Development of a Polarized ³He Beam Source for RHIC with EBIS

J. Maxwell

for the BNL–MIT Polarized He3 Ion Source Collaboration

International Workshop on Polarized Sources, Targets & Polarimetry September 16th, 2015

Outline

1 [Source Design](#page-5-0) [Electron Beam Ion Source](#page-9-0) MEOP ³[He Polarization](#page-13-0) [Depolarization Effects](#page-15-0) **2** [Polarization and Relaxation Tests](#page-24-0) [MIT Lab](#page-25-0) [Stray Field Tests](#page-30-0) [High Field Tests](#page-34-0) **3** [Next Steps](#page-45-0)

Why a Polarized Helium 3 Source?

- Polarized DIS crucial for study of neutron spin structure
	- PPDFs; tests of QCD, Bjorken sum rule; higher energies

- S-state 3 He: nuclear spin carried by the neutron
- \bullet ³He's magnetic moment close to n, compatible with RHIC spin manipulation
- Polarized ³He ions offer a "polarized neutron beam" for RHIC and a future EIC

Polarized ³He at RHIC

- $\bullet \,$ 3 He's anomalous g -factor is larger than p: more & stronger resonances
- Need 6 siberian snakes per ring¹

¹Bai, Courant et al., BNL-96726-2012-CP, 2012.

Polarized ³He at RHIC

- $\bullet \,$ 3 He's anomalous g -factor is larger than p: more & stronger resonances
- Need 6 siberian snakes per ring¹

2 snakes

Outline

1 [Source Design](#page-5-0) [Electron Beam Ion Source](#page-9-0) MEOP ³[He Polarization](#page-13-0) [Depolarization Effects](#page-15-0) 2 [Polarization and Relaxation Tests](#page-24-0) [MIT Lab](#page-25-0) [Stray Field Tests](#page-30-0) [High Field Tests](#page-34-0) **[Next Steps](#page-45-0)**

History of ³He Ion Sources

- Rice University, 1969: MEOP for 3 He⁺
	- 16 keV, 8 particle μ A at 11% polarization
- Univ. of Birmingham, 1973: Lamb Shift for 3 He⁺⁺
	- 29 keV, 50 particle μ A at 65% polarization
- Laval University, 1980: Stern-Gerlach for 3 He⁺
	- 12 keV, 100 particle nA at 95% polarization

Our Proposal²

- RHIC's Electron Beam Ion Source Preinjector
	- Proven in recent RHIC runs, NASA Space Radiation Lab
- Metastability Exchange Optical Pumping
- Doubly ionize 3 He⁺⁺ for injection

²A. Zelenski, J. Alessi, ICFA Newsletter (2003).

History of ³He Ion Sources

- Rice University, 1969: MEOP for 3 He⁺
	- 16 keV, 8 particle μ A at 11% polarization
- Univ. of Birmingham, 1973: Lamb Shift for 3 He⁺⁺
	- 29 keV, 50 particle μ A at 65% polarization
- Laval University, 1980: Stern-Gerlach for 3 He⁺
	- 12 keV, 100 particle nA at 95% polarization

Our Proposal²

- RHIC's Electron Beam Ion Source Preinjector
	- Proven in recent RHIC runs, NASA Space Radiation Lab
- Metastability Exchange Optical Pumping
- Doubly ionize 3 He⁺⁺ for injection

²A. Zelenski, J. Alessi, ICFA Newsletter (2003).

Source Design Goals

- Polarize to \sim 70% at 1 torr with 10 W laser
- \bullet Transfer \sim 10 14 3 He/s to EBIS at 5 T & 10 $^{-7}$ torr
- Deliver 1.5×10^{11} ³He⁺⁺ ions per 20 μ sec pulse

RHIC's Electron Beam Ion Source

RHIC's Electron Beam Ion Source

- 5 T Solenoid B Field; 1.5 m Ion Trap
- 20 keV electrons up to 10 A, 575 A/cm² Current Density
- Any species, switch between species in 1 sec

RHIC's Electron Beam Ion Source

- 5 T Solenoid B Field; 1.5 m Ion Trap
- 20 keV electrons up to 10 A, 575 A/cm² Current Density
- Any species, switch between species in 1 sec

Figure 4. (A) A schematic of the EBIS course, (B) The electric potential along the axis of the source.

