

ATLAS+CMS combined H boson mass measurement, search for offshell decays and for high-mass scalars

ICNFP 2015

August 24th, 2015

Pascal Vanlaer, Université Libre de Bruxelles on behalf of the ATLAS and CMS collaborations

Outline

1) Combined ATLAS+CMS measurement of H boson mass in the H->ZZ->4l and H->γγ channels

2) Search for offshell H boson decays

3) Search for additional high-mass scalars

H boson mass

- m_H is a free parameter of the Standard Model
- It is measured precisely by ATLAS and CMS in the H->ZZ->4l and H->γγ channels (1-2% mass resolution)
- Once m_H is known, all SM H boson properties are predicted (couplings, production cross sections, decay branching fractions,

Consistency tests of SM parameters

• Direct measurements vs. fits to EW precision observables

H->ZZ->4l channel

Analysis

• Two pairs of leptons (electrons or muons), isolated and prompt, of opposite sign and same flavor, selected down to low p_T (~5 GeV)

Requirements on di-lepton masses

Kinematic discriminants:

7 variables completely describe decay kinematics:

 m_{Z1} , m_{Z2} , 5 angles

 Probability distributions are built from matrix elements for various contributing processes (gg → 4l signal, gg → 4l total, qq → 4l etc.) e.g.

$$\mathscr{P}_{J^P} = \mathscr{P}_{J^P}^{\mathrm{kin}}(m_{Z_1}, m_{Z_2}, \vec{\Omega}|m_{4\ell}) \times \mathscr{P}_{\mathrm{sig}}^{\mathrm{mass}}(m_{4\ell}|m_H)$$

Discriminant = likelihood ratio e.g.

$$\mathscr{D}_{ ext{bkg}}^{ ext{kin}} = rac{\mathscr{T}_{0^+}^{ ext{kin}}}{\mathscr{T}_{0^+}^{ ext{kin}} + \mathscr{T}_{ ext{bkg}}^{ ext{kin}}}$$

Mass measurement

- **BDT discriminant** using LO matrix element discriminant, η and p_T of 4l-system
- FSR photon recovery
- Using Z-mass constrained kinematic
 fit on leading di-lepton mass with
 15% improvement in resolution

- 2D fit to (BDT, m₄₁) distribution to extract m_H
- 8% improvement in mass precision from using 2D fit

Mass measurement

- Kinematic discriminant
- 3D fit to distribution of m_{4l}, D^{kin}_{bkg} and per-event mass resolution D_m
 (8% expected gain in precision)

 $\mathcal{L}_{3D}^{m,\Gamma} \equiv \mathcal{L}_{3D}^{m,\Gamma}(m_{4\ell}, \mathcal{D}_{\mathrm{m}}, \mathcal{D}_{\mathrm{bkg}}^{\mathrm{kin}}) = \mathcal{P}(m_{4\ell}|m_{\mathrm{H}}, \Gamma, \mathcal{D}_{\mathrm{m}}) \mathcal{P}(\mathcal{D}_{\mathrm{m}}|m_{4\ell}) \times \mathcal{P}(\mathcal{D}_{\mathrm{bkg}}^{\mathrm{kin}}|m_{4\ell})$ **CMS Simulation** $\sqrt{s} = 8 \text{ TeV}$ $\sqrt{s} = 7 \text{ TeV}, L = 5.1 \text{ fb}^{-1}; \sqrt{s} = 8 \text{ TeV}, L = 19.7 \text{ fb}^{-1}$ Events / 0.002 $\sigma_{dCB} = 1.6 \text{ GeV}$ Events / 0.35 1000 800 $\sigma_{\rm eff} = 2.3 \; {\rm GeV}$ 0.25 $m_{\rm H} = 126 \; {\rm GeV}$ ■ 2e2µ $Z \rightarrow 4l$ 0.2 0.7 Simulation 0.6 800 0.15 Parametric Model 0.5 600 0.4 0.1 400 0.3 200 0.2 0.05 0.02 0.04 0.05 0.01 0.03 120 125 130 135 140 115 $m_{2\mathrm{e}2\mathrm{u}}$ (GeV) $\sigma_{m_{4}}/m_{4l}$ 120 170 180 m_{4i} (GeV)

