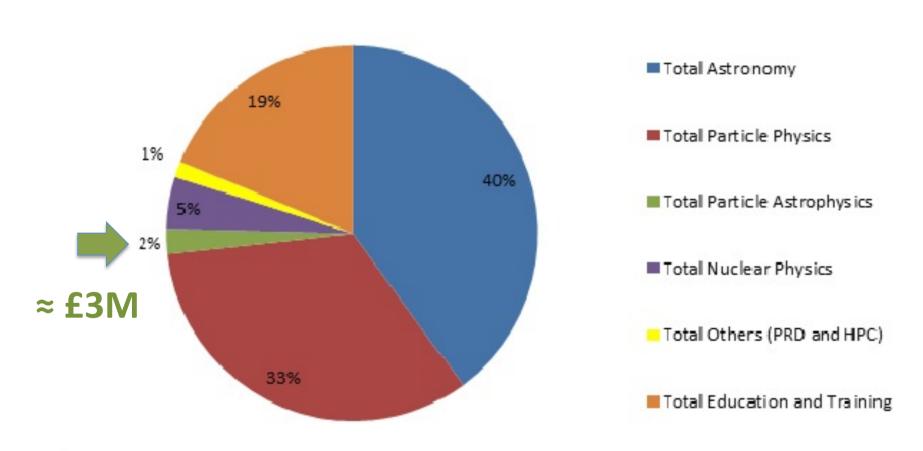
STFC's Particle Astrophysics Programme

Patrick Sutton
Cardiff University

On behalf of the PAAP:

Chamkaur Ghag, Anne Green, Ruth Gregory, Julian Osborne, PS, Lee Thompson


http://www.stfc.ac.uk/2414.aspx

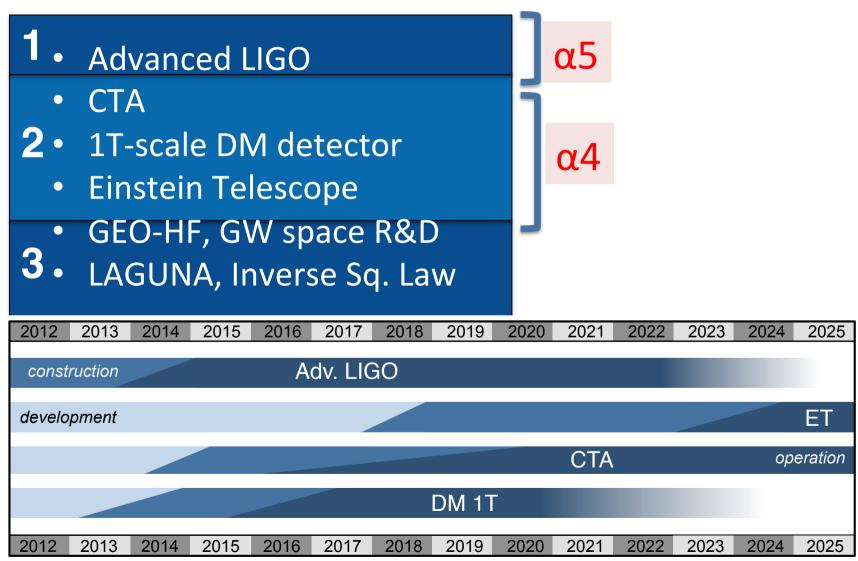
Science Areas

- Particle astrophysics = Astroparticle physics
- Dark Matter, Gamma-ray Astronomy,
 Gravitational Waves, cosmic rays, neutrinos & neutrino astronomy, non-astrophysical tests of gravity.
 - Also strong interest in computing, technology development.
 - Much overlap with Astronomy & Particle Physics

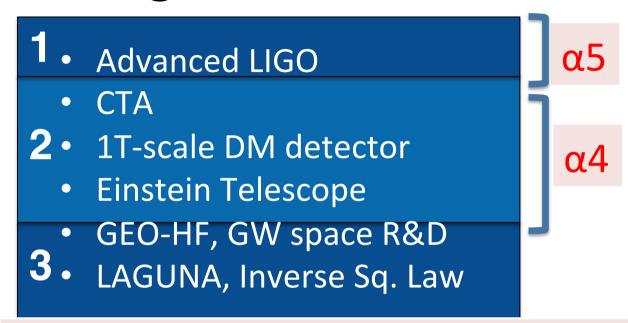
Funding c. 2012-13

STFC Science Programmes budget distribution for 2012/13 (ex. CERN and ESO subscriptions)

