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Outline

• Non-Gaussian bias as a probe of PNG

• 3 universal truths about non-Gaussian bias

• Peak theory: the not so universal truths

• Implications for fNL constraints
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Galaxy clustering probes:

• Cluster counts

• Galaxy power spectrum

• Galaxy bispectrum
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Dalal et al. ’08

The non-Gaussian bias for local quadratic NG:

Pgg(k) =
�
b1 +�bNG
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Most recent constraints: 

�40 . fNL . +40 (95% C.L.)

Forecast for a Euclid-like survey :

 Giannantonio et al. ’12, Ho et al. ’13, Leistedt et al. ’14

�fNL ⇠ 3

 Giannantonio et al. ’12
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�(x) = �l(x) + �s(x)

Peak-background split (PBS):

Kaiser ‘84; Bardeen et al. ’86; Cole & Kaiser ’89; Mo & White ’96; Sheth & Tormen ’99; ...
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The following three statements are certainly true:

• The amplitude of the non-Gaussian bias is given by
✓
@ ln n̄g

@ ln�8

◆

•         is equal to                 only if the halo mass function is universal
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• Local bias expansions cannot correctly predict the amplitude of 
non-Gaussian bias 

Thursday, 8 January 15



VD, Seljak & Iliev ’09
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�s(x) = �(x;R = Rs)

Toy model: maxima of the linear density field as a proxy for the formation sites 
of dark matter haloes (Peacock & Heavens ’85; BBKS ’86)
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Toy model: maxima of the linear density field as a proxy for the formation sites 
of dark matter haloes (Peacock & Heavens ’85; BBKS ’86)
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�s(x) = �(x;R = Rs)
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Peak constraint:
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(ii) ⌘i(xp) = 0
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�a(x) = eigenvalues of � ⇣ij(x)

Toy model: maxima of the linear density field as a proxy for the formation sites 
of dark matter haloes (Peacock & Heavens ’85; BBKS ’86)
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“Localized” number density:

npk(x) =
X
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�D(x� xp) =
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Kac ’43; Rice ’51; Bardeen et al. ’86 
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“Localized” number density:

Reduced N-point correlation is the connected piece of
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Kac ’43; Rice ’51; Bardeen et al. ’86 

Bardeen et al. ’86; Regos & Szalay ’95; VD ’08; VD et al. ’10
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Local bias approach to discrete density peaks

VD ’13
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• Find all rotational invariants: ⌫(x)

u(x) ⌘ �tr⇣(x)

Local bias approach to discrete density peaks

VD ’13
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• Find all rotational invariants: ⌫(x)
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• Write down the “effective” bias expansion:
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Local bias approach to discrete density peaks

VD ’13
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VD ’13
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�01 : bias induced by peak profile asphericity

Fig. from Bardeen et al ’86
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Fig. from Bardeen et al ’86

�01 : bias induced by peak profile asphericity

>

>
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• N-point connected correlations can be perturbatively computed 
from

⇠(N)
pk (x1, . . . ,xN ) ⌘ h�pk(x1)⇥ · · ·⇥ �pk(xN )i
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“Excursion set peaks”: combine peak constraint with first-crossing condition

Appel & Jones ’91; Paranjape & Sheth ’12; Paranjape, Sheth & VD ’13 

µ(x) ⌘ � d�s
dRs

(x)

The “localized” number density of excursion set peaks becomes

nESP(µ,y) =

✓
µ

�⌫µ⌫c

◆
✓H(µ)npk(y)
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“Excursion set peaks”: combine peak constraint with first-crossing condition

Appel & Jones ’91; Paranjape & Sheth ’12; Paranjape, Sheth & VD ’13 

µ(x) ⌘ � d�s
dRs

(x)

The “localized” number density of excursion set peaks becomes

nESP(µ,y) =

✓
µ

�⌫µ⌫c

◆
✓H(µ)npk(y)

and the “effective” bias expansion generalizes to

�ESP(x) = �0b100⌫(x) + �2b010u(x) + b001µ(x) + . . .

VD, Gong & Riotto ’13
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fNL�
2 : �bNG

1 (k) =
2fNLbNG

M(k)

Consider local quadratic PNG
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The following three statements are certainly true:

• The amplitude of the non-Gaussian bias is given by
✓
@ ln n̄g

@ ln�8

◆

•         is equal to                 only if the halo mass function is universal
✓
@ ln n̄g

@ ln�8

◆
�cb1

• Local bias expansions cannot correctly predict the amplitude of 
non-Gaussian bias 

Thursday, 8 January 15



The following three statements are certainly true:

• The amplitude of the non-Gaussian bias is given by
✓
@ ln n̄g

@ ln�8

◆

•         is equal to                 only if the halo mass function is universal
✓
@ ln n̄g

@ ln�8

◆
�cb1

• Local bias expansions cannot correctly predict the amplitude of 
non-Gaussian bias 

Thursday, 8 January 15



All the results discussed so far have a common denominator: the collapse 
threshold is assumed to be constant and deterministic while it is in fact 
moving (e.g. halo mass-dependent) and stochastic

B(�) = �c
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Sheth & Tormen ’02

Robertson et al ’08
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Paranjape, Sheth & VD ’13; Biagetti et al ’14
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Preliminary ! work in progress with 
Matteo Biagetti
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Beyond galaxy power spectrum: galaxy bispectrum and matter statistics

Sefusatti, Crocce & VD ’12
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Conclusion

• Non-Gaussian bias is subtle: peak-background split may not work

• If confirmed, many of the current constraints and forecasts are in 
need of revision

• Peak theory is a powerful approach to understand the nitty-gritty 
details of galaxy bias
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