Cosmological constraints from current and future galaxy (spectroscopic) redshift surveys

> Understanding the Early Universe CERN TH Institute 13/1/2015

Currently the main science cases for Large Scale Structure analyses are Dark Energy and non-Einstein gravity models. Constraints on initial conditions are complementary to those from the CMB that remains the main window to the Early Universe.

Stating the obvious: CMB provides 2D information at a given epoch. Redshift surveys provide 3D information at different epochs.

Layout of the Talk

- Galaxy Redshift Surveys. Main scientific motivations and probes.
- State of the Art.
- Outlook and forecast: Euclid (and DASI).
- Early Universe constraints.
- Synergy with weak lensing analyses.

Motivation 1: Geometry of the Universe

Sound waves in the early universe produce a characteristic scale in the CMB anisotropies and a BAO scale in the clustering of matter at later times.

The scale can be calibrated to sub-% accuracy.

Classical geometry tests probe the expansion history of the Universe

$$d_{L} = (1+z) \int_{0}^{z} dz' / H(z')$$

$$d_A = (1+z)^{-1} \int_0^z dz' / H(z')$$

From SN1a at different redshifts From CMB TT spectrum and BAO in galaxy clustering

$$H^{2}(z) = H_{0}^{2} \{ \Omega_{k} (1+z)^{2} + \Omega_{m} (1+z)^{3} + \Omega_{\gamma} (1+z)^{4} + \Omega_{x} \exp[W(z)] \}$$

$$W(z) = 3\int_{0}^{z} \frac{1+w(z)}{1+z} dz; \quad w(z) = \frac{p_i}{\rho_i c^2}; \quad \Omega_i = \frac{\rho_i}{\rho_c}; \quad \rho_c = \frac{3H_0^2}{8\pi G}; \quad H = \frac{\dot{a}}{a}$$

Motivation 1: trace the expansion history of the Universe to constrain Dark Energy (as well as the other parameters)

BAOs State of the Art

First BAO detection from SDSS-II

Galaxies (Eisenstein+ 2005) at z=0.35

SDSS-III BOSS galaxies. BAOs at z=0.32 (Tojeiro+ 2014) and

Wigglez galaxies (Blake+ 2011) at z=0.6

SDSS-III BOSS Ly-a forest at z=2.4 (Delubac+ 2014)

BAOs State of the Art

First BAO detection from SDSS-II

Galaxies (Eisenstein+ 2005) at z=0.35

SDSS-III BOSS galaxies. BAOs at z=0.32 (Tojeiro+ 2014) and

Wigglez galaxies (Blake+ 2011) at z=0.6

SDSS-III BOSS Ly-a forest at z=2.4 (Delubac+ 2014)

BAOs State of the Art

First BAO detection from SDSS-II Wigglez galaxies (Blake+ 2011) at z=0.6

Does the expansion history reveal the nature of the accelerated expansion of the Universe ? NO

Alternative gravity models can predict the same expansion history as Dark Energy models

Motivation 2: Tracing the growth of fluctuations

Exploiting Peculiar Velocities

Exploiting Peculiar Velocities

Anisotropic clustering: 2-pt correlation function

Small and Dense e.g. 2dF, VIPERS Pros: Multiple Tracers Low Density Structures Large and Sparse e.g. Wigglez, LRGs Pros: Large, linear scales

Growth Rate. Current estimates

 \mathcal{Z}

The Euclid Machine

Euclid mission baseline: Launch in 2020

Ground based Photometry and Spectroscopy (photo-z)		z) SURVE	YS In ∼6 vea	rs				
	Area (deg2)		Description					
Wide Survey	15,000 deg	2	Step and stare with 4 dither pointings per step.					
Deep Survey	40 deg ²		In at least 2 patches of $> 10 \text{ deg}^2$ 2 magnitudes deeper than wide survey					
PAYLOAD								
Telescope		1.2 m Korsch	m Korsch, 3 mirror anastigmat, f=24.5 m					
Instrument	VIS		NISP					
Field-of-View	$0.787 \times 0.709 \text{ deg}^2$		$0.763 \times 0.722 \text{ deg}^2$					
Capability	Visual Imaging	NIR	Imaging Photom	NIR Spectroscopy				
Wavelength range	550–900 nm	Y (920-	J (1146-1372	Н (1372-	1100-2000 nm			
		1146nm),	nm)	2000nm)				
Sensitivity	24.5 mag	24 mag	24 mag	24 mag	3 10 ⁻¹⁶ erg cm-2 s-1			
	10σ extended source	5σ point	5σ point	5σ point	3.5σ unresolved line			
		source	source	source	flux			
	Shapes + Photo-z of <u>n</u> = 1.5 x10 ⁹ galaxies			z of <i>n</i> =2.5x10 ⁷ galaxies				

Possibility other surveys: SN and/or μ-lens surveys, Milky Way (TBC): after Mission PDR

Ref: Euclid RB Laureijs et al arXiv:1110.3193

Y. Mellier – 2014 EC Meeting

SDSS-III/BOSS has only mapped <1% of the observable Universe

....but only 0.02% of the observable galaxies

Focusing on the spectroscopic survey

Technique of slit-less spectroscopy ("objective prism") pioneered by Edward Pickering in 1882 to classify stars

