FLAVOUR PHYSICS AT LHCb

ICNFP 2015 : 4th International Conference on New Frontiers in Physics

Bernardo Adeva, University of Santiago de Compostela
on behalf of the LHCb Collaboration
Quark flavour mixing

\[V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4) \]

\[V_{CKM} \text{ originates from MISALIGNMENT between UP and DOWN quark couplings to the Higgs boson} \]

- KM theory is highly predictive
 - huge range of phenomena, over many orders of magnitude in energy with only 4 independent parameters (not including quark masses)
- CKM matrix has minimal flavour violation
 - extended theories do not replicate in general such flavour structure
- KM mechanism introduces CP violation
 - it is THE standing theory of CP violation, in absence of neutrino masses or \(\theta_{QCD} \)
The Unitarity Triangles

- CKM matrix must be UNITARY for a given number of quark generations (3): \(V_{\text{CKM}}^+ = V_{\text{CKM}} \)
- which provides many relationships, prominently:
 \[
 |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 \\
 V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0
 \]
- only one independent phase, but 4 measurable combinations can be formed of the type \(V_{\alpha i}V_{\alpha j}^*V_{\beta j}V_{\beta i}^* \) such as \(\beta \) (BaBar, Belle 2001, this talk), \(\beta_s \) (LHCb 2013), \(\gamma \) (this talk)

- consistency of measurements are tests of the Standard Model and provide model-independent constraints on New Physics

see also http://www.utfit.org
Two roads to travel the same path
in quark flavour physics

is KM theory perturbed?

- not necessarily in quark sector
- unpredicted scale
- CPV in NEUTRINOS now realistic, with sizable θ_{13}

Non appearance at ATLAS/CMS makes the case more compelling

can be seen in RARE DECAYs
through quantum loops

NEW HEAVY PARTICLES
theoretically favoured

NEW HEAVY PARTICLES
theoretically favoured

leaky SM

CP VIOLATION
extra sources must be there
for baryogenesis

Non appearance at ATLAS/CMS makes the case more compelling

can be seen in RARE DECAYs
through quantum loops

NEW HEAVY PARTICLES
theoretically favoured

leaky SM

CP VIOLATION
extra sources must be there
for baryogenesis
Topics covered in this talk

Towards New SM In 12 Steps

- \(B \rightarrow X_s \nu \bar{\nu} \)
- \(B \rightarrow K^*(K) \nu \bar{\nu} \)
- \(K \rightarrow \pi \nu \bar{\nu} \)
- \(B \rightarrow X_s l^+l^- \)
- \(B \rightarrow K^*(K) l^+l^- \)
- \(K^{*0} \rightarrow \mu^+\mu^- \)
- \(B_s \rightarrow \Phi \mu^+\mu^- \)
- \(B \rightarrow X_s \gamma \)
- \(B \rightarrow K^* \gamma \)
- \(B^+ \rightarrow \tau^+ \nu_\tau \)
- \(B \rightarrow D^* \tau \nu \)
- \(\Delta F = 2 \) Observables
- \(\sin(2\beta) \)
- \(B_{s,d} \rightarrow \mu^+\mu^- \)
- \(B_s \rightarrow \mu^+\mu^- \)
- \(\gamma \) & \(V_{ub} \)
- LFV, EDMs \((g-2)_{\mu,e}\)
- CKM from Trees
- Lattice
- \(\varepsilon'/\varepsilon \)

Clock from Buras & Girbach, RPP (2014) 086201
The LHCb apparatus

LHCb Detector
Weight: 5,600 tonnes
Height: 10 m
Length: 20 m

Electromagnetic Calorimeter

RICH1

Vertex Locator

Tracker Turicensis

Dipole Magnet

Tracking Stations

RICH2

Hadron Calorimeter

Muon Chambers

a
CP VIOLATION
Why γ from $B \rightarrow DK$ is important

- γ plays a unique role in flavour physics
 - it can be measured from tree diagrams alone
 (probably the only such CP violating parameter)
- Therefore a reference point for the Standard Model
 - particularly important after New Physics is discovered

- A final state COMMON to D^0 and \bar{D}^0 is required. Different possibilities are characterized in the literature (GLW,ADS,GGSZ)
Most precise channel is $D_{CP}K$ (awaiting LHCb update with full Run 1 data sample)

