.........

CCC.

0

Exotica in CMS

10

ICNFP 2015 Kolymbari, Crete 25 August 2015

Claudia-Elisabeth Wulz CMS Collaboration Institute of High Energy Physics, Vienna

10

Overview

Selected recent results:

- Dark matter searches *EXO-14-004*, *EXO-12-054*, *EXO-12-048*, *EXO-12-047*
- Searches with boosted objects
 - Weak bosons, tops, Higgs in final state
- Long-lived signatures

EXO-12-038, EXO-12-036, EXO-12-034, EXO-12-026, EXO-13-006, EXO-14-012, EXO-14-017

- Classic narrow resonance searches

DP-15-017, EXO-14-010, EXO-13-007, EXO-12-059, EXO-12-052, EXO-12-050, EXO-12-049, EXO-12-046, EXO-12-045, EXO-12-024

EXO-14-010, EXO-14-009, EXO-13-007

All CMS public BSM physics results:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G

Dark Matter Searches

Complementary to direct/indirect searches, best for low DM mass and spin-dependent couplings

CMS-EXO-12-048, EPJC 75 (2015) 235

Select events with ISR -> mono-objects, e.g. mono-jets, mono-Z, mono- γ

Dark Matter Searches

4

Long-lived particles are predicted in many BSM scenarios SUSY: GMSB, AMSB, split SUSY, RPV SUSY Hidden valley scenarios

Recent examples of searches: Neutral particles decaying to photons (CMS-EXO-14-017) Neutral particles decaying to muons (CMS-EXO-14-012) Heavy stable charged particles (CMS-EXO-13-006)

Long-lived Neutral Particles Decaying to Photons

Model with GMSB: long-lived lightest neutralino decays to gravitino and photon

Event selection: 2γ , with one converting to e^+e^- , at least 2 jets, and E_T^{miss} Scenario: 0.4 cm $\leq c\tau \leq 100$ cm $\simeq 10^4 e^{-1/4} e^{-1/4} e^{-1/4}$

Long-lived Neutral Particles Decaying to Muons

Topology: Two muons originating from displaced secondary vertex, detected in muon chambers only

Limits derived for two specific models:

- 1) $H^0 \rightarrow XX \rightarrow 4\mu$ (H^0 ... non-SM Higgs boson, X ... long-lived boson with spin 0)
- 2) 2 squark pairs, with $\tilde{q} \rightarrow q \tilde{\chi}^0$, long-lived $\tilde{\chi}^0 \rightarrow \mu \mu \nu$ (R-parity violated)

CMS-EXO-14-012

Signal systematic errors Source	Uncertainty
Pileup modelling	2%
Tracking efficiency from cosmics	3%
Trigger efficiency	15%
Parton distribution functions	< 1%
Renormalisation and factorisation scales	< 0.5%
NLO effects	5 - 7%

This analysis is orthogonal to a previous one that used only the tracker (arXiv: 1411.6977) - the two analyses have been combined to improve limits

Long-lived Neutral Particles Decaying to Muons

Combined 95% CL upper limits for muon chamber and tracker analyses

Displaced Jets

Hidden valley benchmark model: H/ $\Phi \rightarrow \Phi_{hs} \rightarrow \pi_v \pi_v$ with $\pi_v \rightarrow jj/ll$ Decays of v-particles must occur via hidden sector mediator as they do not couple directly to SM particles.

Topology studied: 2 hadronic jets originating from same displaced vertex.

Long-lived Heavy Charged Particles

R-hadrons: long-lived gluinos could hadronize to e.g. \tilde{g} -g, \tilde{g} -qq states

Stable chargino or stau, etc.

If mass greater than about 100 GeV: β < 0.9. Nuclear interactions may lead to charge exchange.

Long-lived Heavy Charged Particles

Reinterpretation of previous results on long-lived chargino production [JHEP 07 (2013) 122] in context of pMSSM (first constraints at the LHC) and AMSB models, based on highly-ionizing and penetrating particles

Boosted Objects

Massive final-state particles ($m_{\chi} > 1$ TeV mass) with high Lorentz boost ($\gamma > 2$)

- overlapping jets
- jet substructure
- non-isolated leptons

New analysis techniques to improve high-mass sensitivity (up to factor ~10)

- grooming (remove noise and pile-up)
- pruning (remove soft, large-angle particles from jets)
- tagging (b, t, W/Z, ...)
- subjettiness, mass-drop

First search in semi-leptonic WH final state

Search strategy close to one for high-mass WW resonances in $lvq\bar{q}$ final state, with additional b-tag requirements

Main backgrounds: W+jets, WW/WZ, tt

CMS-EXO-14-010

Boosted Objects: X -> ZH -> qqττ

Novel analysis feature: τ pair in boosted regime Six search channels: leptonic($\tau_e \tau_e, \tau_e \tau_\mu, \tau_\mu \tau_\mu$), semi-leptonic($\tau_e \tau_h, \tau_\mu \tau_h$), all-hadronic ($\tau_h \tau_h$) Different backgrounds according to search channels : Z/ γ +jets for leptonic channels, for $\tau_e \tau_h, \tau_\mu \tau_h t\bar{t}$ and W+jets, for $\tau_h \tau_h QCD$ Event selection: single jet or H_T

Boosted Objects: X -> WH, VH, VV

Classic Narrow Resonance Searches

Example: Dijet spectrum Background estimation: data-driven, parameterization by smooth function Interpretation possible for many exotica scenarios Sensitive beyond the Run I reach for resonances with M > 5 TeV

CMS-EXO-12-059, PRD 91 (2015) 052009

CMS-DP-2015-017, cds.cern.ch/record/2037378

Exotica Limits

Conclusions

- CMS has studied a plethora of Exotica signatures with $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV data and has derived limits for many scenarios.
- Interesting excesses have been seen stay tuned for more results at $\sqrt{s} = 13$ TeV !
- Sensitivity for New Physics is expected to grow fast during Run II.