H->γγ channel

Analysis

10

ATLAS

- Dedicated analysis optimized for mass measurement
- 10 event categories with different S/B and mass resolution (based on unconverted/converted photon; |η| of photon; d- photon momentum transverse to thrust)
- Neural network using photon pointing + tracks + recoil info to select most probable primary vertex

- CMS
 - Events are tagged by production mode
 - Untagged events are further classified according to an MVA (BDT) based on mass resolution, photon kinematics, photon quality (shower shape, isolation)
 - Vertex selected using BDT trained with tracks + recoil info + photon pointing (converted photons)

Lepton and photon p_T scales

- ECAL energy: corrections from simulations; residual corrections from data/MC comparison of reconstructed Z->e⁺e⁻ mass
- Muon scale calibrated using Z, J/ψ and Y masses
- Lepton scale validated using Z, J/ψ and Y decay leptons
- Validation of photon calibration with Z->μμγ FSR photons

Examples of response linearity checks

ATLAS; photons

Relative difference bw/ nominal scale from Z->ee and measured scale in Z-> $\mu\mu\gamma$

Resulting systematic uncertainty on m_{4l} peak: 0.3% (~40 MeV) in 4e and 0.1% in 2e2mu

Combination of H mass measurements

 H boson mass determined by fitting the m_H-dependent distributions to the data by maximizing the profiled likelihood ratio

$$\Lambda(m_H) = \frac{L(m_H, \hat{\mu}_{ggF+t\bar{t}H}^{\gamma\gamma}(m_H), \hat{\mu}_{VBF+VH}^{\gamma\gamma}(m_H), \hat{\mu}^{4\ell}(m_H), \hat{\theta}(m_H))}{L(\hat{m}_H, \hat{\mu}_{ggF+t\bar{t}H}^{\gamma\gamma}, \hat{\mu}_{VBF+VH}^{\gamma\gamma}, \hat{\mu}^{4\ell}, \hat{\theta})}$$

- m_H: parameter of interest
- Three signal strengths μ = $\sigma/\sigma_{SM}(m_H)$ to reduce model-dependence
 - $-\mu^{\gamma\gamma}_{ggF+ttH}$: scaling for gluon fusion an ttH production for γγ channel
 - μ^{γγ} _{VBF+VH}: VBF and associated production for γγ channel
 - $-\mu^{4l}$: 4l channel
 - assumed to be equal between ATLAS and CMS for nominal result
- Θ: nuisance parameters (systematic uncertainties)

Systematic uncertainties

The mass shift δm_H :

difference in m_H when re-maximizing the profile-likelihood ratio after fixing the nuisance parameter in question to its best-fit value varied by +/-1 σ

Combined H mass

 $m_H = 125.09 \pm 0.21(stat.) \pm 0.11(scale) \pm 0.02(other) \pm 0.01(theory) GeV$

- stat. uncertainty dominates (computed by profiling signal strengths and background model parameters)
- scale uncertainty is the largest systematic uncertainty
- theory uncertainty is small but interference effects have been neglected

Compatibility tests

Tension between experiments per

channel

$$m_{\gamma\gamma}$$
 (ATLAS) - $m_{\gamma\gamma}$ (CMS) = 1.3 ± 0.6 GeV 2.1 σ

$$m_{4l}$$
 (ATLAS) - m_{4l} (CMS) = - 0.9 ± 0.7 GeV
1.3 σ

Tension between yy and 4l channels

$$m_{\gamma\gamma}$$
 (ATLAS+CMS) - m_{4l} (ATLAS+CMS)
= -0.1 ± 0.5 GeV

No tension

- Test of 1 common mass vs. 4 masses ($\Delta \chi^2$ with 3 degrees of freedom)
 - p-value: 10%
 - 7% if allowing different signal strengths in ATLAS and CMS