- LHCb only combination, without latest results (but including measurements on DK^* and time dependent $D_{s}^{\pm}K_{\pm}$) gives $\gamma = (73^{+9}_{-10})^0$, best single-experiment result (CKM2014 update)

- New LHCb measurements with competitive sensitivity
New decays modes for γ at LHCb

- Highly significant signals in CP modes $B^- \to DK^-\pi^+\pi^-$, $D \to K^+\pi^-$, K^+K^-, $\pi^+\pi^-$

- New independent, additional LHCb measurement:

 $\gamma = (74^{+20}_{-18})^o$

- First observation of the suppressed ADS mode $B^- \to (K^+\pi^-)_D K^-\pi^+\pi^-$, very sensitive to γ

arXiv:1505.07044, submitted to PRD
Further analysis strategies by LHCb on the neutral modes $B^{-} \rightarrow DK^{-}$ with $D \rightarrow \pi^{+}\pi^{-}\pi^{0}$, $D \rightarrow K^{+}K^{-}\pi^{0}$ and $D \rightarrow K^{-}\pi^{+}\pi^{0}$ (ADS)

Recent analysis of coherently produced $D\bar{D}$ at $\psi(3770)$ has shown that $D \rightarrow \pi^{+}\pi^{-}\pi^{0}$ is very close to a CP-even eigenstate (CP-even fraction $F_{+} = 0.968 \pm 0.017$), which makes it particularly suitable for γ analysis (so called quasi-GLW)

No evidence of CP violation has been obtained yet at LHCb, but good consistency with other measurements has been shown

\[V_{ub}/V_{cb} \text{ from } \Lambda_b \rightarrow p\mu\nu / \Lambda_b \rightarrow \Lambda_c^{+}\mu\nu \]

- \(|V_{ub}|\) governs the most sensitive misalignment between up/down quark flavor couplings to the Higgs boson.
- Excellent measurements from \(B^{-} \rightarrow \pi^{0}\ell^{-}\bar{\nu} \) and \(B^{0} \rightarrow \pi^{+}\ell^{-}\bar{\nu} \) at B-factories, but long standing discrepancy between exclusive and inclusive (containing all \(b \rightarrow u\ell^{-}\bar{\nu} \) transitions) measurements, at 3.8σ level:

\[
|V_{cb}| = (42.4 \pm 0.9) \times 10^{-3} \quad |V_{ub}| = (4.41 \pm 0.15^{+0.15}_{-0.17}) \times 10^{-3} \quad \text{(incl.)}
\]

\[
|V_{cb}| = (39.5 \pm 0.8) \times 10^{-3} \quad |V_{ub}| = (3.23 \pm 0.31) \times 10^{-3} \quad \text{(excl.)}
\]

- LHCb at a hadron collider uses the corrected mass:

\[
M_{\text{corr}} = \sqrt{M_{h\mu}^{2} + p_{\perp}^{2}} + p_{\perp}
\]

and directly compares \(\Lambda_b \rightarrow p\mu^{-}\bar{\nu} \) with \(\Lambda_b \rightarrow \Lambda_c^{+}(pK^{-}\pi^{+})\mu^{-}\bar{\nu} \)
Lattice QCD form factors, needed in the calculation of $|V_{ub}|$, are most precise at high q^2 ($\mu\nu$), select $q^2 > 15$ GeV2

q^2 can be determined using Λ_b flight direction and mass, up to a two-fold ambiguity

vertex isolation is used, $\Lambda_c^+ \rightarrow pK^-\pi^+$ cross-feed is the main background

fit M_{corr} to get the signal yields
V_{ub}/V_{cb} \text{ from } \Lambda_b \rightarrow p\mu\nu / \Lambda_b \rightarrow \Lambda_c^+\mu\nu

- New physics claimed to explain the puzzle with extra RH currents

\[\mathcal{L}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{ub}^L (\bar{u}\gamma_\mu P_L b + \epsilon_R \bar{u}\gamma_\mu P_R b) (\bar{\nu}\gamma_\mu P_L l) + h.c. \]

