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MONOLITHIC DETECTORS : definition
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High energy particle
yields 80 e-/h+ pairs/um in Si

electronics chip
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Integrate readout with the silicon sensor

» Advantages in integration, cost, potentially strong impact on power consumption
and material budget

» intwo experiments: DEPFET in Belle-ll and MAPS in STAR
= not yet in LHC, adopted for ALICE ITS upgrade, considered for CLIC/ILC



Traditional Monolithic Active Pixel Sensors

/ionizing particle u CommeI‘CIa| CMOS '[EChnO|OgIeS
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= No reverse substrate bias:

gion

"= more sensitive to displacement damage
= Only one type of transistor in pixel (twin well)
= Rolling shutter readout

cfr. M. Winter et al

= Signal charge collection mainly by diffusion

= very simple in-pixel circuit (3 or 4 transistors)

= pixel size: 20 x 20 ym? or lower

Example: three transistor cell = serial, row-by-row, not very fast
RESET o
o A Main challenge for improvement: need combination of;
= tolerance to displacement damage (depletion)
COLUMN . . . . . ..
BUS = integration of complex circuitry without efficiency loss
" commercial technology )
D) .



MAPS SENSOR CHIP in STAR experiment

Data taking March-June 2014

QIS —

o % B
IR i |
e P

e -

% .Y .i’v;‘l
——\. /

- [ y
- ! ﬂ 1, /, | ;
R g
.- ’

v

S & //
First MAPS system in HEP

MIMOSA28 (ULTIMATE) chip
IPHC Strasbourg :

=  Twin well 0.35 ym CMOS
= High resistivity (> 400 Qcm) 15 um epi
B = Readouttime 190 s

MIMOSA28
(ULTIMATE)

TID 150 krad
NIEL few 10%2 1 MeV n,,/cm?




THE ALICE ITS UPGRADE PROJECT

Replace the inner tracking system with an entirely new detector in 2017-2018
Improve ALICE-TDR-17/CERN-LHCC-2013-024

» impact parameter resolution by a factor 3inrg, 51in z

= standalone tracking resolution and p; resolution at low p+
New Layout 7 layers, 12.5 Gpixels in ~ 10 m? 2

" XIX,0.3% e —— ..

= Pixel size: O(30x30) pm?
= Inner layer radius 22 mm

Parameters sean pipe
=  Chip: 15 mm x 30 mm x 50 ym :
= Spatial resolution ~5pum
= Power density < 100 mW/cm?
* [ntegration time <30 us

= Max required radiation tolerance : TID 700 krad & NIEL10'® 1 MeV ng,/cm?

Thin sensors, high granularity, large area, moderate radiation

C\E\/RDI => Monolithic silicon pixel sensors 5
ALICE




ALICE MONOLITHIC ACTIVE PIXEL SENSOR

MWELL MMOS FMOS

TeChnology Choice CIODE TRANSISTOR TRANSISTOR
TJ 180 nm CMOS imaging process
= Deep Pwell

_—

= Gate oxide <4 nm good for TID
= 6 metal layers
= 15...40 ym 1...8 kQcm epitaxial layer et oy

= Epinot fully depleted unless ...
(AC coupling, high fields, Dulinski, Kachel

8?‘?”3 development

= Since end 2011, 4 MPWs and 3 engineering runs, 4" submitted now.

= Two internal pixel chip architectures: ALPIDE and MISTRAL

= Small scale prototypes for sensor optimization and radiation tolerance verification

Full scale prototypes recently fabricated: lab and beam tests ongoing also on:
* irradiated
= thinned (50 ym) devices
C\E/RW » thinned devices mounted on flex

ALICE



NOTE: WAFER SCALE INTEGRATION by STITCHING

Courtesy: N. quervini § R. Twrchetta, Rutherford Appleton Laboratory
RAL group designed manyy sensors tn this technologyy

‘ For the moment stitching not exploited for the ALICE ITS upgraae



RADIATION TOLERANCE
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MISTRAL

» Rolling shutter: evolution of STAR like development
» FSBB/MISTRAL functional
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= Jab tests promising, ENC 15-20e g
» preparing for test beam gis et 8 ‘
= Beam test results from smaller scale prototype: FSBB/MISTRAL
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In-pixel amplifier/comparator ~

rolling shutter

ALPIDE

Hit driven readout (priority encoder)
Full scale prototype for the ALICE ITS:  chip size: 3 x 1.53 cm?

