

Paolo Creminelli, ICTP (Trieste)

B - mode cosmology

CERN, January 9th 2015

The new era of B-modes

Dust under the carpet

Robust signature

- It is easy to play with scalar perturbations:
 - I. choice of potential
 - 2. many scalars (effects on late Universe)
 - 3. speed of propagation c_S

• It is not easy to play with gravity! GWs are direct probes of H

Speed of gravity

$$S = \int d^4x \sqrt{-g} \frac{M_{\rm Pl}^2}{2} \Big[R - 2(\dot{H} + 3H^2) + 2\dot{H}g^{00} - (1 - c_T^{-2}(t))(\delta K_{\mu\nu}\delta K^{\mu\nu} - \delta K^2) \Big]$$
$$K_{ij} = \frac{1}{2N} (\dot{h}_{ij} - \nabla_i N_j - \nabla_j N_i)$$
$$S_{\gamma\gamma} = \frac{M_{\rm Pl}^2}{8} \int d^4x a^3 c_T^{-2} \Big[\dot{\gamma}_{ij}^2 - c_T^2 \frac{(\partial_k \gamma_{ij})^2}{a^2} \Big] \longrightarrow \Delta_T^2 = \frac{2}{\pi^2} \frac{H^2}{M_{\rm Pl}^2} \cdot \frac{1}{c_T(t)}$$

Disformed away

PC, Gleyzes, Noreña, Vernizzi 14

$$\Delta_T^2 = \frac{2}{\pi^2} \frac{H^2}{M_{\rm Pl}^2} \cdot \frac{1}{c_T(t)}$$

- Scale invariance without H \sim const.
- P_T does not measure energy scale

•
$$n_T \neq 2\dot{H}/H^2 < 0$$

Disformed away

Blue tilt using c_T → Stable NEC violation with operator $\delta N \delta K$ PC, Luty, Nicolis, Senatore 06

No loss of generality in taking $c_T = I$ (even multifield or alternatives to inflation)

Exceptions: I. Different symmetry pattern (solid inflation, gauge-flation...)2. GWs not produced as vacuum fluctuations

Spectrum and 3pf corrections

• Corrections to spectrum start with 3 derivative operators:

$$\varepsilon^{ijk}\partial_i\dot{\gamma}_{jl}\dot{\gamma}_{lk}, \qquad \varepsilon^{ijk}\partial_i\partial_m\gamma_{jl}\partial_m\gamma_{lk}$$

$$4\int \mathrm{d}^4x \,\varepsilon^{0ijk}\nabla_i\delta K_{jl}\delta K_{lk} \qquad -4\int \mathrm{d}^4x \,\varepsilon^{ijk}\left(\frac{1}{2}{}^3\Gamma^p_{iq}\partial_j{}^3\Gamma^q_{kp}+\frac{1}{3}{}^3\Gamma^p_{iq}{}^3\Gamma^q_{jr}{}^3\Gamma^r_{kp}\right)$$

Parity violation: different power spectrum for each elicity

$$\langle \gamma_{\vec{k}}^{\pm} \gamma_{\vec{k}'}^{\pm} \rangle = (2\pi)^3 \delta(\vec{k} + \vec{k}') \frac{H^2}{2M_{\rm Pl}^2 k^3} \left(1 \pm \beta \frac{\pi}{2} \frac{H}{\Lambda} \right)$$

For $r \sim 0.1$ we can observe a 50% difference between the two polarizations

Gluscevic, Kamionkowski 10 Ferte, Grain 14

- Not only the spectrum, also $\langle\gamma\gamma\gamma\rangle\,$ cannot be modified at leading order in derivatives

The future

We will measure V, V' and V''

The scalar tilt

Planck: $n_s - 1 = -0.0397 \pm 0.0073$ ($\gtrsim 5\sigma$) It is of order I/N (~ 0.02)

Did we expect that? Can we learn something on r?

Starobinsky, $V \sim V_0(1 - e^{-\phi/M})$ $n_s - 1 = -\frac{2}{N}$

and not in others...

• Hybrid:
$$V = \frac{1}{2}m^2\phi^2 + \frac{1}{4}\lambda(\psi^2 - M^2)^2 + \frac{1}{2}\psi^2\phi^2$$

 $n_s - 1 = 2M_P^2m^2/V_0$ independent of N

Н

V

0.5

Small but not so small because of SUGRA corrections (η-problem)?