F. Bernlochner et al. PRD 90, 094003 (2014)

LHCb:

\[\frac{B(\Lambda_b \rightarrow p\mu\nu)}{B(\Lambda_b \rightarrow \Lambda_c^+\mu\nu)} \times 10^{-2} = (1.00 \pm 0.04\,(\text{stat}) \pm 0.08\,(\text{syst})) \times 10^{-2} \]

Nature Physics 10.1038 arXiv:1504.01568

- LHCb results do not support RH currents, agree with exclusive

- \[|V_{ub}| \approx 0.083 \pm 0.004\,(\text{exp}) \pm 0.004\,(\text{lattice}) \]

B. Adeva, University of Santiago de Compostela

New Frontiers in Physics

Kolymbari

24 August 2015
- time evolution of B^0 / \bar{B}^0 asymmetry, 41500 decays
- LHCb is now competitive: $\sin(2\beta) = 0.731 \pm 0.035 \pm 0.020$
- similar statistical precision to B-factories
- result consistent with world averages and with other measurements constraining $\sin(2\beta)$: $0.771^{+0.017}_{-0.041}$ CKMfitter, arXiv:1501.05013
- significant improvement will require understanding of higher-order contributions
RARE AND SEMI-RARE DECAYS
B → μ⁺μ⁻ decays are an acid test for New Physics models

Very suppressed (10⁻⁹-10⁻¹⁰) in SM due to:
- GIM mechanism (Z⁰)
- chirality of W±
- minimal flavor violation (H⁰)

Features not generally respected by generic extensions!

Painstakingly searched for over 30 years...

Predictions are sharp:

B(B_s → μ⁺μ⁻)_{SM} = (3.66 ± 0.23) \times 10⁻⁹

B(B⁰ → μ⁺μ⁻)_{SM} = (1.06 ± 0.09) \times 10⁻¹⁰

Exemplary sensitivity for SUSY:

B(B_s → μ⁺μ⁻) ≈ (tanβ)⁶/M_{A⁰}
$B_s \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \mu^+\mu^-$

- LHCb / CMS collaborative upshot
 - complementary angular regions with respect to LHC beams
 - designed for different purposes: higher instantaneous \mathcal{L} compensates lower $B \rightarrow \mu\mu$ efficiency (CMS)
 - dimuon mass resolution different: uniform ≈ 25 MeV/c^2 for LHCb and angle dependent ranging from 32-76 MeV/c^2 for CMS

- Combination of CMS and LHCb data results in conclusive evidence for $B_s \rightarrow \mu^+\mu^-$, and in a 3σ effect for $B^0 \rightarrow \mu^+\mu^-$

- Results consistent with SM at 2σ level: A NEW PHASE OF PRECISION MEASUREMENTS IS INITIATED
Lepton universality can be broken by new physics with τ lepton, and ratios like $R(D^*) = \frac{B(B \rightarrow D^*\tau\nu)}{B(B \rightarrow D^*\mu\nu)}$ are sensitive to it.

- In two Higgs doblet models (2HDM), the D/D^* helicity amplitudes H_s become:

$$H_s^{2HDM} \approx H_s^{SM} \left(1 + (S_R \pm S_L) \frac{q^2}{m_\tau(m_b \mp m_c)} \right)$$

with scalar NP contributions $S_{L,R}$ proportional to $(\bar{c} P_{L,R} b) (\bar{\tau} P_{L,R} \nu_\tau)$ $P_{L,R} = (1 \mp \gamma_5)/2$

- BaBar reported anomalous high values of $R(D^*)$ and $R(D)$:

PRD 88 (2013) 072012, also PRL 109 101802

Those exclude 2HDM where $S_L = 0$ (type II, minimal SUSY) in the full $\tan\beta$-m_{H^\pm} plane, but are compatible with general 2HDM having $|S_R + S_L| < 1.4$
First $b \to \tau$ reco at a hadron collider: $\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_\tau$ and $B^0 \to D^{*+} \mu^- \bar{\nu}_\mu$

identical final state topologies with $D^{*+} \to D^0 (\to K^- \pi^+) \pi^+$ and $\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau$

$LHCb$ result confirms the excess to the SM value 0.252 ± 0.003. Fit also extracts form factor parameters, which appear to agree with world averages.

