

Tagged photons up to 1.6GeV Circular and linear polarization

4π-Detector

Crystal Ball with 672 NaI crystals

Mainz Frozen Spin Target

3He-4He-Dilution cryostat at 25mK DNP with superconductive Magnet 2.5T, 5T Internal holding coils 0.68T (L), 0.5T (T) and NMR system

Standard Material H-Butanol

Degree of p-polarization $\approx 85\%$ Relaxation time more than 2000h

Active Polarized Proton Target

Double-polarization experiments at the pion threshold

- \rightarrow Protons and charged pions get stopped by thermal shielding of cryostat and holding coil
- **Real Compton Scattering** Measuring the spin polarizabilities

Detecting the recoil proton

- \rightarrow Suppress π^0 p events
- \rightarrow Suppress coherent scattering on heavy nuklei
- Pion production Verifying the Gerasimov-Drell-Hearn (GDH) Sum Rule

Detecting the π⁺

 \rightarrow Identify reaction channel $π⁺$ n or $π⁰$ p

D. Von Maluski et al. Polarizable Scintillator for Nuclear Targets. Technical report, Triangle Universities Nuclear Laboratory (TUNL), 2009

Active Polarized Proton Target

Requirements

- polarizable scintillator
- high rate capability
- high light output
- low thermal energy input
- detectors working @ 4 K

70% polarization @ 200 mK in Mainz Dilution factor $f_p = 7.7\%$ (H-Butanol 13.4%)

Construction of APPT Prototype
Design studies standard plastic scintillator

-
- First beam test results at room temperature
- Increasing the light output
- Modifications for LHe temperatures

- Standard plastic scintillator BC-408 1 mm
- WLS material BC499-53 25 mm and 2 mm
- Acrylic glass tube with wall thickness of 3 mm

Feeding epoxy while rotating the WLS head

Manufacturing of the Solid Prototype

After curing connect the light guide

Placing the pieces under rotation

Gluing of the single layers

+200% increased optical contact area

- more adhesive surfaces

Manufacturing of the Segmented Prototype

Stacking the layers and connecting the light guide

Detector board with 2 SiPMs and 2 APDs mounted (beam input)

Head of the solid prototype (beam output)

Light tight case with the solid prototype and detector board connected

Exemplary Beam Test Spectrum Coherent Edge E_{γ} = 350 MeV

anti-coincident events $(\gamma \rightarrow e^{\pm}, \gamma + p \rightarrow p + \pi^{\circ}, ...)$

Maik Biroth, Institut für Kernphysik, Mainz, Germany biroth@kph.uni-mainz.de

EP

Results of the Beam Test

At room temperature electromagnetics and protons were separated by a factor of 5 in energy deposition

total coupling surface: 200 mm2

by Surface Coating of Scintillat

Count rates of 22.2 MBq ⁹⁰Sr source All 12 fibers bended to a PMT Applied Al and PTFE Coatings

by Coating the WLS Head

2 kinds of total reflection

- **Specular reflection** on smooth surfaces like Al foil
- **Diffuse reflection** on rough surfaces like Teflon tape (PTFE)

Discriminator cut off at 3 p.e. / $U_{TH} \ge 28$ mV Measuring coincident event rate / dark counts subtracted

- Length of tube increased to 1.5m
	- + Operation of detectors at warmer regions
	- − Thermal short in the cryostat for high conductive materials
- Outer / inner vacuum seal

Not sealable with acrylic glass because of thermal contraction

8
8
8
8

Material Selection for the Light Guide Tube

Required features of the tube

- superfluid helium tightness
- high stability under thermal stress
- low thermal conductivity at low T
- good visible light transmission

Material options

- sapphire: high integral λ
- quartz: maximum λ at 7K
- glass: low and flat λ at low T

Stress Test of the Light Guide Tube and the Inner Vacuum Seal

Light guide and vacuum seal made from Borosilicate

Sealing from outside with vapor-deposited copper and indium

Passed thermal and pressure strength test Cooling down from 300 K to 77 K at once and evacuating to $7•10⁻¹⁰$ mbar

Standard glass flange for evacuation

Adhesion of the Parts with Divergent
Coefficients of Thermal Expansion Coefficients of Thermal Expansion

Proceeding has to be different compared to room temperature for example: optical grease freezes out

and PMMA spacers $(70-77 \cdot 10^{-6} K^{-1})$

WLS Plastic $(78\cdot 10^{-6} K^{-1})$ Polystyrene scintillator $(70\cdot 10^{-6} K^{-1})$