1.53 cm

~ 500 000 pixels of 28 x 28 ym?

BRI mt"muiu val‘ '
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40nW (-5mW/cm?) allows architectures other than

10



ALPIDE: priority encoder
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ixel under %°Fe

(result from small scale prototype)
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THINNED ALPIDE SOLDERED ON FLEX

Noise Map
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= Thinning and soldering do not affect the
performance of the chip

= Band structure reflects different design
options in the prototype chip

» Noise << Threshold spread ~ 18 e



ALPIDE test beam results

= 5-7GeV pions at CERN PS

= Telescope of 7 planes

= Zero substrate bias

= Sector 2 (diode reset and 2 um spacing)

Noise occupancy per event per pixel
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99% efficiency at fake hit rate of 10~ achievable (only 20 pixels masked)

~ 5.5 ym spatial resolution (including tracking error of ~ 3 um)
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SENSOR OPTIMIZATION: IMPORTANCE OF Q/C
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Q/C is THE figure of merit for a sensor

If thermal noise from the
input transistor dominant,
for a given S/N and

bandwidth:

Q —m
o~ H |

m = 2 for weak inversion

P = analog power

Q = collected signal charge
C = input capacitance

Changes with different design options in the sensor

Has a direct system impact, more margin with back bias

15



DETECTION EFFICIENCY AS A FUNCTION OF HIT LOCATION WITHIN PIXEL
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CLUSTER SIZE AS A FUNCTION OF HIT LOCATION WITHIN PIXEL
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FULL DEPLETION FOR RADIATION HARDNESS

HVCMOS
NMOS in Pwell PMOS in Nwell PMOS  NMOS

=

Depleticn 2one

. B

P-substrate

|. Peric

All circuitry in the collection electrode
= Can be done in any CMOS technology with deep Nwell (triple well)
= Apply high reverse substrate voltage (eg -60 V)

= Well protects transistors from HV

= Charge is collected by drift, good for radiation tolerance

* Risk of coupling circuit signals into input
» In-pixel circuit simple in small collection electrode for low C by
» ‘rolling shutter’ readout as in MAPS,
= special architectures (eg LePIX), or
D)) ‘ = use it as smart detector in hybrid solution (cfr ATLAS, I. Peric)+¢



CAPACITIVELY COUPLED PIXEL DETECTOR (CCPD)

Pixel

»

l. Peric

diyo 1nopeay

<«

Sensor implemented as HYCMOS
Advantage:

Charge to voltage amplification on the
sensor chip

Typical voltage signal ~100mV

Easier capacitive transmission

Can be thinned without signal loss

Signal charge

losuas paja|dap-Ajny 1o -apoIp Lews

<

Signal >30mV for very thin sensors
= Early example next page
‘ = Now versions with FEI4 (eg CPPM GF) 19



EFFICIENCY and RADIATION TOLERANCE OF CCPD

1) CCPDv1: SNR after neutron irradiation at Jozef Stefan Institute 10" n,/cm? ~20 (5C, -55V bias)
(Signal ~ 1180e) (measured 2014) (Unirradiated chip @ -50V bias: 1600e)

2) CCPDv2: works after 862 Mrad (x-ray irradiation CERN) (noise at room temperature 150e)

3) CCPDv1: sub pixel encoding works measured for one pixel — still needs optimization
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Similar developments: SLAC/UCSC (0.35 um) J. Segal et al.