Correlation of m_H and signal strengths

Signal strengths from nominal fit:

$$\mu^{\gamma\gamma}_{ggF+ttH} = 1.15^{+0.28}_{-0.25} // \mu^{\gamma\gamma}_{VBF+VH} = 1.17^{+0.58}_{-0.53} // \mu^{4I} = 1.40^{+0.30}_{-0.25}$$

(i) Allowing the ATLAS and CMS signal strengths to vary independently yields a result with 40MeV higher in m_H

- (ii) Single-signal strength fit $\mu = \mu^{\gamma\gamma}_{ggF+ttH} = \mu^{\gamma\gamma}_{VBF+VH} = \mu^{4l}$
- (iii) Assuming all signal strengths = 1 yields a 70MeV higher mass, mainly due to rapid variation of H->ZZ branching fraction with m_H

ULB

Offshell H decays

Offshell decays and H width

Non-negligible offshell contribution to $H(*) \rightarrow VV$ cross section (V = W, Z)

gluon-gluon fusion production

$$\sigma_{
m gg
ightarrow H^*
ightarrow ZZ}^{
m off-shell} \sim rac{g_{
m ggH}^2 g_{
m HZZ}^2}{(2m_Z)^2}$$

Offshell signal strength μ^{off} sensitive to modification in couplings:

$$\mu_{\text{off-shell}}(\hat{s}) = \kappa_{g,\text{off-shell}}^2(\hat{s}) \cdot \kappa_{V,\text{off-shell}}^2(\hat{s})$$

$$\sigma_{
m gg
ightarrow H
ightarrow ZZ^*}^{
m on\text{-}shell} \sim rac{g_{
m ggH}^2 g_{
m HZZ}^2}{m_{
m H} \Gamma_{
m H}}$$

 $\mu^{\text{off}}/\mu^{\text{on}}$ can be interpreted as $\Gamma_{\text{H}}/\Gamma_{\text{SM}}$ if couplings depend on m_{77} as in SM:

$$\mu_{\text{on-shell}} = \frac{\kappa_{g,\text{on-shell}}^2 \cdot \kappa_{V,\text{on-shell}}^2}{\Gamma_H / \Gamma_H^{\text{SM}}}$$

ATLAS analysis

Search in $ZZ \rightarrow \ell\ell\ell \nu \nu$ and $WW \rightarrow e\mu\nu\nu$ final states, inclusive in jet multiplicity

Limits on µoffshell at 95% CL

- 1) Assuming $\mu^{\text{off}}_{\text{ggF}}$ and $\mu^{\text{off}}_{\text{VBF}}$ are equal $\mu^{\text{off}} < 6.2$ observed (8.1 expected)
- 2) Assuming $\mu^{\text{off}}_{\text{VBF}}$ = 1 (SM in VBF) $\mu^{\text{off}}_{\text{ggF}}$ < 6.7 obs. (9.1 exp.)

Limit on $\Gamma_{\rm H}$ assuming same on-shell and off-shell coupling scale factors Obs. (exp.) 95% CL limit: $\Gamma_{\rm H}/\Gamma_{\rm SM} < 5.5~(8.0)$ equivalent to $\Gamma_{\rm H} < 23~(33)~{\rm MeV}$

Limit on change in ggF coupling assuming no change in VBF

 $R_{gg} = \kappa_{g, \text{ off-shell}} / \kappa_{g, \text{ on-shell}} < 6.0$

CMS analysis

Baseline analysis 4ℓ and $2\ell 2\nu$ channels (dijet category in onshell region)

Observed (expected) 95% CL limit:

$$\Gamma_{\rm H}/\Gamma_{\rm SM}$$
 < 5.4 (8.0)

Best fit value:

$$\Gamma_{H}/\Gamma_{SM} = 0.4^{+1.8}_{-0.4}$$

Phys. Lett. B 736 (2014) 64

$$\Gamma_{\rm H}$$
 < 22 (33) MeV

$$\Gamma_{\rm H}$$
 = 1.8^{+7.7}_{-1.8} MeV

$$\mu_{ggF} = 0.81^{+0.47}_{-0.37}$$

$$\mu_{VBF} = 1.7^{+2.2}_{-1.7}$$
 Compatible with SM

arXiv:1507.06656

Updated analysis (H->ZZ->4ℓ only)