EBIS Beams Run to Date

D, 3 He²⁺, 4 He1^{+,2+}, Li³⁺, C⁵⁺, O⁷⁺, Ne⁵⁺, Al⁵⁺, Si¹¹⁺, Ar¹¹⁺, Ca¹⁴⁺, Ti¹⁸⁺, Fe²⁰⁺, Cu¹⁺, Kr¹⁸⁺, Xe²⁷⁺, Ta³⁸⁺, Au³²⁺, Pb³⁴⁺, U^{39+} . Capable of ³He \Rightarrow ³He⁺⁺ at nearly 100%

 3 He Polarization

- **EBIS** has done much of the work for us!
- Need polarized 3 He; pure sample for injection
- Revisit MEOP technique³ with modern lasers

Metastability Exchange Optical Pumping

- Mature technique: polarized targets, medical imaging⁴
- Laser technological advances give 10 W @ 1083 nm easily
- Polarize at ≈ 1 torr, ≈ 30 G or higher
- Pure 3 He sample, faster than SEOP

 3 Colegrove et al, Phys. Rev. 132 (1963).

 4 Kauczor et al, JMRI, 7 (1997).

MEOP ³[He Polarization](#page-14-0)

MEOP Mechanism

Depolarization Contributions

- Wall Bounces
	- 3 mm long, 0.1mm diameter leak: 1 torr to 10^{-7} torr
	- 1m long, 2mm diameter tube: $\approx 10^6$ bounces, ≈ 1 msec
	- Negligible depolarization with glass walls
- Magnetic field gradients from EBIS stray field
	- Hinder Polarization
	- Depolarization During Transport to EBIS
- Small Contributions During Ionization:
	- Charge Exchange: 3 He⁺+ 3 He⁺⁺ \rightarrow 3 He⁺⁺+ 3 He⁺
	- Recombination: $e^- + {}^3\text{He}^{++} \rightarrow {}^3\text{He}^+$
	- Spin Exchange from Beam

Depolarization Contributions

- Wall Bounces
	- 3 mm long, 0.1mm diameter leak: 1 torr to 10^{-7} torr
	- 1m long, 2mm diameter tube: $\approx 10^6$ bounces, ≈ 1 msec
	- Negligible depolarization with glass walls
- Magnetic field gradients from EBIS stray field
	- Hinder Polarization
	- Depolarization During Transport to EBIS
- Small Contributions During Ionization:
	- Charge Exchange: 3 He⁺+ 3 He⁺⁺ \rightarrow 3 He⁺⁺+ 3 He⁺
	- Recombination: $e^- + {}^3\text{He}^{++} \rightarrow {}^3\text{He}^+$
	- Spin Exchange from Beam

Depolarization Contributions

- Wall Bounces
	- 3 mm long, 0.1mm diameter leak: 1 torr to 10^{-7} torr
	- 1m long, 2mm diameter tube: $\approx 10^6$ bounces, ≈ 1 msec
	- Negligible depolarization with glass walls
- Magnetic field gradients from EBIS stray field
	- Hinder Polarization
	- Depolarization During Transport to EBIS
- Small Contributions During Ionization:
	- Charge Exchange: 3 He⁺+ 3 He⁺⁺ \rightarrow 3 He⁺⁺+ 3 He⁺
	- Recombination: $e^- + ^3{\rm He}^{++} \rightarrow ~^3{\rm He}^+$
	- Spin Exchange from Beam

Depolarization from Field Gradients

From Schearer⁵, we have:

$$
\frac{1}{\tau} = \frac{2}{3} \frac{|\Delta B_t|^2}{|B_l|^2} \langle v^2 \rangle \frac{\tau_c}{\omega_0^2 \tau_c^2 + 1}
$$

- Transverse gradient ΔB_t
- Holding field B_l
- Velocity v
- Average time between collisions τ_c
- Resonant frequency ω_0

We can map regions of stray field which should be problematic.

