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MONOLITHIC DETECTORS : definition 
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Readout 
circuit  

Collection 
electrode  

Sensitive layer  

High energy particle  
yields 80 e-/h+ pairs/μm in Si 

Integrate readout with the silicon sensor 

 Advantages in integration, cost, potentially strong impact on power consumption 

and material budget 

 in two experiments: DEPFET in Belle-II and MAPS in STAR   

 not yet in LHC, adopted for ALICE ITS upgrade, considered for CLIC/ILC 



Traditional Monolithic Active Pixel Sensors 
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cfr. M. Winter et al 

RESET 

Example: three transistor cell 

COLUMN 
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 Commercial CMOS technologies 

 No reverse substrate bias: 

 Signal charge collection mainly by diffusion 

 more sensitive to displacement damage  

 Only one type of transistor in pixel (twin well) 

 Rolling shutter readout 

 very simple in-pixel circuit (3 or 4 transistors) 

 pixel size: 20 x 20 μm2 or lower 

 serial, row-by-row, not very fast 

 

 

 

Main challenge for improvement: need combination of:  

 tolerance to displacement damage (depletion) 

 integration of complex circuitry without efficiency loss  

 commercial technology 



MAPS SENSOR CHIP in STAR experiment 
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First MAPS system in HEP 

MIMOSA28 (ULTIMATE) chip  

IPHC Strasbourg : 

 Twin well 0.35 μm CMOS  

 High resistivity (> 400 Ωcm) 15 μm epi  

 Readout time 190 μs 

 TID 150 krad  

 NIEL few 1012 1 MeV neq/cm2 

 

 

MIMOSA28 

(ULTIMATE) 

Data taking March-June 2014 



THE ALICE ITS UPGRADE PROJECT 

5 

Replace the inner tracking system with an entirely new detector in 2017-2018 

Improve 

 impact parameter resolution by a factor 3 in rφ, 5 in z 

 standalone tracking resolution and pT resolution at low pT 

New Layout 7 layers, 12.5 Gpixels in ~ 10 m2 

 X/X0 0.3 %  

 Pixel size: O(30x30) μm2 

 Inner layer radius 22 mm 

Parameters 

 Chip:       15 mm x 30 mm x 50 μm 

 Spatial resolution     ~ 5 μm   

 Power density       < 100 mW/cm2  

 Integration time       < 30 μs 

 Max required radiation tolerance : TID 700 krad & NIEL1013 1 MeV neq/cm2 

 
 

ALICE-TDR-17/CERN-LHCC-2013-024 

Thin sensors, high granularity, large area, moderate radiation 

 Monolithic silicon pixel sensors 



ALICE MONOLITHIC ACTIVE PIXEL SENSOR 
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Technology choice 

TJ 180 nm CMOS imaging process 

 Deep Pwell  

 Gate oxide < 4 nm good for TID 

 6 metal layers 

 15…40 μm 1…8 kΩcm epitaxial layer 

 Epi not fully depleted unless … 

 (AC coupling, high fields, Dulinski, Kachel 

et al)  

  

 

 

 

 

 

Chip development 

 Since end 2011, 4 MPWs and 3 engineering runs, 4th submitted now.  

 Two internal pixel chip architectures: ALPIDE and MISTRAL 

 Small scale prototypes for sensor optimization and  radiation tolerance verification 

Full scale prototypes recently fabricated: lab and beam tests ongoing also on:  

 irradiated 

 thinned (50 μm) devices 

 thinned devices mounted on flex 



NOTE: WAFER SCALE INTEGRATION by STITCHING 

7 

Courtesy: N. Guerrini & R. Turchetta, Rutherford Appleton Laboratory 
 
RAL group designed many sensors in this technology  
 
For the moment stitching not exploited for the ALICE ITS upgrade 
  



RADIATION TOLERANCE  
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Example: SNR of seed pixel measured with MIMOSA-32 ter at the CERN-SPS  

at two operating temperatures, before and after irradiation  

with the combined load of 1 Mrad and 1013 1 MeV neq/cm2 



MISTRAL 
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FSBB/MISTRAL 

 Rolling shutter: evolution of STAR like development 

 FSBB/MISTRAL functional 

 lab tests promising, ENC 15-20e  

 preparing for test beam 

 Beam test results from smaller scale prototype: 