- Dijet category added in offshell region
- Allows to search for mass-dependent HVV anomalous coupling $\Lambda_{\rm Q}$

$$A(\text{HVV}) \propto \left[a_1 \left[-e^{i\phi_{\Lambda Q}} \frac{(q_{\text{V1}} + q_{\text{V2}})^2}{(\Lambda_Q)^2} - e^{i\phi_{\Lambda 1}} \frac{(q_{\text{V1}}^2 + q_{\text{V2}}^2)}{(\Lambda_1)^2} \right] m_{\text{V}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* + a_2 f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_3 f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$$

• 2D limit on $\Gamma_{\rm H}$ and effective anomalous cross section fraction ${\rm f}_{\Lambda {\rm O}}$

Lifetime analysis

$$\Delta t \equiv \frac{m_{4l}}{p_T} \left(\overrightarrow{\Delta r}_{\perp}. \widehat{p_T} \right)$$
 $< \Delta t > = \tau_H = \frac{\hbar}{\Gamma_H}$

- In SM, $c\tau^{SM}_{H}$ = 4.8 x 10⁻⁸ µm; well beyond experimental precision
- Search for displaced H->ZZ->4l decay vertex
 - Event selection updated to be unbiased wrt. lifetime
 - p_T-spectrum dependence of vertex resolution taken into account

Observed 95% CL limit:

 $c\tau_{H}$ < 57 μ m; Γ > 3.5 10^{-9} MeV First direct experimental limit on H boson lifetime

ULB

Heavy scalar searches in ZZ and WW final states

Recent results

H->ZZ analysis

- Additional scalar searched for in [140, 1000]
 GeV mass range
- Search performed in the $ZZ \rightarrow \ell\ell\ell \nu \nu$, $ZZ \rightarrow \ell\ell \nu \nu$, $ZZ \rightarrow \ell\ell \nu \nu$ and $ZZ \rightarrow \nu \nu \nu \nu \nu$ final states
- Three models considered:
 - Narrow-width heavy scalar
 - Limits on σ_{ggF} xBR(H->ZZ) and σ_{VBF} xBR(H->ZZ)
 - Type-I and Type-II 2HDM models
 - Limits on m_H , $tan(\beta)$ and coupling to Z bosons $cos(\beta-\alpha)$

arXiv:1507.05930

Results

More stringent limits set compared to indirect constraints from h(125 GeV)->ZZ in relevant range of parameters

H->ZZ+WW analysis

- In [140, 1000] GeV mass range
- Search in WW $\rightarrow \ell \nu \ell \nu$, WW $\rightarrow \ell \nu$ jj, WW $\rightarrow \ell \nu$ J, ZZ $\rightarrow \ell \ell \ell \nu$ V, ZZ $\rightarrow \ell \ell \ell \nu \nu$, ZZ $\rightarrow \ell \ell \ell \nu \nu$, ZZ $\rightarrow \ell \ell \nu \nu$, ZZ $\rightarrow \ell \ell \nu \nu$, ZZ $\rightarrow \ell \ell \nu \nu$
- Several models considered:
 - Heavy scalar with SM couplings
 - Electroweak singlet mixing with light scalar
 - Couplings of h and H states are universally rescaled by C and C', constrained by unitarity and h(125) signal strength

$$C^2 + C^2 = 1$$

Heavy H is allowed to decay into new modes with a B.F. B_{new}:

$$\mu' = C'^2 \left(1 - \mathcal{B}_{\text{new}} \right) \qquad \Gamma' = \Gamma_{\text{SM}} \frac{C'^2}{1 - \mathcal{B}_{\text{new}}}$$

 Results also interpreted as a generic 2D limit on mass and width

Results

SM-like scalar: sensitivity down to $0.1 \times \sigma_{\text{SM}}$ across a large mass range

EWK singlet: direct search is competitive with indirect constraint from h(125 GeV)

Conclusions

 The Run-I ATLAS and CMS combined mass measurement of the H boson is

```
m_H = 125.09 ± 0.21(stat.) ± 0.11(scale) GeV 0.2% precision with Run1 data
```

- Offshell decays open interesting perspectives for studying the H boson properties
- Direct searches for massive scalars are competitive with indirect constraints from the study of the H(125) boson
- There is still room for surprises

Back up

With a combined ATLAS+CMS mass value...