⁵Schearer, Walters, Phys. Rev. 139(5A) (1965).

PSTP, Sept 16, 2015 **J. Maxwell 13**

PSTP, Sept 16, 2015 **J. Maxwell 14**

PSTP, Sept 16, 2015 **J. Maxwell 14**

Two Source Design Options: Low or High Field?

- Two design possibilities present themselves:
	- Polarize at 30 G in EBIS stray field using field correction, then transfer into EBIS
	- Polarize in EBIS, or nearby, extending field region

Outline

1 [Source Design](#page-5-0) [Electron Beam Ion Source](#page-9-0) MEOP ³[He Polarization](#page-13-0) [Depolarization Effects](#page-15-0) **2** [Polarization and Relaxation Tests](#page-24-0) [MIT Lab](#page-25-0) [Stray Field Tests](#page-30-0) [High Field Tests](#page-34-0) **[Next Steps](#page-45-0)**

MIT Test Lab

- Magnet, vacuum, laser setup
- 70% polarization achieved
- Allows flow of polarized gas between cells
- Observe polarization diffusion through region of depolarizing gradients⁶
- Test bed for polarization, transfer and data acquisition
- Discharge and optical probe polarimeter development⁷

⁶ Maxwell, Epstein, Milner, NIM A (777), 2015. 7 Maxwell, Epstein, Milner, NIM A (764), 2014.

Transferring between B Fields via Diffusion

Relaxation Time Map, Helmholtz and Solenoid

Polarization Transfer via Diffusion

Polarization measured via discharge light in each cell

Relaxation in Both Cells

Fits roughly match relaxation & diffusion model of 2 cells, line

BNL Test Polarizer

- Polarizer on movable stand
- EBIS 5 T spare solenoid
- Allows polarization at any location in the stray field
- Initial polarization tests with NO field correction
- 30 G solenoid allows small increase of B_l
- Tested at two locations on axis of solenoid, one off axis

Stray Field Results

- Spare solenoid at 1 T
- Polarizing sealed cell, which attained 50% in 30 G solenoid
- At location of interest in stray field:
	- Only stray field, 17% with \sim 0.5 A pump
	- Only stray field, 28% with \sim 10 A pump
	- 6 second relaxation, matches calculation nicely
	- Adding 30 G holding field improves as expected

Low Field Conclusions Thus Far

- Transfer of polarized gas at 1 torr matches calculations
- Polarization and relaxation in the EBIS stray field with no magnetic shielding also agree
- Trusting these calculations, a path into EBIS through the stray field exists in which the path averaged relaxation time is around 0.7 sec (0.01 torr)

Low Field Source with MEOP and EBIS is feasible

- But not necessarily easy or optimal
- Battle must be fought with the stray field both to polarize and to transfer, compromising the achieved polarization, however little

Low Field Conclusions Thus Far

- Transfer of polarized gas at 1 torr matches calculations
- Polarization and relaxation in the EBIS stray field with no magnetic shielding also agree
- Trusting these calculations, a path into EBIS through the stray field exists in which the path averaged relaxation time is around 0.7 sec (0.01 torr)

Low Field Source with MEOP and EBIS is feasible

- But not necessarily easy or optimal
- Battle must be fought with the stray field both to polarize and to transfer, compromising the achieved polarization, however little

MEOP at High Magnetic Field

- European group (Paris, Krakow) researching high pressure MEOP, medical applications
- Pioneering achievements in pumping efficiency at high pressures leveraging fields above $1T$ in last ten years
- M. Abboud, Europhys. Lett. 68, 2004
	- 1.5 T; 0.5, 2 W OP laser
	- 1.3, 8, 32, 67 mbar
	- Circles and stars are at 1.5 T, others at low field

