

Experimental Setup

Polarized photon beam

Tagged photons up to 1.6GeV Circular and linear polarization

4π-Detector Crystal Ball with 672 Nal crystals

Mainz Frozen Spin Target

³He-⁴He-Dilution cryostat at 25mK DNP with superconductive Magnet 2.5T, 5T Internal holding coils 0.68T (L), 0.5T (T) and NMR system

Standard Material H-Butanol

Degree of p-polarization $\approx 85\%$ Relaxation time more than 2000h

Motivation for an Active Polarized Proton Target

Double-polarization experiments at the pion threshold

- Protons and charged pions get stopped by thermal shielding of cryostat and holding coil
- Real Compton Scattering
 Measuring the spin polarizabilities

Detecting the recoil proton

- → Suppress π^0 p events
- Suppress coherent scattering on heavy nuklei
- Pion production Verifying the Gerasimov-Drell-Hearn (GDH) Sum Rule

Detecting the $\pi^{\!\scriptscriptstyle +}$

 Identify reaction channel π⁺n or π⁰p

D. Von Maluski et al. Polarizable Scintillator for Nuclear Targets. Technical report, Triangle Universities Nuclear Laboratory (TUNL), 2009

Challenges for an Active Polarized Proton Target

Requirements

- polarizable scintillator
- high rate capability
- high light output
- low thermal energy input
- detectors working @ 4 K

Vehicle	Polystyrene	C_8H_8		
Scintillator 365 nm	2,5-Diphenyloxazole PPO	C ₁₅ H ₁₁ NO		
Wavelength Shifter 430 nm	Dimethyl-POPOP	$C_{26}H_{20}N_2O_2$		
Paramagnetic Free Radical	4-Oxo-TEMPO	$C_9H_{16}NO_2$		

70% polarization @ 200 mK in Mainz Dilution factor $f_p = 7.7\%$ (H-Butanol 13.4%)

Construction of APPT Prototypes

- Design studies standard plastic scintillator
- First beam test results at room temperature
- Increasing the light output
- Modifications for LHe temperatures

Maik Biroth, Institut für Kernphysik, Mainz, Germany

2 Prototypes with Wavelength-Shifting Head

- Standard plastic scintillator BC-408 1 mm
- WLS material BC499-53 25 mm and 2 mm
- Acrylic glass tube with wall thickness of 3 mm

Feeding epoxy while rotating the WLS head

Manufacturing of the Solid Prototype

After curing connect the light guide

Placing the pieces under rotation

Maik Biroth, Institut für Kernphysik, Mainz, Germany

Gluing of the single layers

+200% increased optical contact area

- more adhesive surfaces

Manufacturing of the Segmented Prototype

Stacking the layers and connecting the light guide

Setup for a First Beam Test

Detector board with 2 SiPMs and 2 APDs mounted (beam input)

Head of the solid prototype (beam output) Light tight case with the solid prototype and detector board connected

Maik Biroth, Institut für Kernphysik, Mainz, Germany

Maik Biroth, Institut für Kernphysik, Mainz, Germany

Exemplary Beam Test Spectrum Coherent Edge $E_v = 350 \text{ MeV}$

anti-coincident events ($\gamma \rightarrow e^{\pm}$, $\gamma + p \rightarrow p + \pi^{\circ}$, ...)

Maik Biroth, Institut für Kernphysik, Mainz, Germany

biroth@kph.uni-mainz.de

Results of the Beam Test

At room temperature electromagnetics and protons were separated by a factor of 5 in energy deposition

Prototype	Electrons / Positrons	Protons			
Solid	1.0 γ mm ⁻²	5.5 γ mm ⁻²	+ 20% - 25%		
Segmented	0.8 γ mm ⁻²	4.5 γ mm ⁻²	light output		

total coupling surface: 200 mm²

Maik Biroth, Institut für Kernphysik, Mainz, Germany

Increasing the Light Output by Surface Coating of Scintillator

Count rates of 22.2 MBq ⁹⁰Sr source All 12 fibers bended to a PMT Applied Al and PTFE Coatings

Maik Biroth, Institut für Kernphysik, Mainz, Germany

Increasing the Light Output by Coating the WLS Head

- 2 kinds of total reflection
- Specular reflection on smooth surfaces like Al foil
- Diffuse reflection
 on rough surfaces like
 Teflon tape (PTFE)

