Development of a Polarized ³He Beam Source for RHIC with EBIS

J. Maxwell

for the BNL–MIT Polarized He3 Ion Source Collaboration

International Workshop on Polarized Sources, Targets & Polarimetry September 16th, 2015

Outline

Source Design Electron Beam Ion Source MEOP ³He Polarization Depolarization Effects Polarization and Relaxation Tests MIT Lab Stray Field Tests High Field Tests Next Steps

Why a Polarized Helium 3 Source?

- Polarized DIS crucial for study of neutron spin structure
 - PPDFs; tests of QCD, Bjorken sum rule; higher energies

- S-state ³He: nuclear spin carried by the neutron
- ³He's magnetic moment close to n, compatible with RHIC spin manipulation
- Polarized ³He ions offer a "polarized neutron beam" for RHIC and a future EIC

Polarized ³He at RHIC

- ³He's anomalous *g*-factor is larger than p: more & stronger resonances
- Need 6 siberian snakes per ring¹

Polarized ³He at RHIC

- ³He's anomalous *g*-factor is larger than p: more & stronger resonances
- Need 6 siberian snakes per ring¹

¹Bai, Courant *et al.*, BNL-96726-2012-CP, 2012.

Outline

Source Design Electron Beam Ion Source MEOP ³He Polarization Depolarization Effects Polarization and Relaxation Test MIT Lab Stray Field Tests High Field Tests Stext Steps

History of ³He lon Sources

- Rice University, 1969: MEOP for ${}^{3}\text{He}^{+}$
 - 16 keV, 8 particle μA at 11% polarization
- Univ. of Birmingham, 1973: Lamb Shift for ³He⁺⁺
 - 29 keV, 50 particle μ A at 65% polarization
- Laval University, 1980: Stern-Gerlach for ³He⁺
 - 12 keV, 100 particle nA at 95% polarization

Our Proposal²

- RHIC's Electron Beam Ion Source Preinjector
 - Proven in recent RHIC runs, NASA Space Radiation Lab
- Metastability Exchange Optical Pumping
- Doubly ionize ³He⁺⁺ for injection

²A. Zelenski, J. Alessi, ICFA Newsletter (2003).

History of ³He lon Sources

- Rice University, 1969: MEOP for ${}^{3}\text{He}^{+}$
 - 16 keV, 8 particle μA at 11% polarization
- Univ. of Birmingham, 1973: Lamb Shift for ³He⁺⁺
 - 29 keV, 50 particle μ A at 65% polarization
- Laval University, 1980: Stern-Gerlach for ³He⁺
 - 12 keV, 100 particle nA at 95% polarization

Our Proposal²

- RHIC's Electron Beam Ion Source Preinjector
 - Proven in recent RHIC runs, NASA Space Radiation Lab
- Metastability Exchange Optical Pumping
- Doubly ionize ³He⁺⁺ for injection

²A. Zelenski, J. Alessi, ICFA Newsletter (2003).

Source Design Goals

- Polarize to \sim 70% at 1 torr with 10W laser
- Transfer $\sim 10^{14}$ $^{3}\text{He/s}$ to EBIS at 5 T & 10^{-7} torr
- Deliver 1.5×10^{11} ³He⁺⁺ ions per 20 μ sec pulse

RHIC's Electron Beam Ion Source

RHIC's Electron Beam Ion Source

- 5 T Solenoid B Field; 1.5 m Ion Trap
- 20 keV electrons up to 10 A, 575 A/cm² Current Density
- Any species, switch between species in 1 sec

RHIC's Electron Beam Ion Source

- 5 T Solenoid B Field; 1.5 m Ion Trap
- 20 keV electrons up to 10 A, 575 A/cm² Current Density
- Any species, switch between species in 1 sec

Figure 4. (A) A schematic of the EBIS course. (B) The electric potential along the axis of the source.

EBIS Beams Run to Date

D, ${}^{3}\text{He}^{2+}$, ${}^{4}\text{He}1^{+,2+}$, Li^{3+} , C^{5+} , O^{7+} , Ne^{5+} , Al^{5+} , Si^{11+} , Ar^{11+} , Ca^{14+} , Ti^{18+} , Fe^{20+} , Cu^{1+} , Kr^{18+} , Xe^{27+} , Ta^{38+} , Au^{32+} , Pb^{34+} , U^{39+} . Capable of ${}^{3}\text{He} \Rightarrow {}^{3}\text{He}^{++}$ at nearly 100%

³He Polarization

- EBIS has done much of the work for us!
- Need polarized ³He; pure sample for injection
- Revisit MEOP technique³ with modern lasers

Metastability Exchange Optical Pumping

- Mature technique: polarized targets, medical imaging⁴
- Laser technological advances give 10 W @ 1083 nm easily
- Polarize at ≈ 1 torr, $\approx 30\,\text{G}$ or higher
- Pure ³He sample, faster than SEOP

³Colegrove et al, Phys. Rev. 132 (1963).