Borosilicate $(3.3 \cdot 10^{-6} \text{ K}^{-1})$

Required features of the detector

- High gain
- High rate capability
- Small surface mount type

Mount devices on a PCB ring to cover the light guide

> A. Aeschbacher, Superconducting Nanowire Single-Photon Detectors based on TaN Thin Films, Master Thesis, 2011

Detectors Operational at Cryogenics P
APD BMD AE228-4

- Gain 10^3 at $V = 31V$, T = 4K
- Special cryogenic type
- Expensive unique piece

Custom SiPMs

- High gain $10^4 10^6$, good time resolution
- Cryogenic operation has to be proofed
- Unexpensive custom types

NbN SNSPD – Superconducting nanowire single-photon detectors

- High gain, good time resolution 60 ps
- Only operational at cryogenics
- In an experimental state 3 Superconducting Nanowire Single Photon Detector

order to cover a large area. Figure 1 shows a SEM picture \mathcal{L}_max this thesis. The dimensions are mentioned in table 1 in section 5.1. The thickness *d* of

C. M. Natarajan et al. Superconducting nanowire single-photon detectors: 11 physics and applications, Supercond. Sci. Technol. 25 (2012) 063001 (16pp) \mathbf{F} onducting nanowire single-photon d ond. Sci. Technol. 25 (2012) 063

New type of SiPM with high fill factor and quenching by potential walls

Cryogenic Tests with SiPMs
 Properation of many SiPMs

causes problems at cryogenics

after-pulse probability increases, quenching fails,…

Hamamatsu S10362-11

MAPD-3N operational at liquid nitrogen temperature, but epoxy window cracked

Zecotek MAPD White Paper, Zecotek Photonics, Richmond, Canada, 2011 Z. Sadygov et al. Performance of new Micro-pixel Avalanche Photodiodes from Zecotek. Nucl. Instrum. and Meth. A, 610:381–383, 2009

Modifications of a Custom MAPD-3N

- Epoxy cover was removed with acetone and chlorinated hydrocarbons
- New bonding wire connections were made

Thanks to Harald Deppe and the hole team of *CSEE Electronics, GSI, Darmstadt, Germany*

Setup for SiPM Characterization at
Liquid Helium Temperatures Liquid Helium Temperatures

SiPM submerged in LHe, Pre-amps outside the dewar

Measuring dark-counts

Discriminate the signal with darkened light guide

Testing the light response

Varying intensity by set the length of LED pulses

M. Biroth et al. Silicon photomultiplier properties at cryogenic temperatures Nucl. Instr. and Meth. A 787 (2015) 68-71

Time t [ns]

SiPM Signle-pixel Gain at LHe

Identical pixelcapacities at RT and LHe / over-voltage behavior

MAPD-3NK0 135 kPx / 3.7x3.7 mm2 Pixel capacity 6.3 fC

4

MAPD-3N1P 135 kPx / 3.0x3.0 mm2

Test of the new MAPD-3N Types at Liquid Nitrogen Temperatures

Gain of both SiPMs depends linear from the over-voltage at LN temperatures (example plot at 100K)

Pixel capacity 4.3 fC Characterization at liquid helium follows...

Low-noise 4 Wire SiPM Pre-amplifier
with AC/DC Measurement
4 wire detector board and preamplifier with AC / DC Measurement

4 wire detector board and preamplifier DC gain: 10 MVA -1 (1 stage) / resolution $<$ 100 pA

AC gain: 100 kVA-1 (2 stages) / bandwidth 200 MHz

2.5 m distance from SiPM to amplifier

Required features

- high bandwidth
- high noiseimmunity
- high tolerance of stray capacities

amplifier and readout system for SiPMs Nucl. Instr. and Meth. A 787 (2015) 185-188

with Increased AC Gain

Increased AC gain to 100kΩ

(example charge spectrum for MAPD-3NK0 at 100K, Gain $6.6 \cdot 10^4$ e_0)

Figure 2: Charge spectrum of a MAPD-3NK0 at an average intensity of 4.9

Single-pixel peaks are good separated

Maik Biroth, Institut für Kernphysik, Mainz, Germany properties and the light intensity. The single-pixel gain was determined to be

biroth@kph.uni-mainz.de e

 $-$

with DC measurement

SiPM light response acquired by high precision DC measurement (resolution 100pA) (example plot for MAPD-3NK0 at 95K)