Average intensity with ⁹⁰Sr is < 3 p.e. / 0.6 γ mm⁻² Discriminator cut off at 3 p.e. / U_{TH} ≥ 28mV Measuring coincident event rate / dark counts subtracted

Prototype	Coating	Light Rate [s ⁻¹]	Coating I	Prototype Comparison			
	-	61 ± 10	-	-	-		
Segmented	Al foil	614 ± 18	10.08 ± 1.67		-		
	Teflon	907 ± 22	14.88 ± 2.46	1.48 ± 0.06	-		
	-	480 ± 17	-	-	7.87 ± 1.32		
Solid	Al foil	1414 ± 31	2.95 ± 0.12	-	2.30 ± 0.08		
	Teflon	2158 ± 43	4.50 ± 0.18	1.53 ± 0.05	2.38 ± 0.08		
Al foil → Teflon: +50% ← Segemented → Solid: +130% ←							

Modifications for Operation in the Cryostat

Cryostat insert

- Length of tube increased to 1.5m
 - + Operation of detectors at warmer regions
 - Thermal short in the cryostat for high conductive materials
- Outer / inner vacuum seal

Not sealable with acrylic glass because of thermal contraction

Material Selection for the Light Guide Tube

Required features of the tube

- superfluid helium tightness
- high stability under thermal stress
- low thermal conductivity at low T
- good visible light transmission

Material options

- sapphire: high integral λ
- quartz: maximum λ at 7K
- glass: low and flat λ at low T

Stress Test of the Light Guide Tube and the Inner Vacuum Seal

Light guide and vacuum seal made from Borosilicate

Sealing from outside with vapor-deposited copper and indium

Passed thermal and pressure strength test Cooling down from 300 K to 77 K at once and evacuating to 7•10⁻¹⁰ mbar

Standard glass flange for evacuation

Adhesion of the Parts with Divergent Coefficients of Thermal Expansion

Proceeding has to be different compared to room temperature for example: optical grease freezes out

Polystyrene scintillator (70•10⁻⁶ K⁻¹)

and PMMA spacers (70-77•10⁻⁶ K⁻¹)

WLS Plastic (78•10⁻⁶ K⁻¹)

Borosilicate (3.3•10⁻⁶ K⁻¹)

Maik Biroth, Institut für Kernphysik, Mainz, Germany

Required features of the detector

- High gain
- High rate capability
- Small surface mount type

Mount devices on a PCB ring to cover the light guide

A. Aeschbacher, Superconducting Nanowire Single-Photon Detectors based on TaN Thin Films, Master Thesis, 2011

Detectors Operational at Cryogenics

APD RMD AE228-4

- Gain 10^3 at V = 31V, T = 4K
- Special cryogenic type
- Expensive unique piece

Custom SiPMs

- High gain $10^4 10^6$, good time resolution
- Cryogenic operation has to be proofed
- Unexpensive custom types

NbN SNSPD - Superconducting nanowire single-photon detectors

- High gain, good time resolution 60 ps
- Only operational at cryogenics
- In an experimental state

C. M. Natarajan et al. Superconducting nanowire single-photon detectors: physics and applications, Supercond. Sci. Technol. 25 (2012) 063001 (16pp)

New type of SiPM with high fill factor and quenching by potential walls

Cryogenic Tests with SiPMs

Operation of many SiPMs causes problems at cryogenics after-pulse probability increases, quenching fails,...

Hamamatsu S10362-11

MAPD-3N operational at liquid nitrogen temperature, but epoxy window cracked

Zecotek MAPD White Paper, Zecotek Photonics, Richmond, Canada, 2011 Z. Sadygov et al. Performance of new Micro-pixel Avalanche Photodiodes from Zecotek. Nucl. Instrum. and Meth. A, 610:381–383, 2009

Maik Biroth, Institut für Kernphysik, Mainz, Germany

Modifications of a Custom MAPD-3N

- Epoxy cover was removed with acetone and chlorinated hydrocarbons
- New bonding wire connections were made

Thanks to Harald Deppe and the hole team of CSEE Electronics, GSI, Darmstadt, Germany