Part. Astro. Science Questions

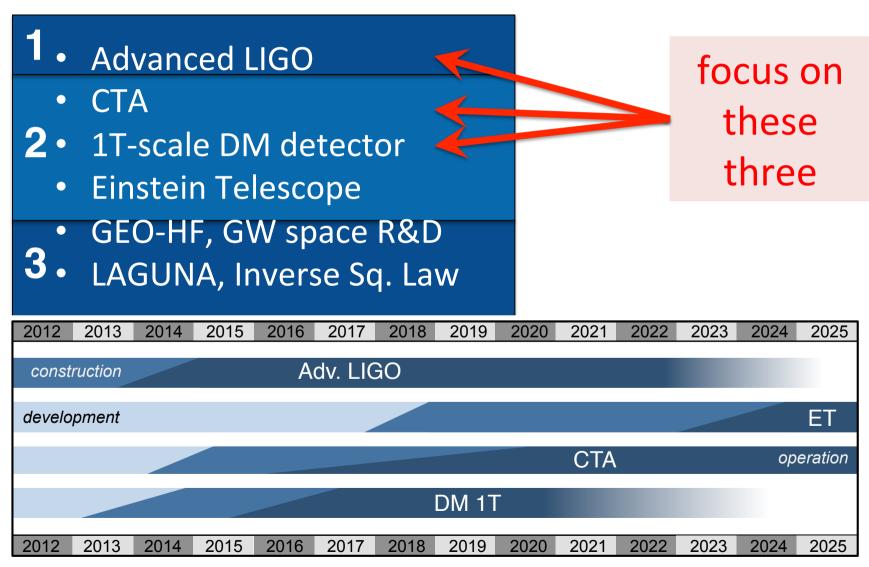

- Multi-messenger Astronomy
 - What is the nature of compact objects?
 - What is the physics behind supernovae and gamma-ray bursts?
 - What are the origins of ultra-relativistic cosmic particles?
 - What role do ultra-relativistic particles play in astrophysical environments?
- Fundamental Physics with Cosmic Messengers
 - What is the nature of Dark Matter?
 - What is the nature of Dark Energy?
 - Does relativity break down under extreme conditions?
 - What are the properties of neutrinos?
 - Are there particles present in the universe which have not yet been detected either directly or indirectly?

Current UK PA Programme


Core PA activity with current STFC support

- Gravitational Wave Astronomy
 - Adv LIGO, GEO 600, LISA Pathfinder, ET, eLISA
- Direct Dark Matter Detection
 - Directional detection, R&D for tonne-scale detectors: LUX, DMTPC (directional), DEAP, LUX-ZEPLIN (proposal)
- Neutrino Astronomy
 - (SN neutrino: SNO+, SuperNEMO, LAGUNA (R&D))
 - VHE, UHE: ANITA, KM3Net, IceCube
- Gamma-ray Astronomy
 - HESS (+Fermi exploitation), CTA Prototyping
- Cosmic Rays
- Non-GW probes of Gravity
 - Inverse Square Law, STE-QUEST (ESA M4 candidate)

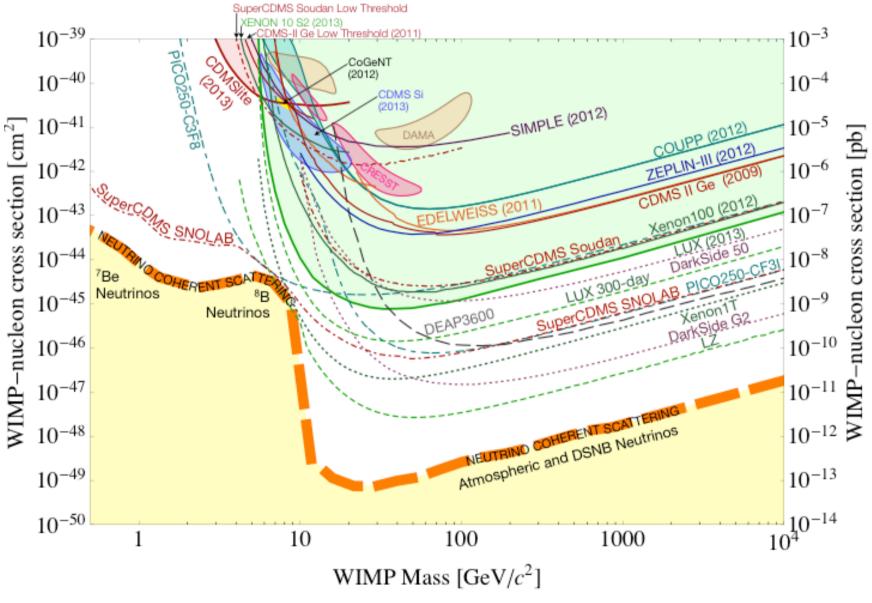
Programmatic Review Outcome



Programmatic Review Outcome

R15 - We recommend that maintaining involvement in gravitational wave, dark matter, and high energy gamma ray experiments be a priority for the sake of the diversity of the UK programme.