Deep N-band as collection electrode
Sensor limitations

VSN OP ~0.2V
CSA

n-band (T3)

S/N benefit from higher drift signal component Better shielding from circuit, but large C

— Increase depletion width Dario G LN
— Increase BV (HR wafer were not available) ario Lnani

Reasonable to assume surface twin-well junction determines BV
—  Limited silicon simulation data available...

Intrinsic cap limitations from inner junction
— CS5Ais DC-coupled...



FULL DEPLETION WITH JUNCTION ON THE BACK

Pwell Collection Electrode

Psubstrate

side s

= Need full depletion

= Double-sided process for junction termination,

not really compatible with standard foundries

il C. Kenney, S. Parker (U. of Hawaii),
ALICE W. Snoeys, J. Plummer (Stanford U) 1992

Only a few V on the Nwell diverts the
H“!" “ll” !”!!l"!‘ ‘ flow lines to the collection electrode
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OTHER WAYS TO OBTAIN JUNCTION ON THE BACK

Finished CMOS water on Water thinmed to 50 m Thinned water with Chip wmovnted in
high resistivity anti-reflective coating camera

Example: post CMOS wafer thinning § back-side processing

S. Lauxterman CPIXT4

mage (raw data)

= Several other developments (eg T. Obermann(Bonn) with ESPROYS)

= Also epitaxial layer and substrate of opposite type (R. Turchetta)
= In general:
CE/RW = \Waitch die edge/junction termination

22

= Radiation tolerance to be investigated/confirmed



Silicon On Insulator (SOI) Y. Arai et al.

- Impressive development

— : - . Now looking at double SOI for radiation
I tolerance and better back gating properties

- Bias on middle silicon can be used to
compensate radiation induced threshold shifts
(to 10 Mrad)

New people in the collaboration:

Middle Si

N. Teranishi, S. Kawahito, |. Kurachi

Metal 1 . L
=i Other presentation on SOI: T. Kishishita,
‘\\ gt CPIX14 (rad tol transistors ok, leakage current
< Contact issue)
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CONCLUSIONS and OUTLOOK

Radiation tolerant particle sensors can now be produced in CMOS
technologies at lower cost than traditional sensors

Analog active sensor and modified digital readout chip
cfr ATLAS HV/HR CMOS collaboration
maintain high Q/C, minimize cross-talk and increase density
can choose a different CMOS technology for both
cheap bonding or gluing in combination with capacitive coupling
Rad tolerant to 10*> n,,/cm?, more development needed

Integrate the full readout into the sensor:
further advantages in terms of assembly, production cost and Q/C
adopted for ALICE ITS upgrade with full-scale prototypes in test:
MISTRAL.: rolling shutter, more conservative and mature
ALPIDE: front-end with data driven readout, more aggressive
Perspective for 20-30 mW/cm?and a few ps integration time

Beam tests: good position resolution and detection efficiency
Tests on irradiated devices ongoing, expect to meet requirements

CE/RW
.



CONCLUSIONS and OUTLOOK

Full depletion for higher radiation tolerance

= Junction on the front: in principle possible, but requires high circuit
well voltage and ac coupling. Easier with simple circuit.

- Circuit in collection electrode: radiation tolerance demonstrated to ~
10% ng,/cm?, but need simple circuit to maintain reasonable C.

- Junction on the back side: need full depletion, but double sided
processing incompatible with standard foundries. Some processing

alternatives become available, but radiation tolerance still needs
verification

Power consumption
- ALPIDE prototype reaches about 100 mV divided over a few pixels

- ~ 300 mV on a single pixel would practically eliminate analog power:
it would be sufficient to “turn on” a transistor

-  Need more work on architectures to reduce digital power
- Power for transmission of data off-chip may well become dominant

206



THANK YOU

and also to ALICE ITS and CERN collegues

and to people providing material and suggestions for this presentation

More on ESSCIRC/ESSDERC later

Presentations in Bonn CPIX14.org

walter.snoeys@cern.ch, PH-ESE-ME, CERN
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