Setup for SiPM Characterization at Liquid Helium Temperatures

SiPM submerged in LHe, Pre-amps outside the dewar

Measuring dark-counts

Discriminate the signal with darkened light guide

Testing the light response

Varying intensity by set the length of LED pulses

M. Biroth et al. Silicon photomultiplier properties at cryogenic temperatures Nucl. Instr. and Meth. A 787 (2015) 68-71

Maik Biroth, Institut für Kernphysik, Mainz, Germany

Time t [ns]

Maik Biroth, Institut für Kernphysik, Mainz, Germany

SiPM Signle-pixel Gain at LHe

Identical pixelcapacities at RT and LHe / over-voltage behavior

MAPD-3NK0 135 kPx / 3.7x3.7 mm² Pixel capacity 6.3 fC

Test of the new MAPD-3N Types at Liquid Nitrogen Temperatures

Gain of both SiPMs depends linear from the over-voltage at LN temperatures (example plot at 100K)

MAPD-3N1P 135 kPx / 3.0x3.0 mm² Pixel capacity 4.3 fC

Characterization at liquid helium follows...

Low-noise 4 Wire SiPM Pre-amplifier with AC/DC Measurement

4 wire detector board and preamplifier DC gain: 10 MVA⁻¹ (1 stage) / resolution < 100 pA AC gain: 100 kVA⁻¹ (2 stages) / bandwidth 200 MHz

2.5 m distance from SiPM to amplifier

Required features

- high bandwidth
- high noiseimmunity
- high tolerance of stray capacities

Maik Biroth, Institut für Kernphysik, Mainz, Germany

SiPM Preamplifier Upgrade with Increased AC Gain

Increased AC gain to $100k\Omega$

(example charge spectrum for MAPD-3NK0 at 100K, Gain $6.6 \cdot 10^4 e_0$)

Single-pixel peaks are good separated

Maik Biroth, Institut für Kernphysik, Mainz, Germany

SiPM Preamplifier Upgrade with DC measurement

SiPM light response acquired by high precision DC measurement (resolution 100pA) (example plot for MAPD-3NK0 at 95K)

Maik Biroth, Institut für Kernphysik, Mainz, Germany

biroth@kph.uni-mainz.de

Conclusion and Outlook

Hardware

- Design for the Mainz APPT was found, capable to separate protons from el-mag. background
- Light guide from borosilicate can be sealed and has good optical properties
 - Stability tests of adhesive surface between light guide and target head

Electronics

- ✓ Pre-amplifier was upgraded with DC measurement
- ✓ MAPD-3N was operated successfully at LHe
- ✓ New MAPD-3N types were operated at LN
 - Ongoing LHe test

Potential Experiments Which Will Profit of an Active Polarized Proton Target

Every high precision double-polarized measurement of the proton at the pion production threshold can profit

- Real Compton Scattering
- Test of the GDH sum rule

Real Compton Scattering on the Proton

Double-polarization experiment

• Polarized proton target (longitudinal, transversal)

 $\bar{\gamma}\,\bar{p} \rightarrow \gamma p$

• Polarized photon beam (circular, linear)

Nucleon spin precesses as an answer to the photon spin

Spin-polarizabilities γ_{E1E1} , γ_{M1M1} , γ_{E1M2} , γ_{M1E2} describe nucleon spin-flip at O(ω^3) of scattering amplitude in terms of the photon energy

$$\mathbf{H}_{eff}^{(3)} = -2\pi \cdot \left[\gamma_{E_1 \to E_1} \cdot \vec{\sigma} \cdot \left(\vec{E} \times \dot{\vec{E}} \right) + \gamma_{M_1 \to M_1} \cdot \vec{\sigma} \cdot \left(\vec{H} \times \dot{\vec{H}} \right) + 2 \cdot \gamma_{E_1 \to M_2} \cdot \sigma_i \cdot H_{i,j} \cdot E_j - 2 \cdot \gamma_{M_1 \to E_2} \cdot \sigma_i \cdot E_{i,j} \cdot H_j \right]$$

p

New experimental data for γ_{E1E1} , γ_{M1M1} , γ_{E1M2} , γ_{M1E2} Compared to the forward γ_0 and backward γ_{π} spin-polarizabilities, increased accuracy can be reached