Why not $n_s - 1 \sim 0.1$?

• Natural inflation:
$$V = V_0 \left[1 - \cos \left(\frac{\phi}{f} \right) \right]$$

$$n_s - 1 = -a^2 \left(1 + \frac{4}{(2+a^2)e^{a^2N} - 2} \right) \qquad a \equiv \frac{M_P}{f}$$

It scales like I/N only for a << I

Let us take it seriously

PC, Dubovsky, Nacir, Simonović, Trevisan, Villadoro, Zaldarriaga 14

n_S-I scales as I/N in a window (larger than observable one)

• Running
$$\alpha$$
 $\frac{\mathrm{d}\epsilon^{-1}}{\mathrm{d}\log N} - \alpha(N)\epsilon^{-1} = -2N$ $\epsilon^{-1}(N) = -2e^{\int_1^N \frac{d\tilde{N}}{\tilde{N}}\alpha(\tilde{N})} \int_1^N d\tilde{N}e^{-\int_1^{\tilde{N}} \frac{d\tilde{N}}{\tilde{N}}\alpha(\tilde{N})} + Ae^{\int_1^N \frac{d\tilde{N}}{\tilde{N}}\alpha(\tilde{N})}$

- No lower bound on r
- "Forbidden" region: exp target
- Relevance of tilt
- Running $-\alpha/N_*^2 \simeq -7 \cdot 10^{-4}$ can we measure it ?
- c_s opens degeneracies

Zavala 14

Mountains or hills ?

We are probing this now!

Raphael ?

The simplest Universe

PC, Nacir, Simonović, Trevisan, Zaldarriaga 14

The most informative Universe

$$V(\phi) = \Lambda^4 \left[1 - \cos\left(\frac{\phi}{f}\right) \right] \qquad (n_s - 1) + \frac{r}{4} + \frac{11}{24}(n_s - 1)^2 = -\left(\frac{M_{\rm pl}}{f}\right)^2$$
$$f \gtrsim 30M_{\rm pl}$$

Scalar speed of sound:

$$(n_s - 1) + \frac{r}{4} + \frac{11}{24}(n_s - 1)^2 = -s + \frac{r}{4}\left(1 - \frac{1}{c_s}\right)$$

$$s \equiv \dot{c}_s / H c_s \qquad |c_s - 1| \lesssim 3 \times 10^{-2}$$

Better than NGs or GWs consistency relation

Reheating T: $\Delta N \simeq 0.4$ $\frac{\Delta T_{\rm rh}}{T_{\rm rh}} \simeq 1.2$

The very simplest Universe

PC, Nacir, Simonović, Trevisan, Zaldarriaga 14

Eventually sensitive to % corrections

Required precision

- Here everything well defined
- Details of (p)reheating not relevant (provided fast enough)
- Transition among phases, 2nd order slow-roll...

 $n_s = 0.9668 \pm 0.0003$, and $r = 0.131 \pm 0.001$ $k_* = 0.002 \text{ Mpc}^{-1}$

PC, Nacir, Simonović, Trevisan, Zaldarriaga IN PROGRESS !

Now that we know better the enemies (dust) we can forecast:

$$S_{\ell,\nu} = (W_{\nu}^{S})^{2} C_{\ell}^{S} = (W_{\nu}^{S})^{2} A_{S} \left(\frac{\ell}{\ell_{S}}\right)^{\alpha_{S}}, \qquad W_{\nu}^{S} = \left(\frac{\nu}{\nu_{S}}\right)^{\beta_{S}},$$
$$D_{\ell,\nu} = (W_{\nu}^{D})^{2} C_{\ell}^{D} = (W_{\nu}^{D})^{2} A_{D} \left(\frac{\ell}{\ell_{D}}\right)^{\alpha_{D}}, \qquad W_{\nu}^{D} = \left(\frac{\nu}{\nu_{D}}\right)^{1+\beta_{D}} \frac{e^{h\nu_{D}/kT} - 1}{e^{h\nu/kT} - 1}$$

$$\mathcal{L}(D,p) \propto e^{-\frac{1}{2}\sum_{\ell,m} D^T \cdot \left(W \cdot C \cdot W^T + N\right)^{-1} \cdot D}$$