- B^0 rest-frame variables ($m_{\text{miss}}^2, E_{\mu}^*, q^2$) are measured with $(15-20\%)$ resolution thanks to p_B
- Control samples of various backgrounds allow precise corrections
 - good prospects for Run 2, systematics expected to scale with sample sizes

$R(D^*) = 0.336 \pm 0.027 \pm 0.030$

arXiv:1504.01568, submitted to PRL
\[B \rightarrow D^{(*)}\tau\nu \]

Tension with SM seems to persist

\[\Delta \chi^2 = 1.0 \]

SM prediction from PRD 85 (2012) 094025

thanks to M. Rotondo

unofficial average, very preliminary

\[R(D^*) = 0.322 \pm 0.021 \]
\[R(D) = 0.390 \pm 0.047 \]

statistical or systematic correlations not accounted for
Angular analysis of $B^0 \to K^{*0} \mu^+\mu^-$

- $b \to s \mu^+\mu^-$ FCNC transition allowed in SM via electroweak penguin and box diagrams, subject to contamination by new heavy particles (Z', extra $H...$)

- Angular observables in $K^{*0}(K^+\pi^-)\mu^+\mu^-$ characterized by 6 amplitudes: $A_{0,||,\perp}^{L,R}$ for K^{*0} helicities and $\mu^+\mu^-$ chiralities (L,R)

- Full set of 8 observables analysed (3 fb$^{-1}$) as function of $q^2(\mu^+\mu^-)$, only some are shown largely in agreement with SM, however ... see next

Zero crossing point q_0^2 OK with SM, very sensitive to some MSSM models arXiv:0811.1214
Earlier publication by LHCb with 2011 dataset PRL 111 (2013) 191801 found a local deviation from SM prediction with 3.7σ significance in one particular observable: P_5'.

Possible interpretations of this discrepancy was widely discussed in the literature (over 13 papers in 2014). The full datasample with 3 fb$^{-1}$ confirms a 3.7σ statistical discrepancy.

P_5' is related to the L/R asymmetry of the interference between A_0 and A_\perp:

$$P_5' = \sqrt{2} Re \left(A_0^L A_\perp^* - A_0^R A_\perp^* \right) / \sqrt{F_L(1 - F_L)} = S_5 / \sqrt{F_L(1 - F_L)}$$

$$F_L = |A_0^L|^2 + |A_0^R|^2$$

Contrary to $B^0 \rightarrow K^{*0} \mu^+\mu^-$, $B_s \rightarrow \Phi(K^+K^-)\mu^+\mu^-$ is not self-tagging. Good complementarity (yield $\approx 1/6$)

Full angular analysis as function of $q^2(\mu^+\mu^-)$, all of the 8 observables are determined for the first time

- physics-wise, the observables are different from $K^* \mu\mu$ (new CP-violating asymmetries, no S_s or A_{FB})

All angular observables are consistent with the SM, but tension seen in the branching fraction

- a similar trend is also seen for the branching fractions of other $b \rightarrow s \mu^+\mu^-$ decays at LHCb ($B^0 \rightarrow K^{(*)}\mu^+\mu^-$, JHEP 06 (2014) 133, $B^+ \rightarrow K^+\pi^+\pi^-\mu^+\mu^-$, JHEP 10 (2014) 064.
Summary

- Appreciable amount of Flavour Physics results by LHCb this year, not everything has been covered in this talk (absent were charm CPV, other rare decays, $B \rightarrow$ no charm, etc)
- Sensitivity to $B_s \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \mu^+\mu^-$ has reached the 10^{-10} level and will continue to improve
- A few interesting "tensions" with the SM to follow up very closely:
 - hints on τ-lepton non-universality in $R(D^*)$ and $R(D)$
 - S_5 observable in $B \rightarrow K^{*0} \mu\mu$ deviated from SM, also $b \rightarrow s \mu\mu$ rates too low.
 - inclusive/exclusive tension in $|V_{ub}|$ still there, although RH currents are not supported
- Much to know in the short and longer terms:
 - Run 2 has just started at LHC (LHCb & ATLAS &CMS)
 - LHCb upgrade & Belle II will take over from 2018 on
THE END
Global fits performed on the new LHCb $B^0 \rightarrow K^{*0} \mu^+\mu^-$ data

Angular observables, branching fractions and combination

Consistently, data favour $C^\text{NP}_9 \neq 0$ at 3-4 σ