⁴Kauczor *et al*, JMRI, 7 (1997).

MEOP Mechanism

Depolarization Contributions

- Wall Bounces
 - 3 mm long, 0.1mm diameter leak: 1 torr to $10^{-7} \ {\rm torr}$
 - 1m long, 2mm diameter tube: $\approx 10^6$ bounces, $\approx 1~{\rm msec}$
 - Negligible depolarization with glass walls
- Magnetic field gradients from EBIS stray field
 - Hinder Polarization
 - Depolarization During Transport to EBIS
- Small Contributions During Ionization:
 - Charge Exchange: ${}^{3}\text{He}^{+}+{}^{3}\text{He}^{++} \rightarrow {}^{3}\text{He}^{++}+{}^{3}\text{He}^{+}$
 - Recombination: $e^- + {}^3\text{He}^{++} \rightarrow {}^3\text{He}^+$
 - Spin Exchange from Beam

Depolarization Contributions

- Wall Bounces
 - 3 mm long, 0.1mm diameter leak: 1 torr to $10^{-7} \ {\rm torr}$
 - 1m long, 2mm diameter tube: $\approx 10^6$ bounces, $\approx 1~{\rm msec}$
 - Negligible depolarization with glass walls
- Magnetic field gradients from EBIS stray field
 - Hinder Polarization
 - Depolarization During Transport to EBIS
- Small Contributions During Ionization:
 - Charge Exchange: ${}^{3}\text{He}^{+}+{}^{3}\text{He}^{++} \rightarrow {}^{3}\text{He}^{++}+{}^{3}\text{He}^{+}$
 - Recombination: $e^- + {}^3\text{He}^{++} \rightarrow {}^3\text{He}^+$
 - Spin Exchange from Beam

Depolarization Contributions

- Wall Bounces
 - 3 mm long, 0.1mm diameter leak: 1 torr to 10^{-7} torr
 - 1m long, 2mm diameter tube: $\approx 10^6$ bounces, $\approx 1~{\rm msec}$
 - Negligible depolarization with glass walls
- Magnetic field gradients from EBIS stray field
 - Hinder Polarization
 - Depolarization During Transport to EBIS
- Small Contributions During Ionization:
 - Charge Exchange: $^{3}\mathrm{He^{+}}+^{3}\mathrm{He^{++}} \rightarrow \ ^{3}\mathrm{He^{++}}+^{3}\mathrm{He^{+}}$
 - Recombination: $e^- + {}^{3}\text{He}^{++} \rightarrow {}^{3}\text{He}^+$
 - Spin Exchange from Beam

Depolarization from Field Gradients

From Schearer⁵, we have:

$$\frac{1}{\tau} = \frac{2}{3} \frac{|\Delta B_t|^2}{|B_l|^2} \langle v^2 \rangle \frac{\tau_c}{\omega_0^2 \tau_c^2 + 1}$$

- Transverse gradient ΔB_t
- Holding field B_l
- Velocity v
- Average time between collisions τ_c
- Resonant frequency ω_0

We can map regions of stray field which should be problematic.

⁵Schearer, Walters, Phys. Rev. 139(5A) (1965).

PSTP, Sept 16, 2015

Two Source Design Options: Low or High Field?

- Two design possibilities present themselves:
 - Polarize at 30 G in EBIS stray field using field correction, then transfer into EBIS
 - · Polarize in EBIS, or nearby, extending field region

Outline

 Source Design Electron Beam Ion Source MEOP ³He Polarization Depolarization Effects
 Polarization and Relaxation Tests MIT Lab Stray Field Tests High Field Tests
 Next Steps

Polarization and Relaxation Tests

MIT Lab

MIT Test Lab

- Magnet, vacuum, laser setup
- 70% polarization achieved
- Allows flow of polarized gas between cells
- Observe polarization diffusion through region of depolarizing gradients⁶
- Test bed for polarization, transfer and data acquisition
- Discharge and optical probe polarimeter development⁷

⁶Maxwell, Epstein, Milner, NIM A (777), 2015.
 ⁷Maxwell, Epstein, Milner, NIM A (764), 2014.

