory error (in this ratio particularly small)

–          is positive (as intuitive) and small (star formation physics is a small effect) 
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The EFTofLSS at high-z
with Foreman to appear



• Clearly the UV reach improves at high-z

• Time dependence of cs

• One additional parameter for the time dependence

Results 2-loop IR-resummed



• Very important: improvement consistent with theory errors

• to get this right, we need to improve the estimate for theory error

• the universe is not scaling: 

• the running of the slope is large

• strong cancellation 

• between UV part of P13 and cs-counterterm (SPT is wrong already at one-
loop)

Results 2-loop IR-resummed
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Figure 1: Left: e↵ective slope n
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(k) = d logP
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(k)/d log k, where P
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is the linear matter power spectrum
without BAO wiggles. P
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(k) is given by Eq. (14). Center: running of this slope, dn
e↵

/d log k. Right:
running of the running, d2n

e↵

/d log k2. The large running of the slope implies that an simple analogy with
the case of a pure scaling universe will be insu�cient to approximate the behavior of various terms in the
power spectrum prediction.

running of the running, d2n
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/d log k2. While d

2

n

e↵

/d log k2 is quite small, the running is not small,
at least for k . 0.6hMpc�1, which means that the universe is not well approximated by a scaling
one. The non-scaling nature of P
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introduces scales that would not be present in the scaling case
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Ḣ(@
µ

⇡)2 + M
4

4

�
⇡̇4 + ⇡̇2(@

µ

⇡)2

�i
(16)

� (17)

H , or g
weak

H (18)

f
NL

& 1 (19)

� H2

M2

Pl

(20)

✏(t), c
s

(t) (21)

dE
t

d⌦d!
⇠ 1

(2⇡)3

M2

M2

Pl

(22)

dE
s

d⌦d!
⇠ 1

(2⇡)3

M2

✏M2

Pl

(23)

m ⇠ H (24)

✏
⇡

. 1 (25)

goes as (k/kNL)2.8 for 0.2 h Mpc�1 . k . 0.6 h Mpc�1 , while it becomes steeper at lower k’s
(k/kNL)3.6 for 0.1 h Mpc�1 . k . 0.2 h Mpc�1 , to slowly asymptote to (k/kNL)9 for k’s smaller
than the equality scale. Notice that h!i✓i and h!i�i vanish because of rotation and/or parity
invariance.

) (1)✓
k

kNL

◆
⌧ 1 (2)

k ⌧ kNL (3)

k & kNL (4)

, Qelectric
ij = c EiEj , . . . (5)

hQSQS . . .i 6= 0 (6)
~ddipole ⇠ ↵ ~Eelectric (7)

datomic (8)

d � datomic (9)

⇤2
U & ⇤2

min ⇠ 103H2 ) ⇤2
min ⌧ 105H2 (10)

vl,R(~x, t) = vl(~x, t)� e1@�(~x, t) + · · · (11)

h⌧i@2�
l

= c1@
2�l + . . . (12)

@2�l ⌧ 1 (13)

Var(⌧) = h⌧ 2i � h⌧i2 (14)

h⌧i@2�
l

= c1@
2�l + c2@

3�l + . . . + d1(@
2�l)

2 + . . . (15)

(k/kNL)4 for k . 0.1 h Mpc�1 (16)

(k/kNL)2 for k . small introduced by spurios e↵ects (17)

h!i!ji⌧ higher order ⇠ �D(~k + ~k0) �ij c4
v

H2

kNL
3

✓
k

kNL

◆7+2n

, (18)

P�⇡ (19)

P11 =
1

kNL
3

✓
k

kNL

◆�3/2

(20)

f loc
NL ⇠

1

e�ciency
& 1 (21)

⇤2
U & ⇤2

min ⇠ 103H2 (22)

) (23)

⇡̇3
c

⇤2
U

, ⇤4
U ⇠ c5

sḢM2
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• Up to l=1000 to 5%

CMB-lensing analytically



• At higher-z, relative gain wrt SPT decreases, but still huge gain and number of modes

Large number of modes



Halos Power and Bispectrum
Senatore (alone) 1406

with Angulo, Fasiello and Vlah to appear



• Similar considerations apply to biased tracers:

• since the theory is non-local in time, formation depends on fields evaluated on past 
history on past path

• this generalizes and completes 

• Since evolution is k-independent, we can formally evaluate the integrals, to obtain

Halos in the EFTofLSS

McDoland and Roy 0902

Senatore 1406



• Do integrals

• each order in perturbation theory gets its own bias coefficient.

• Equivalent basis: expand the integrals in along-the-flow time-derivative

• This basis has some redundancy (nothing bad with it, but simpler if we remove it)

• simple to study and to remove degeneravies:

Halos in the EFTofLSS
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• We compare                                                                       using 7 bias parameters

• Fit works up to                               for 1-loop and                              at tree-level 
(for low bins)  

• If we had the 4-pt function from N-body fit would be even more constrained

• the 3pt function measures very well the bias coefficients (there is a lot of data)

• Similar formulas just worked out for redshift space distortions

Halos in the EFTofLSS with Angulo, Fasiello, Vlah to appear
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• A manifestly convergent perturbation theory

• we fit until                                           , as where we should stop fitting

–there are 50-200 more quasi linear modes than previously believed!

–huge impact on possibilities, for ex:

• Can all of us handle it?! This is an huge opportunity and a challenge for us 
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• Many (most?) of the features of QFT appear in the EFT of LSS:

–Loops, divergencies, counterterms and renormalization

–non-renormalization theorems

–Calculable and non-calculable terms

–Measurements in lattice and lattice-running 

–IR-divergencies

• Results seem to be amazing, many calculations and verifications to do:

–like if we just learned perturbative QCD, and LHC was soon turning on

• higher      -point functions

• Validation with simulation

–With a growing number of groups (Caltech, Princeton, IAS, Cambridge, CEA, 
Zurich..., just after 2-loop result, a workshop was organized by Princeton)

• If this works, the 10-yr future of Early Cosmology is good, even with no luck
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• Let us not fight between Simulations and Perturbation Theory

Make Peace and no War



• There is room for everybody: the two approaches are complementary

Perturbation Theory and Simulations

Long Wavelengths:
Perturbation Theory

Short Wavelengths:
Simulations



• RPT is a technique that fits until 0.3 h/Mpc

• Two interpretations

–They do a wrong IR resummation, and get an effect that, by arbitrarily tuning it, can 
make the fit to data better

• If they did the right calculation, they would find no difference with standard 
treatment

• To me, this is simply a wrong thing to do

–They put a cutoff and argue that in this way the perturbative series is not made of 
oscillating terms, and so better behaved

• I am unaware of a scientific way to justify this

– like putting a cutoff in the chiral Lagrangian and saying it makes sense

• Whatever they want to do, they cannot get vorticity. So, in any event, it is not the right 
approach.

About RPT