More combinations can be made

Electron energy scale

- Calibration with Z->ee; extrapolated in kinematic range of H decays
- Validation using also J/Psi and Y->ee
- Linearity of response checked vs electron p_T

ATLAS

Relative difference bw/ nominal scale at the Z peak and measured scale

CMS

Relative difference bw/ data and simulation after calibration

Photon energy scale

- Calibration with Z->ee
- Validation with Z->μμγ

ATLAS

Relative difference bw/ nominal scale at Z->ee peak and measured scale in Z-> $\mu\mu\gamma$

CMS

Residual discrepancy of the energy response in data relative to that in simulated events as a function of transverse energy (for the E/p analysis) and of $H_T/2$ (for the dielectron mass analysis) in four η and R9 categories

Muon momentum scale

Calibration using Z->μμ, J/ψ->μμ and Y->μμ

ATLAS

Ratio of the dimuon mass peak in data and simulation after calibration

CMS

Relative difference of dimuon mass peak bw/ data and simulation after calibration

Analysis strategy

Different categories have difference S/B, different mass resolutions

Thrust axis definition

Analysis strategy: BDT classifier

Systematic uncertainties

	Phys. Rev. Lett. 114, 191803 (2015)		
	Uncertainty in ATLAS	Uncertainty in CMS	Uncertainty in LHC
	combined result [GeV]:	combined result [GeV]:	combined result [GeV]:
	observed (expected)	observed (expected)	observed (expected)
Scale uncertainties:			
ATLAS ECAL non-linearity /	0.08(0.10)	0.08(0.10)	0.06 (0.07)
CMS photon non-linearity	,		` ,
Material in front of ECAL	0.10 (0.08)	0.05 (0.05)	0.05 (0.05)
ECAL longitudinal response	0.07(0.08)	$0.01\ (0.01)$	0.02(0.03)
ECAL lateral shower shape	$0.07 \; (0.05)$	$0.04 \ (0.05)$	$0.04 \ (0.03)$
Photon energy resolution	0.02 (0.01)	$0.01 \ (< 0.01)$	0.02 (< 0.01)
ATLAS $H \to \gamma \gamma$ vertex & conversion	0.03 (0.03)	_	0.01 (0.01)
reconstruction			
$Z \to ee$ calibration	0.05 (0.04)	$0.03 \; (0.03)$	$0.03 \ (0.03)$
CMS electron energy scale & resolution	_	0.05 (0.03)	$0.03 \ (0.02)$
Muon momentum scale & resolution	$0.01 \; (0.01)$	$0.07 \; (0.03)$	0.05 (0.02)
Other uncertainties:			
ATLAS $H \to \gamma \gamma$ background modeling	0.04 (0.03)	_	$0.01 \ (0.01)$
Integrated luminosity	0.01~(<0.01)	< 0.01 (< 0.01)	0.01 (< 0.01)
Additional experimental systematic	$0.02 \ (< 0.01)$	$0.01 \ (< 0.01)$	0.01 (< 0.01)
uncertainties			
Theory uncertainties	<0.01 (<0.01)	0.02 (<0.01)	0.01 (<0.01)
Systematic uncertainty (sum in quadrature)	0.18 (0.17)	0.14 (0.13)	0.11 (0.10)
Systematic uncertainty (nominal)	0.18(0.18)	0.14(0.13)	$0.11\ (0.10)$
Statistical uncertainty	$0.37\ (0.37)$	0.27(0.28)	$0.21\ (0.22)$
Total uncertainty	$0.41\ (0.41)$	0.30(0.31)	$0.24\ (0.24)$
Analysis weights	$35\% \ (36\%)$	65% (64%)	. .