Transferring between B Fields via Diffusion

Relaxation Time Map, Helmholtz and Solenoid

MIT Lab

Polarization Transfer via Diffusion

MIT Lab

Relaxation in Both Cells

Fits roughly match relaxation & diffusion model of 2 cells, line

BNL Test Polarizer

- Polarizer on movable stand
- EBIS 5 T spare solenoid
- Allows polarization at any location in the stray field
- Initial polarization tests with NO field correction
- 30 G solenoid allows small increase of B_l
- Tested at two locations on axis of solenoid, one off axis

Stray Field Results

- Spare solenoid at 1 T
- Polarizing sealed cell, which attained 50% in 30 G solenoid
- At location of interest in stray field:
 - Only stray field, 17% with ${\sim}0.5\,A$ pump
 - Only stray field, 28% with ${\sim}10\,\text{A}$ pump
 - 6 second relaxation, matches calculation nicely
 - Adding 30 G holding field improves as expected

Low Field Conclusions Thus Far

- Transfer of polarized gas at 1 torr matches calculations
- Polarization and relaxation in the EBIS stray field with no magnetic shielding also agree
- Trusting these calculations, a path into EBIS through the stray field exists in which the path averaged relaxation time is around 0.7 sec (0.01 torr)

Low Field Source with MEOP and EBIS is feasible

- But not necessarily easy or optimal
- Battle must be fought with the stray field both to polarize and to transfer, compromising the achieved polarization, however little

Low Field Conclusions Thus Far

- Transfer of polarized gas at 1 torr matches calculations
- Polarization and relaxation in the EBIS stray field with no magnetic shielding also agree
- Trusting these calculations, a path into EBIS through the stray field exists in which the path averaged relaxation time is around 0.7 sec (0.01 torr)

Low Field Source with MEOP and EBIS is feasible

- But not necessarily easy or optimal
- Battle must be fought with the stray field both to polarize and to transfer, compromising the achieved polarization, however little

MEOP at High Magnetic Field

- European group (Paris, Krakow) researching high pressure MEOP, medical applications
- Pioneering achievements in pumping efficiency at high pressures leveraging fields above 1 T in last ten years
- M. Abboud, Europhys. Lett. 68, 2004
 - 1.5 T; 0.5, 2 W OP laser
 - 1.3, 8, 32, 67 mbar
 - Circles and stars are at 1.5 T, others at low field

MEOP at High Magnetic Field

- European group (Paris, Krakow) researching high pressure MEOP, medical applications
- Pioneering achievements in pumping efficiency at high pressures leveraging fields above 1 T in last ten years
- A. Nikiel *et al*, Eur. Phys. J. D. 67, 2013
 - 4.7 T, 0.5 W OP laser
 - 1.3, 32, 67, 96, 128, 267 mbar
 - Noted trouble with RF for 1 torr cell

Polarization and Relaxation Tests High Field Tests

BNL High Field Tests

- EBIS spare solenoid at 1, 2, 3, and 4 T
- Low field polarimetry technique not effective above 10 mT
- High-field polarimetry with low power probe laser
 - AM on discharge for lock-in detection
- Sealed cells at 1 torr with two cell geometries
 - 5 cm OD, 5 cm long
 - 3 cm OD, 10 cm long

Optical Probe Polarimetry

- High or low field, no calibration required
 - Sweep low power probe laser through two $2^3{\rm S}{-}2^3{\rm P}$ transitions to directly probe states 8,9

PSTP, Sept 16, 2015

Optical Probe Polarimetry

- High or low field, no calibration required
 - Sweep low power probe laser through two $2^3{\rm S}{-}2^3{\rm P}$ transitions to directly probe states 8,9

High Field Tests

Measuring Optical Pumping

Measuring Optical Pumping

Probe Laser Absorption Peaks at Zero and High Polarization

High Field Polarization Results

• Error set at 10% while measurement is investigated

Thoughts on Probe Measurement Error

- Intense probe can cause over-estimation of polarization
 - Talbot: as much as 5% at M=0% and 1% at M=10%

High Field Conclusions Thus Far

- First results for MEOP at 3, $4\,T$ and $1\,torr,$ to near 90%
 - With discharge off, $T_1 = 2.7$ hours
- Not only is this possible but it's easy!
 - Cell which we struggled to get to 70% at 30 G reach over 80% at high field
 - Field uniformity a given at high field

High polarizations from MEOP over 1 T

- At high field, OP and ME both still work
- Zeeman splitting reduces electron-nucleus spin coupling for polarization, but also inhibits relaxation channels (such as 668 nm line used for low field measurement)
- Transition split allows pumping just one state with laser

High Field Conclusions Thus Far

- First results for MEOP at 3, $4\,T$ and $1\,torr,$ to near 90%
 - With discharge off, $T_1 = 2.7$ hours
- Not only is this possible but it's easy!
 - Cell which we struggled to get to 70% at 30 G reach over 80% at high field
 - Field uniformity a given at high field

High polarizations from MEOP over 1 T

- At high field, OP and ME both still work
- Zeeman splitting reduces electron-nucleus spin coupling for polarization, but also inhibits relaxation channels (such as 668 nm line used for low field measurement)
- Transition split allows pumping just one state with laser