Programmatic Review Outcome

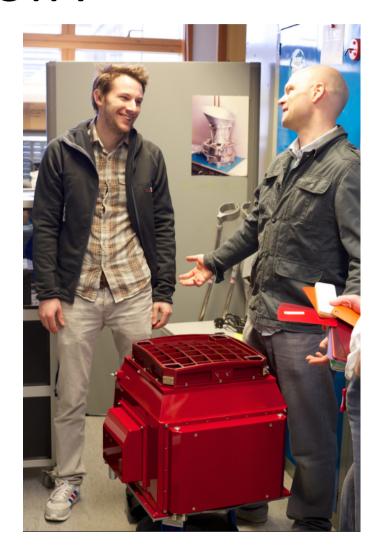

Direct Dark Matter Searches

- Strongly endorsed in recent US P5 report.
 - "R19: Proceed immediately with a broad second generation (G2) dark matter direct detection program ..."
 - http://science.energy.gov/~/media/hep/hepap/pdf/May 2014/P5MayHEPAP-Ritz.pdf
- Strong endorsement in STFC's Programmatic Review.
- UK focus on LUX-ZEPLIN: strong participation with significant UK leadership roles and track record in pioneering world-leading technology.
 - UK Participants: Daresbury, Edinburgh, Imperial, Liverpool, Oxford, RAL, Sheffield, UCL
 - Total Cost: \$70M
 - STFC support for R&D, proposal for LZ participation under review (~£6M).

UK Dark Matter Base

- Boulby: important UK infrastructure to underpin dark matter searches.
 - Material screening at world-class sensitivity levels.
 - Training ground for our grad students and post-docs.
 - Hosting dark matter work in the UK funded by international partners.
 - Vital infrastructure for direct DM searches and any other experiments requiring ultra-low background radioactivity.

Dark Matter Landscape


- **27 nation effort (1000+ scientists)** to build a global observatory for the highest energy photons (20 GeV 300 TeV)
 - 120 Cherenkov telescopes of three types on two sites
 - LST/MST/SST (23/12/4 m diameter)
 - Up to 1' resolution, 7 degree FOV, several km² collection area.
 - Explore cosmic particle acceleration, probe extreme environments, search for dark matter, axions, Lorentz invariance violations, ...

Status

- Preparatory phase, Construction 2015-2020
- ≈£185M price tag; STFC support for R&D

UK Role in CTA

- 10 UK institutes, current STFC funded grouping:
 - Durham, Leicester, Liverpool, Oxford
- Current UK Roles:
 - Project Scientist
 - Leader of SST (small-size telescope) sub-project, a system of 70 x 4m telescopes
 - Lead in mirror test facilities and outreach
 - Leadership of CHEC prototype camera

Advanced LIGO

Status

- Fully funded, with STFC support.
- Two 4 km interferometers for direct detection of gravitational waves
- Under construction in the US, first science ops. 2015.
- First detections likely c.
 2016-18.
 - rate of detected compact binary coalescences
 0.4-400 yr⁻¹

UK Role in Advanced LIGO

- Institutions
 - Birmingham, Cambridge,
 Cardiff, Glasgow, RAL,
 Sheffield, Southampton,
 Strathclyde, UWS
 - ~100 researchers
- UK roles & contributions
 - co-chair 2 of 4 search groups, several members of Executive Committee & other leadership roles.
 - development of low-noise suspension technology

PAAP Recent & Current Activities

- Input to government (BIS) consultation on capital investment 2015-2020:
 - LUX-ZEPLIN (Boulby upgrades, xenon purchase)
 - CTA (hardware construction, e.g SSTs)
 - Advanced LIGO upgrades (suspensions & optics for x3 sensitivity increase).
- Roadmap updates.

Other PA-related Activities

Long baseline neutrino experiments:

covered by Paul Newman's talk

Neutrinoless double beta decay experiments

covered by Paul Newman's talk

HE neutrino astonomy

- KM3NeT: UK contribution by Sheffield (calibration work package)
- IceCube: UK participation from Oxford (theory & interpretation)
- IceCube-PINGU: Manchester and QMUL.
- not currently STFC supported

Other PA-related Activities

Space-based GW detection

- Selected for ESA L3 mission (launch 2034)
- UK institutes: Glasgow, Birmingham, Imperial, Birmingham, Cardiff, Cambridge, Southampton (LISA Pathfinder flight hardware, data analysis techniques)
- UKSA support for LISA Pathfinder

Cosmic Rays

past support of Auger, current LOFAR (Chilbolton station)

Summary & Comments

- Current highest priorities: GWs, DM, CTA.
 - Aligned with ApPEC priorities.
 - Major developments in all three fields expected over next few years.
- UK achieves very strong impact for modest overall funding level.
- Need expanded funding to maintain diversity of PA programme.