 

 

Efficiency above 99 % with fake hit rate below 10-5 achievable 



ALPIDE 
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 In-pixel amplifier/comparator ~ 40nW (~5mW/cm2) allows architectures other than 

rolling shutter 

 Hit driven readout (priority encoder) 

 Full scale prototype for the ALICE ITS:  chip size: 3 x 1.53 cm2 

  ~ 500 000 pixels of 28 x 28 μm2 

  

3 cm 
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ALPIDE: priority encoder 
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Periphery Digital Readout 
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ALPIDE pixel 
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11 µm 
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Priority 

encoder 

Pixel layout 

Analogue output of one pixel under 55Fe 

Shaping time ~ 2 μm 

~ 600 mV 

(result from small scale prototype) 



THINNED ALPIDE SOLDERED ON FLEX 

 Thinning and soldering do not affect the 

performance of the chip 

 Band structure reflects different design 

options in the prototype chip 

 Noise << Threshold spread ~ 18 e 



 ALPIDE test beam results 
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 5 – 7 GeV pions at CERN PS 

 Telescope of 7 planes 

 Zero substrate bias 

 Sector 2 (diode reset and 2 μm spacing)  

 99% efficiency at fake hit rate of 10-5 achievable (only 20 pixels masked) 

 ~ 5.5 μm spatial resolution (including tracking error of ~ 3 μm) 



Threshold in electrons
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SENSOR OPTIMIZATION: IMPORTANCE OF Q/C 
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If thermal noise from the 

input transistor dominant, 

for a given S/N and 

bandwidth: 

 

m = 2 for weak inversion 

P = analog power  

Q = collected signal charge 

C = input capacitance  

Q/C is THE figure of merit for a sensor 

 Changes with different design options in the sensor 

 Has a direct system impact, more margin with back bias 



DETECTION EFFICIENCY AS A FUNCTION OF HIT LOCATION WITHIN PIXEL 
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 eThreshold 15109  eThreshold 17188

 Better efficiency for lower threshold 

 Lower efficiency for higher threshold, 

start losing hits in the pixel corners 



CLUSTER SIZE AS A FUNCTION OF HIT LOCATION WITHIN PIXEL 
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 eThreshold 15109  eThreshold 17188

 Larger cluster size for lower threshold 

 Smaller cluster size for higher threshold, 

charge sharing starts in the corners 

Good telescope resolution needed for these 

plots 



FULL DEPLETION FOR RADIATION HARDNESS 
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All circuitry in the collection electrode 

 Can be done in any CMOS technology with deep Nwell (triple well) 

 Apply high reverse substrate voltage (eg -60 V) 

 Well protects transistors from HV 

 Charge is collected by drift, good for radiation tolerance 

 

 Risk of coupling circuit signals into input 

 In-pixel circuit simple in small collection electrode for low C by 

 ‘rolling shutter’ readout as in MAPS,  

 special architectures (eg LePIX), or  

 use it as smart detector in hybrid solution (cfr ATLAS, I. Peric) 

NMOS in Pwell 

Deep Nwell collection electrode 

Pwell 

PMOS in Nwell 

P-substrate 

I. Peric 



CAPACITIVELY COUPLED PIXEL DETECTOR (CCPD) 
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Pixel 

Signal charge 

Signal >30mV for very thin sensors 

Sensor implemented as HVCMOS 
Advantage:  
Charge to voltage amplification on the 

sensor chip 
Typical voltage signal ~100mV 

Easier capacitive transmission 
Can be thinned without signal loss 
 

I. Peric 

 Early example next page 

 Now versions with FEI4 (eg CPPM GF) 



EFFICIENCY and RADIATION TOLERANCE OF CCPD 

I. Peric, CPIX14 
 
 

CLICPIX: M. Benoit, CPIX14 
 
 

Similar developments: SLAC/UCSC (0.35 μm) J. Segal et al. 