Outline

1 Source Design MEOP ³He Polarization MIT Lab Stray Field Tests **High Field Tests**

Looking forward

- To corroborate probe polarimeter results, NMR system has been built, under initial tests
- We can polarize near EBIS operating fields, avoiding the transfer through depolarizing gradients
 - High field source design offers best chance of success
- High field source is under initial design process by BNL collider and accelerator team
- Preliminary plan for magnet construction, spare solenoid reinforcement, low energy polarimetry and test
 - Estimated 3-4 years until test source operational and swap with EBIS can be performed

Looking forward

- To corroborate probe polarimeter results, NMR system has been built, under initial tests
- We can polarize near EBIS operating fields, avoiding the transfer through depolarizing gradients
 - High field source design offers best chance of success
- High field source is under initial design process by BNL collider and accelerator team
- Preliminary plan for magnet construction, spare solenoid reinforcement, low energy polarimetry and test
 - Estimated 3-4 years until test source operational and swap with EBIS can be performed

High Field Source Design: EBIS Upgrade

- New solenoid-injector section will improve EBIS operation with all gases, allow polarized ${}^{3}\mathrm{He}^{++}$
- · Lengthened ion trap brings increased heavy ion yield
- Test can be built and tested without affecting EBIS operation: goal > 80% polarization $^3{\rm He^{++}}$ beam

Polarized ³He Source for JLab MEIC?

- Two EIC candidates, eRHIC and MEIC
- JLab does not have EBIS
- Revisit Rice source¹⁰ with modern techniques

¹⁰Baker, PRL 20, 14 (1968)

BNL-MIT Pol He3 Source Collaboration:

- Brookhaven National Laboratory
 - J. Alessi, E. Beebe, J. Farrell, A. Pikin, J. Ritter, A. Zelenski
- MIT Laboratory for Nuclear Science
 - C. Epstein, J. Maxwell, R. Milner
 - Bates technical support

We gratefully acknowledge the advice of

• P.J. Nacher, G. Collier

Work supported by

- DOE Office of Nuclear Physics, R&D for Next Generation Nuclear Physics Accelerator Facilities
- MIT Department of Physics

Thanks for your attention!

Next Steps

Maintaining Polarization in a Circular Collider

- Spinor precesses as bent in B field
- Depolarizing resonances
 - Spin precession frequency = frequency of perturbing B field
 - Imperfection: $\nu_s = G \gamma = n$
 - Intrinsic: $\nu_s = G\gamma = Pn + \nu_y$
 - Anomalous g-factor G
 - Resonances for p in $\mathsf{RHIC}^{11} \rightarrow$
- Siberian Snakes to the rescue
 - Rotate spin 180°, allow the wobble to unkink itself
 - Partial snakes can be used for some imperfections

¹¹Bai, Courant et al., BNL-96726-2012-CP, 2012.

Maintaining Polarization in a Circular Collider

- Spinor precesses as bent in B field
- Depolarizing resonances
 - Spin precession frequency = frequency of perturbing B field
 - Imperfection: $\nu_s = G\gamma = n$
 - Intrinsic: $\nu_s = G\gamma = Pn + \nu_y$
 - Anomalous g-factor G
 - Resonances for p in $RHIC^{11}$
- Siberian Snakes to the rescue
 - Rotate spin 180°, allow the wobble to unkink itself
 - Partial snakes can be used for some imperfections

¹¹Bai, Courant et al., BNL-96726-2012-CP, 2012.

RHIC Spin Manipulation

Transfer Path Relaxation Studies

- Investigating possible paths into EBIS with solenoid field map, calculating relaxation time at each point
- Algorithm compromises between 2500 relaxation time and transfer length to pick next step in path 2000
- Average inverse relaxation times to qualify path
- Two transfer lines to be made for upcoming test
 - "Best" case, avoiding depolarization
 - Real case, following EBIS feed-throughs

Constraints on Path into EBIS

Constraints on Path into EBIS

Constraints on Path into EBIS

Test of Polarization Diffusion Measurement

$$\begin{pmatrix} \dot{P}_p(t) \\ \dot{P}_t(t) \end{pmatrix} = \begin{pmatrix} -\left(\frac{1}{\tau_p} + \frac{N_t}{N}\frac{1}{t_{ex}}\right) & \frac{N_t}{N}\frac{1}{t_{ex}} \\ \frac{N_p}{N}\frac{1}{t_{ex}} & -\left(\frac{1}{\tau_t} + \frac{N_p}{N}\frac{1}{t_{ex}}\right) \end{pmatrix} \begin{pmatrix} P_p(t) \\ P_t(t) \end{pmatrix}$$

- 5 variables describe system (initial pols, decays, transfer)
- Solution is sum of two exponentials
- Relate to 4 fit parameters of measured relaxation curve

$$P_p(t) = a_s e^{-t/\tau_s} + a_l e^{-t/\tau_l}$$