MEOP at High Magnetic Field

- European group (Paris, Krakow) researching high pressure MEOP, medical applications
- Pioneering achievements in pumping efficiency at high pressures leveraging fields above $1T$ in last ten years
- A. Nikiel *et al.* Eur. Phys. J. D. 67, 2013
	- 4.7 T, 0.5 W OP laser
	- 1.3, 32, 67, 96, 128, 267 mbar
	- Noted trouble with RF for 1 torr cell

BNL High Field Tests

- EBIS spare solenoid at 1, 2, 3, and 4 T
- Low field polarimetry technique not effective above 10 mT
- High-field polarimetry with low power probe laser
	- AM on discharge for lock-in detection
- Sealed cells at 1 torr with two cell geometries
	- 5 cm OD, 5 cm long
	- 3 cm OD, 10 cm long

Optical Probe Polarimetry

- High or low field, no calibration required
	- Sweep low power probe laser through two 2^3 S -2^3 P transitions to directly probe states $8,9$

PSTP, Sept 16, 2015 **J. Maxwell 26**

Optical Probe Polarimetry

- High or low field, no calibration required
	- Sweep low power probe laser through two 2^3 S -2^3 P transitions to directly probe states $8,9$

PSTP, Sept 16, 2015 **J. Maxwell 26**

Measuring Optical Pumping

Measuring Optical Pumping

Probe Laser Absorption Peaks at Zero and High Polarization

High Field Polarization Results

Error set at 10% while measurement is investigated

Thoughts on Probe Measurement Error

- Intense probe can cause over-estimation of polarization
	- Talbot: as much as 5% at M=0% and 1% at M=10%

High Field Conclusions Thus Far

- First results for MEOP at 3, 4 T and 1 torr, to near 90%
	- With discharge off, $T_1 = 2.7$ hours
- Not only is this possible but it's easy!
	- Cell which we struggled to get to 70% at 30 G reach over 80% at high field
	- Field uniformity a given at high field

High polarizations from MEOP over 1 T

- At high field, OP and ME both still work
- Zeeman splitting reduces electron-nucleus spin coupling for polarization, but also inhibits relaxation channels (such as 668 nm line used for low field measurement)
- Transition split allows pumping just one state with laser

High Field Conclusions Thus Far

- First results for MEOP at 3, 4 T and 1 torr, to near 90%
	- With discharge off, $T_1 = 2.7$ hours
- Not only is this possible but it's easy!
	- Cell which we struggled to get to 70% at 30 G reach over 80% at high field
	- Field uniformity a given at high field

High polarizations from MEOP over 1 T

- At high field, OP and ME both still work
- Zeeman splitting reduces electron-nucleus spin coupling for polarization, but also inhibits relaxation channels (such as 668 nm line used for low field measurement)
- Transition split allows pumping just one state with laser

Outline

1 [Source Design](#page-5-0) [Electron Beam Ion Source](#page-9-0) MEOP ³[He Polarization](#page-13-0) [Depolarization Effects](#page-15-0) 2 [Polarization and Relaxation Tests](#page-24-0) [MIT Lab](#page-25-0) [Stray Field Tests](#page-30-0) [High Field Tests](#page-34-0)

Looking forward

- To corroborate probe polarimeter results, NMR system has been built, under initial tests
- We can polarize near EBIS operating fields, avoiding the transfer through depolarizing gradients
	- High field source design offers best chance of success
- High field source is under initial design process by BNL collider and accelerator team
- Preliminary plan for magnet construction, spare solenoid reinforcement, low energy polarimetry and test
	- Estimated 3-4 years until test source operational and swap with EBIS can be performed

Looking forward

- To corroborate probe polarimeter results, NMR system has been built, under initial tests
- We can polarize near EBIS operating fields, avoiding the transfer through depolarizing gradients
	- High field source design offers best chance of success
- High field source is under initial design process by BNL collider and accelerator team
- Preliminary plan for magnet construction, spare solenoid reinforcement, low energy polarimetry and test
	- Estimated 3-4 years until test source operational and swap with EBIS can be performed

High Field Source Design: EBIS Upgrade

- New solenoid-injector section will improve EBIS operation with all gases, allow polarized 3 He⁺⁺
- Lengthened ion trap brings increased heavy ion yield
- Test can be built and tested without affecting EBIS operation: goal $> 80\%$ polarization 3 He⁺⁺ beam

Polarized ³He Source for JLab MEIC?