Conclusion and Outlook
Hardware

- Design for the Mainz APPT was found, capable to separate protons from el-mag. background
- \checkmark Light guide from borosilicate can be sealed and has good optical properties
	- § Stability tests of adhesive surface between light guide and target head

Electronics

- \checkmark Pre-amplifier was upgraded with DC measurement
- \checkmark MAPD-3N was operated successfully at LHe
- \checkmark New MAPD-3N types were operated at LN
	- § Ongoing LHe test

Potential Experiments Which Will Profit of an Active Polarized Proton Target
Every high precision double-polarized measurement

of the proton at the pion production threshold can profit

- Real Compton Scattering
- Test of the GDH sum rule

Real Compton Scattering on the Proton

Double-polarization experiment

- Polarized proton target (longitudinal, transversal)
- Polarized photon beam (circular, linear)

 \Rightarrow γ $\frac{1}{n}$ $\bar{p} \rightarrow \gamma p$ Nucleon spin precesses as an answer to the photon spin \vec{p} $\wedge \wedge \wedge \wedge \sqrt{\vec{p}}$ γ

Spin-polarizabilities γ_{E1E1} , γ_{M1M1} , γ_{E1M2} , γ_{M1E2} describe nucleon spin-flip at $O(\omega^3)$ of scattering amplitude in terms of the photon energy

$$
H_{\text{eff}}^{(3)} = -2\pi \cdot \left[\gamma_{E_1 \to E_1} \cdot \vec{\sigma} \cdot (\vec{E} \times \dot{\vec{E}}) + \gamma_{M_1 \to M_1} \cdot \vec{\sigma} \cdot (\vec{H} \times \dot{\vec{H}}) + 2 \cdot \gamma_{E_1 \to M_2} \cdot \sigma_i \cdot H_{i,j} \cdot E_j - 2 \cdot \gamma_{M_1 \to E_2} \cdot \sigma_i \cdot E_{i,j} \cdot H_j \right]
$$

γ

p

 $\frac{1}{n}$

Compared to the forward γ_0 and backward γ_π spin-polarizabilities, increased accuracy can be reached

 $\gamma_0 = -\gamma_{E_1 \to E_1} - \gamma_{M_1 \to M_1} - \gamma_{E_1 \to M_2} - \gamma_{M_1 \to E_2}$ $\gamma_{\pi} = -\gamma_{E_1 \to E_1} + \gamma_{M_1 \to M_1} - \gamma_{E_1 \to M_2} + \gamma_{M_1 \to E_2}$

All values are in units of 10-4 fm4

Pion-pole contribution was subtracted of γ_{π}

Table: R. Miskimen, Measuring Proton Spin-Polarizabilities with the Crystal Ball, A2-Collaboration Meeting 2014

Data: P. P. Martel et al. Measurements of Double-Polarized Compton Scattering Asymmetries

and Extraction of the Proton Spin Polarizabilities, PRL 114, 112501 (2015)

The RCS Polarization Observables
Polarization observables Σ_{2x} , Σ_{2z} , Σ_{3} are asymmetries to different spin settings, sensitive to the spin-polarizabilities

Linking between helicity dependent photo-absorption cross section and anomalous magnetic moment κ of longitudinal polarized nucleons

$$
I_{GDH} := \int_{m_{\pi}}^{\infty} dE_{\gamma} \cdot \frac{\sigma_{3/2} - \sigma_{1/2}^2}{E_{\gamma}} = \frac{2\pi^2 \alpha}{M_N^2} \cdot \kappa_N^2
$$

 \Rightarrow $\frac{1}{n}$ At low energies single-pion production is dominant

$$
\vec{\gamma}\vec{p}\rightarrow \pi N
$$

Furthermore the forward spin polarizability can get calculated from the total cross section difference

$$
\gamma_0 = \frac{1}{4\pi^2} \int_{m_{\pi}}^{\infty} dE_{\gamma} \cdot \frac{\sigma_{3/2} - \sigma_{1/2}^2}{E_{\gamma}^3} = -\gamma_{E_1 \to E_1} - \gamma_{M_1 \to M_1} - \gamma_{E_1 \to M_2} - \gamma_{M_1 \to E_2}
$$

Maik Biroth, Institut für Kernphysik, Mainz, Germany biroth@kph.uni-mainz.de

N

Table: A. Thomas, The Gerasimov-Dree-Hearn sum rule at MAMI, Eur. Phys. J. A 28, s01, 161–171 (2006) Plots: I. Preobrajenski, Untersuchung der Helizitätsabhängigkeit der Einpionproduktion am Proton, PhD Thesis 2001