Phys Rev Lett 114 191803 (2015)

Validation of per-event mass resolution

γγ+4Ι

Phys. Rev. D 90, 052004 (2014)

γγ+4Ι

Offshell decays and H width

 Non-negligible offshell contribution to H(*) → VV cross section (V = W, Z)

gluon-gluon fusion production

- In SM, $\Gamma_{\rm H}$ = 4.1 MeV << experimental resolution on mass peak (1-3 GeV)
- In SM, the ratio of off-shell and on-shell cross sections is proportional to $\Gamma_{\rm H}$

$$\sigma_{
m gg o H o ZZ^*}^{
m on\text{-}shell} \sim rac{g_{
m ggH}^2 g_{
m HZZ}^2}{m_{
m H} \Gamma_{
m H}} \qquad \sigma_{
m gg o H^* o ZZ}^{
m off\text{-}shell} \sim rac{g_{
m ggH}^2 g_{
m HZZ}^2}{(2m_{
m Z})^2}.$$

• Can off-shell decays help constrain Γ_{H} ?

Fit offshell signal strength μ^{off} to data in m_{ZZ} >200 GeV region

μ^{off} sensitive to modification in couplings:

$$\mu_{\text{off-shell}}(\hat{s}) = \kappa_{g,\text{off-shell}}^2(\hat{s}) \cdot \kappa_{V,\text{off-shell}}^2(\hat{s})$$

- μ^{off}/μ^{on} can be interpreted as Γ_H/Γ_{SM} if couplings depend on m_{ZZ} as in SM

$$\mu_{\text{on-shell}}$$
 = $\frac{\kappa_{g,\text{on-shell}}^2 \cdot \kappa_{V,\text{on-shell}}^2}{\Gamma_H/\Gamma_H^{\text{SM}}}$

Interference effects

- Negative interference with gg->VV background
 - large at high m_{VV}
- Accounted for in offshell distribution

$$\mathcal{P}_{\text{tot}} = \mu_{\text{off}} \mathcal{P}_{\text{sig}} + \sqrt{\mu_{\text{off}}} \mathcal{P}_{\text{int}} + \mathcal{P}_{\text{bkg}}$$

- In gg fusion production, background and interference only calculated at LO
 - Signal m_{VV}-dependent k-factors (NNLO/LO) applied G. Passarino (Eur. Phys. J. C 74 (2014) 2866)
 - Based on results from M. Bonvini et al. (Phys. Rev. D88 (2013) 034032) and K. Melnikov and M. Dowling (arxiv1503.01274), assume k_{continuum} = k_{signal} as central value

Analysis

- H->ZZ->4l channel
 - Matrix-element discriminant targetting H⁰⁺

$$ME = \log_{10} \left(\frac{P_H}{P_{gg} + c \cdot P_{q\bar{q}}} \right)$$

- H->ZZ->2l2ν channel
 - Only in off-shell region
 - Discriminant: transverse mass m_T

$$m_{\mathrm{T}}^{ZZ} \equiv \sqrt{\left(\sqrt{m_{Z}^{2} + \left|\boldsymbol{p}_{\mathrm{T}}^{\ell\ell}\right|^{2}} + \sqrt{m_{Z}^{2} + \left|\boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}}\right|^{2}}\right)^{2} - \left|\boldsymbol{p}_{\mathrm{T}}^{\ell\ell} + \boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}}\right|^{2}}$$

- H->WW->e μ 2 ν channel
 - Discriminant: R₈ combination of dilepton mass and m_T^{WW} $R_8 = \sqrt{m_{\ell\ell}^2 + \left(a \cdot m_{\rm T}^{WW}\right)^2}$
- Channel combination assuming same $\kappa_{g_i} \kappa_{V}$ in ZZ and WW channels