- Two EIC candidates, eRHIC and MEIC
- ILab does not have FBIS
- Revisit Rice source¹⁰ with modern techniques

¹⁰Baker, PRL 20, 14 (1968)

BNL–MIT Pol He3 Source Collaboration:

- Brookhaven National Laboratory
	- J. Alessi, E. Beebe, J. Farrell, A. Pikin, J. Ritter, A. Zelenski
- MIT Laboratory for Nuclear Science
	- C. Epstein, J. Maxwell, R. Milner
	- Bates technical support

We gratefully acknowledge the advice of

• P.J. Nacher, G. Collier

Work supported by

- DOE Office of Nuclear Physics, R&D for Next Generation Nuclear Physics Accelerator Facilities
- MIT Department of Physics

Thanks for your attention!

Maintaining Polarization in a Circular Collider

- Spinor precesses as bent in B field
- Depolarizing resonances
	- Spin precession frequency $=$ frequency of perturbing B field
	- Imperfection: $\nu_s = G\gamma = n$
	- Intrinsic: $\nu_s = G\gamma = P n + \nu_u$
	- Anomalous g -factor G
	- Resonances for p in RHIC 11 \rightarrow
- Siberian Snakes to the rescue
	- Rotate spin 180◦ , allow the wobble to unkink itself
	- Partial snakes can be used for some imperfections

¹¹Bai, Courant et al., BNL-96726-2012-CP, 2012.

Maintaining Polarization in a Circular Collider

- Spinor precesses as bent in B field
- Depolarizing resonances
	- Spin precession frequency $=$ frequency of perturbing B field
	- Imperfection: $\nu_s = G\gamma = n$
	- Intrinsic: $\nu_s = G\gamma = P n + \nu_u$
	- Anomalous q -factor G
	- Resonances for p in $RHIC^{11}$
- Siberian Snakes to the rescue
	- Rotate spin 180°, allow the wobble to unkink itself
	- Partial snakes can be used for some imperfections

¹¹Bai, Courant et al., BNL-96726-2012-CP, 2012.

RHIC Spin Manipulation

Transfer Path Relaxation Studies

- Investigating possible paths into EBIS with solenoid field map, calculating relaxation time at each point
- Algorithm compromises between $_{2500}$ relaxation time and transfer length to pick next step in path
- Average inverse relaxation times to qualify path
- Two transfer lines to be made for upcoming test
	- "Best" case, avoiding depolarization
	- Real case, following EBIS feed-throughs (Color scale in seconds)

Constraints on Path into EBIS

Constraints on Path into EBIS

Constraints on Path into EBIS

Test of Polarization Diffusion Measurement

$$
\begin{pmatrix}\n\dot{P}_p(t) \\
\dot{P}_t(t)\n\end{pmatrix} = \begin{pmatrix}\n-\left(\frac{1}{\tau_p} + \frac{N_t}{N} \frac{1}{t_{\text{ex}}}\right) & \frac{N_t}{N} \frac{1}{t_{\text{ex}}}\n\\ \frac{N_p}{N} \frac{1}{t_{\text{ex}}} & -\left(\frac{1}{\tau_t} + \frac{N_p}{N} \frac{1}{t_{\text{ex}}}\right)\n\end{pmatrix} \begin{pmatrix}\nP_p(t) \\
P_t(t)\n\end{pmatrix}
$$

- 5 variables describe system (initial pols, decays, transfer)
- Solution is sum of two exponentials
- Relate to 4 fit parameters of measured relaxation curve

$$
P_p(t) = a_s e^{-t/\tau_s} + a_l e^{-t/\tau_l}
$$