THE PRINCIPLES OF DNP WITH STRONG  $\mu$ -WAVE FIELDS

Tom Wenckebach

PAUL SCHERRER INSTITUT

## SOLID EFFECT



### THERMAL MIXING/CROSS EFFECT









SPECTRAL DIFFUSION











#### VERY STRONG $\mu$ -WAVE FIELD

 $\omega_{1S} \approx \omega_{0I}$ 



# VERY STRONG $\mu$ -WAVE FIELD

 $\omega_{1\mathrm{S}} \approx \omega_{0\mathrm{I}}$ 

transition rate
$$W^{\pm} \propto \left|\frac{1}{4}A_{zx}\right|^2 \sin^2 \theta_{A,B}$$
transferred polarization $P_{\tilde{z}}^0 = P^0 \cos \theta_{A,B}$ 

fast transfer of low polarization

rotate  $P^0$  ?



## **NOVEL** orient $\mathbf{P}^0 \parallel y$ -axis orient $\omega_{1S} \parallel y$ -axis match $\omega_{1S} = \omega_{0I}$ full $P^0$ , max rate







### **ISE (Integrated Solid Effect)**

sweep  $\omega_m$  or  $B_0$ adiabatic sweep:  $P^0 \parallel$  effective field

full  $P^0$ , max rate

**NOTE:** coherent transfer = non-linear