Marginalized over α_{s} , α_{D} , β_{s} , β_{D} ,

Delleene		r	EBEX	\mathbf{Spider}
Balloons		0.1	$2.2 imes 10^{-2}$	$1.8 imes 10^{-2}$
	\mathbf{CS}	0.01		
		0.001		
$r \sim 2 10^{-2}$ looks achievable		0	9.5×10^{-3}	$1.3 imes 10^{-2}$
	FG 1%	0.1	4.5×10^{-2}	$2.5 imes 10^{-2}$
		0.01		
		0.001		
Ground		0	$1.8 imes 10^{-3}$	$2.0 imes 10^{-2}$

	r	\mathbf{AdvACT}	Keck/BICEP3	Simon Array	SPT-3G
	0.1	$6.6 imes 10^{-3}$	$2.1 imes 10^{-2}$	$2.1 imes 10^{-2}$	8.1×10^{-3}
CS	0.01	$5.1 imes 10^{-3}$			$4.0 imes 10^{-3}$
05	0.001				
	0	$4.9 imes 10^{-3}$	$8.9 imes 10^{-3}$	$2.0 imes 10^{-2}$	$3.5 imes 10^{-3}$
	0.1	6.6×10^{-3}	$1.8 imes 10^{-2}$	$9.6 imes 10^{-3}$	$7.1 imes 10^{-3}$
FC 1%	0.01	4.1×10^{-3}	$6.9 imes 10^{-3}$	$7.5 imes 10^{-3}$	$3.6 imes 10^{-3}$
FG 170	0.001				
	0	$3.6 imes 10^{-3}$	$5.6 imes10^{-3}$	$7.3 imes 10^{-3}$	$3.2 imes 10^{-3}$

Ground, stage IV

Beam 5' and 100, 150, 220 GHz

	r	COrE	EPIC-2m	LiteBIRD
\mathbf{CS}	0.1	1.8×10^{-3}	$1.7 imes 10^{-3}$	1.9×10^{-3}
	0.01	$5.6 imes10^{-4}$	$5.0 imes10^{-4}$	$5.9 imes 10^{-4}$
	0.001	$2.4 imes 10^{-4}$	$2.2 imes 10^{-4}$	$2.5 imes 10^{-4}$
	0			
FG 1%	0.1	$2.7 imes 10^{-3}$	$2.3 imes 10^{-3}$	$2.1 imes 10^{-3}$
	0.01	$1.1 imes 10^{-3}$	$8.6 imes10^{-4}$	$8.8 imes10^{-4}$
	0.001	$9.5 imes10^{-4}$	$6.9 imes10^{-4}$	$7.3 imes10^{-4}$
	0	$9.2 imes 10^{-4}$	$6.7 imes 10^{-4}$	$7.1 imes 10^{-4}$

 $r \sim 10^{-3} (5\sigma)$ is achievable from space

New dust level only changes ~ factor of 2 in reach

How do we avoid a new BICEP2 ?

How can we say it is not some extra dust component?

- With 3 frequencies we have 6 covariances : we can fit for r, $\alpha_{S,} \alpha_{D,} \beta_{S,} \beta_{D}$ and β_{CMB}
- Homogeneity over the sky (needs large f_{sky} or more patches)
- I-dependence

Conclusions

• Robustness of
$$\Delta_h^2(k) = \frac{2}{\pi^2} \frac{H^2}{M_{\rm pl}^2}$$

- I/N scaling: "forbidden region"
- ϕ^2 and ϕ^2 at the endpoint
- Forecasts: down to 10⁻³? How to avoid a new BICEP?

Experiment	$f_{sky}\left[\% ight]$	$\nu [{ m GHz}]$	$ heta_{FWHM}$ [']	$\sigma_{pix} heta_{FWHM} \left[\mu \mathrm{K}' ight]$
		90	2.2	7.8
AdvACT	50	150	1.3	6.9
		230	0.9	25
		150	8	5.8
EBEX	1	250	8	17
		410	8	150
		95	30	9.0
Keck/BICEP3	1	150	30	2.3
		220	30	10
		90	5.2	15.2
Simon Array	20	150	3.5	12.3
		220	2.7	23.6
		94	49	17.8
Spider	7.5	150	30	13.6
-		280	17	52.6
		95	1	6.0
SPT-3G	6	150	1	3.5
		220	1	6.0
BAL	5	150, 250, 410	5	-
GRD	-	100, 150, 220	5	-