Deep N-band as collection electrode 
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Better shielding from circuit, but large C 

Dario Gnani LBNL 



FULL DEPLETION WITH JUNCTION ON THE BACK 

22 

Psubstrate 

Pwell Collection Electrode 

Nwell with circuitry 

Back side N diffusion 

 Need full depletion 

 Double-sided process for junction termination, 

not really compatible with standard foundries Vnwell = 0 V 

Vnwell = 2 V C. Kenney, S. Parker (U. of Hawaii),   

W. Snoeys, J. Plummer (Stanford U) 1992 

Only a few V on the Nwell diverts the 

flow lines to the collection electrode  



OTHER WAYS TO OBTAIN JUNCTION ON THE BACK  
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 Several  other developments (eg T. Obermann(Bonn) with ESPROS) 

 Also epitaxial layer and substrate of opposite type (R. Turchetta) 

 In general: 

 Watch die edge/junction termination 

 Radiation tolerance to be investigated/confirmed 

Example: post CMOS wafer thinning &  back-side processing 
 
S. Lauxterman CPIX14 

Finished CMOS wafer on 
high resistivity 

Wafer thinned to 50 um Thinned wafer with 
anti-reflective coating 

Chip mounted in 
camera 

Image (raw data) 



Silicon On Insulator (SOI) Y. Arai et al. 
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 Impressive development 

 Now looking at double SOI for radiation 

tolerance and better back gating properties 

 Bias on middle silicon can be used to 

compensate radiation induced threshold shifts 

(to 10 Mrad) 

 New people in the collaboration:  

     N. Teranishi, S. Kawahito,  I. Kurachi 

 Other presentation on SOI: T. Kishishita, 

CPIX14 (rad tol transistors ok, leakage current 

issue) 

 



CONCLUSIONS and OUTLOOK 
 Radiation tolerant particle sensors can now be produced in CMOS 

technologies at lower cost than traditional sensors 

 Analog active sensor and modified digital readout chip  

 cfr ATLAS HV/HR CMOS collaboration  

 maintain high Q/C, minimize cross-talk and increase density 

 can choose a different CMOS technology for both 

 cheap bonding or gluing in combination with capacitive coupling 

 Rad tolerant to 1015 neq/cm2, more development needed 

 Integrate the full readout into the sensor: 

 further advantages in terms of assembly, production cost and Q/C 

 adopted for ALICE ITS upgrade with full-scale prototypes in test: 

 MISTRAL: rolling shutter, more conservative and mature 

 ALPIDE: front-end with data driven readout, more aggressive 

Perspective for 20-30 mW/cm2 and a few μs integration time 

 Beam tests: good position resolution and detection efficiency 

 Tests on irradiated devices ongoing, expect to meet requirements 

   

 

 



CONCLUSIONS and OUTLOOK 
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Full depletion for higher radiation tolerance 

 Junction on the front: in principle possible, but requires high circuit 

well voltage and ac coupling. Easier with simple circuit. 

 Circuit in collection electrode: radiation tolerance demonstrated to ~ 

1015 neq/cm2, but need simple circuit to maintain reasonable C. 

 Junction on the back side: need full depletion, but double sided 

processing incompatible with standard foundries. Some processing 

alternatives become available, but radiation tolerance still needs 

verification 

Power consumption 

 ALPIDE prototype reaches about 100 mV divided over a few pixels 

 ~ 300 mV on a single pixel would practically eliminate analog power: 

it would be sufficient to “turn on” a transistor 

 Need more work on architectures to reduce digital power  

 Power for transmission of data off-chip may well become dominant 

 

 

 

 

 



THANK YOU 
 

 

 

and also to ALICE ITS and CERN collegues 

  

and to people providing material and suggestions for this presentation 

 

 
More on ESSCIRC/ESSDERC later 

 

Presentations in Bonn CPIX14.org 
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