Systematic uncertainties

Systematic uncertainty	95% CL lim. (CL_s) on $\mu_{\text{off-shell}}$
Interference $gg \to (H^* \to)VV$	7.2
QCD scale $K^{H^*}(m_{VV})$ (correlated component)	7.1
PDF $q\bar{q} \rightarrow VV$ and $gg \rightarrow (H^* \rightarrow)VV$	6.7
QCD scale $q\bar{q} \rightarrow VV$	6.7
Luminosity	6.6
Drell-Yan background	6.6
QCD scale $K_{qq}^{H^*}(m_{VV})$ (uncorrelated component)	6.5
Remaining systematic uncertainties	6.5
All systematic uncertainties	8.1
No systematic uncertainties	6.5

Analysis

- Baseline Phys. Lett. B 736 (2014) 64
 - H->ZZ->4l channel
 - ME-based discriminant (D_{gg}) targetting total gg(->H)->ZZ production; fit to (D_{gg} , m_{4l})
 - Dijet category in on-shell region
 - H->ZZ->2l2ν channel
 - Discriminant: transverse mass m_T
 - Fit μ^{on}_{ggF} , μ^{on}_{ggF} and Γ_{H}/Γ_{SM}
- Update in H->ZZ->4l channel arXiv:1507.06656
 - Dijet category added in offshell region; fit also $\mu^{\text{off}}_{\text{VBF}}$
 - Allows to search for a mass-dependent HVV anomalous coupling $\Lambda_{\rm Q}$

$$A(\text{HVV}) \propto \left[a_1 \underbrace{\left[e^{i\phi_{\Lambda Q}} \frac{(q_{\text{V1}} + q_{\text{V2}})^2}{(\Lambda_Q)^2} - e^{i\phi_{\Lambda 1}} \frac{(q_{\text{V1}}^2 + q_{\text{V2}}^2)}{(\Lambda_1)^2} \right] m_{\text{V}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* + a_2 f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_3 f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$$

$H \rightarrow ZZ$

ZZ→ℓℓℓℓ

140-1000 GeV

- 4e, 4μ, 2e2μ
- ggF, VBF, VH categories
- Discriminant:m₄₁

> 10³ → Data √s=8 TeV, 20.3 fb⁻¹ ggF H (200 GeV) 10^2 $H \rightarrow ZZ \rightarrow IIII, ggF$ $5 \times obs$. limit Events / qq→ZZ gg→ZZ Z+jets, tī Uncertainty 10^{-1} 200 800 400 600 1000 m_{III} [GeV]

 $ZZ \rightarrow \ell\ell\nu\nu$

200-1000 GeV

eeνν, μμνν

ggF, VBF

Discriminant: m_T

- eeqq, μμqq
- Resolved ggF
 (<2, 2 b-tags),
 ggF merged jets
 (>700 GeV), VBF
- Discriminant:
 m_{Ilii}

ZZ→vvqq 300-1000 GeV <2, 2 b-tags Discriminant: m_T

H→WW

WW→evev

- 145-1000 GeV
- ee, μμ, eμ
- 0,1 jets, VBF
- $res(m_H)^20\%$

WW*→ℓ*vjj

- 180-600 GeV
- evjj, μvjj
- Inclusive
- $res(m_H)^{\sim}5-15\%$

WW→ℓ√J

- 600-1000 GeV
- evJ, μvJ
- 0+1 jets, VBF
- res(mH)~5-15%

$H \rightarrow ZZ$

ZZ→₩ • 145-1000 GeV

4e, 4μ, 2e2μ

untagged, VBF

res(m_H)~1-2%

 $ZZ \rightarrow \ell\ell \tau \tau$

200-1000 GeV

 $(\tau_h \tau_h, \tau_e \tau_h, \tau_u \tau_h, \tau_e \tau_u)$

- untagged
- $res(m_H)^{\sim}10-15\%$

ZZ→*ℓ*νν • 200-1000 GeV

- eeνν, μμνν
- 0, ≥1 jets, VBF
- res(m_H)~7%

ZZ→llqq

• 230-1000 GeV

(Merged jets >600 GeV)

- eeqq, μμqq
 (0, 1, 2 b-tags)
- untagged, VBF
- res(m_H)~3%

C'² limits with the full high mass search combination

Generic (m_H , Γ) scan assuming VBF to ggF scaling as in SM