Used very little for the past ~70 years ... never used for galaxy redshift surveys

Euclid will use slit-less spectroscopy. A technique very little used for the past 70 years and never for galaxy surveys

Most updated forecasts on H(z) and growth

Euclid Consortium

- Deeper flux limit: 2 x 10⁻¹⁶ erg cm⁻² s⁻¹
- Up-to-date instrumental configuration
- 3 up-to-date models for dN/dz by Pozzetti, Geach & Hirata
- Forecast code by R. Bean

Flux>2 x 10⁻¹⁶ erg cm⁻² s⁻¹

Growth from galaxy clustering

Di Porto, Amendola, EB 2011

 $f(\Omega_m) \approx \Omega_m^{\gamma}$

	Modified Gravity	Dark Matter	Initial Conditions	Dark Energy		
Parameter	γ	m _v /eV	f _{NL}	w _p	W _a	FoM $= 1/(\Delta w_0 \times \Delta w_a)$
Euclid primary (WL +GC)	0.010	0.027	5.5	0.015	0.150	430
Euclid All	0.009	0.020	2.0	0.013	0.048	1540
Euclid+Planck	0.007	0.019	2.0	0.007	0.035	4020 → 6000
Current (2009)	0.200	0.580	100	0.100	1.500	~10
Improvement Factor	30	30	50	>10	>40	>400

Ref: Euclid RB arXiv:1110.3193

Assume systematic errors are under control

Update based on WL, GC, TH SWGs

Outstanding Issues

- **Observational**. Completeness, purity and any other observationally-driven issue.
- Technical. Statistical estimators for a large number of galaxies (e.g. covariance matrices for 3-pt statistics)
- **Theoretical.** How to interpret results. Non-linearities.
- Galaxy bias.

Nonlinear corrections in a reconstruction framework

Use Zel'dovich approximation sharpen the BAO feature. BOSS z-survey Padmanabhan+ 2012

Use Zel'dovich approximation to identify voids in Lagrangian coordinates. Lavaux & Wandelt 2010 Elyiv+ 2014

Better methods already available (e.g. Least Action – based methods)

Handling scale-dependent bias

Fisher Matrix analysis.

$$P(k,z) = D^{2}(z)b(k,z)^{2} \left(1 + \frac{f(z)}{b(k,z)}\mu^{2}\right)^{2} e^{-\mu^{2}k^{2}\sigma_{r}^{2}}G(k,\mu,\vec{\Sigma})P_{0L}(k)$$

$$H_{0}, \Omega_{m}, \Omega_{b}, n_{s}, \gamma, \sigma_{8}, n, b_{0}, b_{1}$$

$$b(z,k) = b_0(z) + b_1(z) \left(\frac{k}{k_1}\right)^n$$

Allowing for scale-dependent Galaxy bias does not have a dramatic impact on γ.

And now about Early Universe constraints

- 2-point clustering statistics. Constraints from primordial and running spectral index)
- 2-point clustering statistics. Non Gaussianity from halo bias.
- Primordial non-Gaussianity from 3-point clustering statistics.
- Isocurvature Perturbations.

Constraining non-Gaussianity using halo power spectrum

The non-Gaussian bias for local quadratic NG:

$$P_{\rm gg}(k) = \left(b_1 + \Delta b_1^{\rm NG}(k)\right)^2 P_{\rm mm}(k)$$
$$\Delta b_1^{\rm NG}(k) = \frac{2f_{\rm NL}b_{\rm NG}}{\mathcal{M}(k)} \sim \frac{2f_{\rm NL}b_{\rm NG}}{k^2}$$

Combining weak lensing and 3D clustering
(linear, scalar) perturbed FRW metric

$$ds^{2} = (1+2\Psi)dt^{2} - a^{2}(t)(1-2\Phi)(dx^{2}+dy^{2}+dz^{2})$$
Metric reconstruction requires three scalar functions

$$H(z) \quad \Psi(k,z) \quad \Phi(k,z)$$
Massive particles respond to Ψ

$$\delta'(a) + \left(1 + \frac{H'}{H}\right)\delta' = \frac{k^{2}}{a}\Psi; \quad ' = d/d\ln(a)$$

Relativistic particles respond to $\Psi_{+}\Phi$

Λ

$$\alpha \propto \int \nabla_{\perp} (\Psi + \Phi) dz$$

A worked out example

- CHFTLenS: Cosmic Shear
- WiggleZ and 6dFGS: z-distortions and galaxy clustering.
- SN1a+Cepheids+megamaser: H₀
- LRGs + CMASS BAO: geometry
- WMAP 7-year small scales: cosmological parameters
- WMAP 7-year large scales: ISW

Conclusions

- LSS from galaxy redshift surveys will be a major (main ?) probe to Dark Energy and alternative gravity theories in the next few years.
- It will have a significant impact on Dark Matter and Early Universe studies.
- Devil is in details. An exquisite control of systematic errors is needed to reach the required accuracy.