PSTP 2015

Polarized Sources, Targets and Polarimetry

Outline:

- 1. Goals and motivation,
- 2. Few-nucleon system dynamics,
- 3. Experiments with polarized deuteron beams,
- 4. Plans for ³He polarized target at CCB.

Applications of Polarized Deuteron Beams for Studies of Few-Nucleon Dynamics in d-p Breakup

> Izabela Ciepał Institute of Nuclear Physics PAS

intermediate energies

50-200 MeV/A

2N, 3N, 4N

Motivations: studies of few-nucleon system dynamics

Motivations: studies of few-nucleon system dynamics

Motivations: studies of few-nucleon system dynamics

Discovery of $\pi\pi$ **3NF in 1998**

- 3N system is *non-trivial* as compared to NN ones and probably reacher in dynamics,
- The nuclear potentials tested in those simple systems can be used in more complicated ones,
- To learn about nuclear interaction one needs to have:
- ³⁰ ✓ Complete set of the observables

 (spin observables are crucial !) as possible
 ✓ Wide Angular Range
 ✓ High accuracy
 5

N-N potentials Modern (realistic) phenomenological (+ meson exchange) N-N potentials:

2NF input:
CD Bonn
Argonne V18
Nijmegen I, II

Comparison with experimental np&pp database (3 500) gives: χ^2 /data ~ 1

N-N potentials

Modern (realistic) phenomenological (+ meson exchange) N-N potentials:

Modified version of CD-Bonn potential (coupled-channel approach):

CD Bonn + Δ

7

N-N potentials

Modern (realistic) phenomenological (+ meson exchange) N-N potentials:

Chiral perturbation theory (ChPT) E. Epelbaum *et al.* :

- ★ non-perturbative **QCD**
- ★ a coupling of pions and nucleons in EFT
- **★** self-consistent
- **★** 1PE, 2PE
- ★ LEC's contact terms
- works only @ relatively low energies

OBSERVABLES: Faddeev equations can be solved exactly!

Phenomenological 3N forces

2NF input:

- × CD Bonn
- **×** Argonne V18
- × Nijmegen I, II

×

3NF input:

- **×** Tucson-Melbourne TM99
- * Urbana IX

.

X

Phenomenological 3N forces

Fujita-Miyazawa, Tucson-Melbourne, Urbana IX, Illinois, ...

3NF models

- **×** Virtual Δ -isobar mediates the 3NF
- Self-consistent model which generates Fujita-Miyazawa 3NF, π-ring type 3NF, πρ, ρρ exchanges
 - ChPT: 3NF effects appear at N2LO and higher orders 3NF<<2NF
 - accurate 2NF @ N4LO 3NF still is a challenge

Experimental challenge!

Experimental tools: scattering of dp system

Breakup: $N + d \rightarrow N + N + N$

Y deuteron-nucleon breakup reaction is best suited to study 3N system dynamics • **observables:** $d\sigma/d\Omega$, A_i , A_{ii} , K_{ii} , C_{ii} 100 х arclength variable S 80 ⁶⁰ ⁶⁰ ⁴⁰ distance from kinematical **×** rich phase-space: a large 40 curve D amount of kinematical $\theta_1 = 9$, $\theta_2 = 11^\circ$ $\phi_{12} = 60^\circ$ configurations 40 60 100 80 **×** selectivity E_2 [MeV] ★ leading channel @ Five independent kinematical variables: inetrmediate energies $\theta_1, \theta_2, \phi_{12} = \phi_1 - \phi_2, E_1, E_2^{13}$

fppt.com

Experimental tools

AGOR cyclotron

KVI atomic-beamtype Polarised Ion Source (POLIS)

 hydrogen or deuterium atoms are aligned by selecting some of the atomic hyperfine sub-states

SALAD detector

- 140 Δ E-E telescopes
- 3-plane MWPC
- Angular range : θ = (12°, 38°), φ = (0°, 360°)

130 MeV SALAD		ΔP_z	ΔP_{zz}
7 states:		0.008	0.05
P _z ^{max}	P _{zz} max	Pz	P _{zz}
+1/3	-1	0.256	-0.757
+2/3	0	0.449	-0.118
-2/3	0	-0.444	0.050
0	+1	-0.068	0.556
0	-2	0.021	-1.340
+1/3	+1	0.198	0.672
0	0		

Beam polarization

Elastic scattering cross section:

Elastic scattering - analyzing powers

fppt.com

Elastic scattering - analyzing powers

E. Stephan et al., Phys. Rev. C 76 (2007) 057001 I. Ciepał et al. Phys. Rev. C 85 (2012) 017001

Elastic scattering & 3NF effects analyzing powers

Breakup – analyzing powers

$$\sigma_{p}(\varsigma,\phi_{1}) = \sigma_{0}(\varsigma) \cdot \left[1 + P_{z} \cdot \left(-\frac{3}{2}\sin\phi_{1}A_{x} + \frac{3}{2}\cos\phi_{1}A_{y}\right) + \frac{\varsigma = \left(\theta_{1},\theta_{2},\phi_{12},S\right)}{P_{zz} \cdot \left(-\sin\phi_{1}\cos\phi_{1}A_{xy}\right) + P_{zz} \cdot \left(\frac{1}{2}\sin^{2}\phi_{1}A_{xx} + \frac{1}{2}\cos^{2}\phi_{1}A_{yy}\right)\right]$$

Parity restriction check

even observables: A_y , A_{xx} , A_{yy} odd observables: A_x , A_{xy}

$$\varsigma' = (\theta_1, \theta_2, S)$$
$$A_x(\varsigma', \phi_{12}) = -A_x(\varsigma', -\phi_{12})$$

→ control of the data consistency - agreement with zero

Breakup – analyzing powers @ 130 MeV

Analyzing powers - independent variables

Jacobi momenta – defined as relative momentum of 2 particles
in the 2-body subsystem of the 2 breakup protons: $p(a)+d(b) \rightarrow p(2)+p(3)+n(1)$

modified to *intuitive* energy variables

$$s_{pp} = (p_{p1} + p_{p2})^{2}$$

$$s_{pn} = (p_{p1} + p_{n})^{2}$$

$$t_{n} = (p_{d} / 2 - p_{n})^{2}$$

$$t_{p} = (p_{p} - p_{p2})^{2}$$

p1-23

$$E_{rel}^{pp} = \sqrt{s_{pp}} - 2m_p$$
$$E_{rel}^{pn} = \sqrt{s_{pn}} - m_p - m$$
$$E_{tr}^{p} = \frac{-t_p}{2m_p}$$
$$E_{tr}^{n} = \frac{-t_n}{2m}$$

-n

FSI:

$$E_{rel}^{pp} = 0$$

$$E_{rel}^{pn} = 0$$
QFS:

$$E_{tr}^{p} = 0$$

$$E_{tr}^{n} = 0$$

→ **p**2-3

Analyzing powers - independent variables Coulomb force effects - 1D spectra

- A_i (AV18+UIX+C) -A_i (AV18+UIX)
- A_i (data) A_i (AV18+UIX)
- $O A_i$ (data) A_i (AV18+UIX+C)

STATISTICAL ERRORS

including the Coulomb force worsens the data description

Analyzing powers - independent variables Coulomb force effects – 2D spectra

Breakup – analyzing powers @ 100 MeV

E. Stephan et al., Eur. Phys. J. A (2013) 49: 36

Cyclotron Center Bronowice Kraków, Poland

Cyclotron PROTEUS (IBA)

- proton beam energy: 70 230 MeV
- energy resolution: $\Delta E/E < 0.7\%$
- intensity: 500 0.1 nA
 (3.3 x 10¹² 6.6 x 10⁸ p/s)

Experimental program: studies of few-nucleon systems physics

4N studies with ³He polarized target

$$V = \sum V_{NN} + V_{3N} + V_{4N}$$

→ the isolation of ∆-isobar effects possible within the couple-channel calculations

fppt.com

A. Deltuva, A. C. Fonseca, P. U. Sauer, Phys. Lett. B 660 , 471 (2008) Four-nucleon system with Δ -isobar excitation.

4N studies with ³He polarized target

calculations by A. Deltuva, private communication

$$^{3}\text{He+p} \rightarrow \text{p+}^{3}\text{He}$$

30

Experimental setup – GEANT4 simulations

³He polarized target system - SEOP

Experimental setup - plans

Requirements:

- 1) low-energy detectors (low treshold) + PID ($\Delta E E$),
- 2) momentum and vertex reconstruction (particle trajectory),
- 3) acceptance as large as possible.

Mini Drift Chambers

- trajectory

ΔΕ

KRATTA - energy J. Łukasik *et al.* NIM A 709 (2013) 120

l be constructed

will be constructed

already exist³³

Summary

Systematic, precise set of analyzing powers data at 130 and 100 MeV was presented:

> solid basis for comparison of the approaches which predict dynamical effects in the 3N system

× In the sector of cross sections the data reveal:

tensor analyzing powers:

Coulomb effects visible only at 100 MeV, local problems with theoretical description

vector analyzing powers:

very low sensitivity to 3NF and Coulomb

Experimental studies of p+³He are planned at CCB with the use of the proton beam at energies of 70 - 230 MeV: elastic scattering and breakup reactions.

Near future: test measurements with polarized ³He and the new target cell.
34

THANK YOU FOR YOUR ATTENTION !

Analyzing powers - independent variables 3NF effects – 1D spectra

Analyzing powers - independent variables 3NF effects – 2D spectra

the largest 3NF effects in breakup observed