 $\gamma_0 = -\gamma_{E_1 \to E_1} - \gamma_{M_1 \to M_1} - \gamma_{E_1 \to M_2} - \gamma_{M_1 \to E_2} \qquad \gamma_\pi = -\gamma_{E_1 \to E_1} + \gamma_{M_1 \to M_1} - \gamma_{E_1 \to M_2} + \gamma_{M_1 \to E_2}$

	O(p ³)	ChPT O(p ⁴)	O(p ⁴)	LI C O(p ³)	hPT O(p⁴)	SSE	Fixed- BGLMN	t Dispersi HDPV	on Anal KS	ysis DPV	Experiment
Y _{E1E1}	-5.7	-1.4	-1.8	-3.2	-2.8	-5.7	-3.4	-4.3	-5.0	-4.3	-3.5 ± 1.2
Y _{M1M1}	-1.1	3.3	2.9	-1.4	-3.1	3.1	2.7	2.9	3.4	2.9	3.16 ± 0.85
Y _{E1M2}	1.1	0.2	.7	.7	.8	.98	0.3	-0.01	-1.8	0	-0.7 ± 1.2
Y _{M1E2}	1.1	1.8	1.8	.7	.3	.98	1.9	2.1	1.1	2.1	1.99 ± 0.29
Yo	4.6	-3.9	-3.6	3.1	4.8	.64	-1.5	7	2.3	7	$-1.01 \pm 0.08 \pm 0.10$
Υπ	4.6	6.3	5.8	1.8	8	8.8	7.7	9.3	11.3	9.3	8.0 ± 1.8

All values are in units of 10⁻⁴ fm⁴

Pion-pole contribution was subtracted of γ_{π}

Table: R. Miskimen, Measuring Proton Spin-Polarizabilities with the Crystal Ball, A2-Collaboration Meeting 2014

Data: P. P. Martel et al. Measurements of Double-Polarized Compton Scattering Asymmetries

and Extraction of the Proton Spin Polarizabilities, PRL 114, 112501 (2015)

Polarization observables Σ_{2x} , Σ_{2z} , Σ_3 are asymmetries to different spin settings, sensitive to the spin-polarizabilities

Maik Biroth, Institut für Kernphysik, Mainz, Germany

Maik Biroth, Institut für Kernphysik, Mainz, Germany

Linking between helicity dependent photo-absorption cross section and anomalous magnetic moment κ of longitudinal polarized nucleons

$$I_{GDH} := \int_{m_{\pi}}^{\infty} dE_{\gamma} \cdot \frac{\sigma_{3/2}^{\leftarrow} - \sigma_{1/2}^{\rightarrow}}{E_{\gamma}} = \frac{2\pi^{2}\alpha}{M_{N}^{2}} \cdot \kappa_{N}^{2}$$

$$\vec{\gamma}$$

$$\vec{\gamma}$$

$$\vec{p}$$

At low energies single-pion production is dominant

$$\vec{\gamma}\,\vec{p} \rightarrow \pi N$$

Furthermore the forward spin polarizability can get calculated from the total cross section difference

$$\gamma_{0} = \frac{1}{4\pi^{2}} \int_{m_{\pi}}^{\infty} dE_{\gamma} \cdot \frac{\sigma_{3/2}^{\leftarrow} - \sigma_{1/2}^{\rightarrow}}{E_{\gamma}^{3}} = -\gamma_{E_{1} \to E_{1}} - \gamma_{M_{1} \to M_{1}} - \gamma_{E_{1} \to M_{2}} - \gamma_{M_{1} \to E_{2}}$$

N

 E_v (GeV)

0.14 - 0.20

0.20 - 2.90

GDH sum rule value

2.90 – ∞

Total

Pion Production at the Threshold

Missing data points for $\overline{\gamma} \, \overline{p} \rightarrow \pi^+ n$ 140 – 200 MeV where E_{0+} is dominant

Source

Exp. (MAMI + ELSA)

Bianchi and Thomas

Simula et al.

Table: A. Thomas, The Gerasimov-Dree-Hearn sum rule at MAMI, Eur. Phys. J. A 28, s01, 161–171 (2006) Plots: I. Preobrajenski, Untersuchung der Helizitätsabhängigkeit der Einpionproduktion am Proton, PhD Thesis 2001

 I_{GDH} (mb)

253.5±5±12

211.5-213

-27.5

-28

-13

-14

205

Maik Biroth, Institut für Kernphysik, Mainz, Germany

MAID SAID