Interacting relativistic quantum dynamics for multi-time wave functions

Matthias Lienert

Mathematical Institute, LMU Munich - Working group Dürr/Pickl/Deckert J. Math. Phys. 56, 042301 (2015)

August 26, 2015

Idea of a multi-time wave function

Setting: N particles, coordinates
$x_{k}=\left(t_{k}, \mathbf{x}_{k}\right) \in \mathbb{R}^{1+d}$

Non-relativistic (single-time) Schrödinger picture: $\varphi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{N}} ; t\right)$

Multi-time Schrödinger picture: $\psi\left(t_{1}, \mathbf{x}_{1}, \ldots, t_{N}, \mathbf{x}_{N}\right)$

Relation: $\varphi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} ; t\right)=\psi\left(t, \mathbf{x}_{1}, \ldots, t, \mathbf{x}_{N}\right)$

Domain of ψ : space-like configurations

Idea of a multi-time wave function

Setting: $\quad N$ particles, coordinates
$x_{k}=\left(t_{k}, \mathbf{x}_{k}\right) \in \mathbb{R}^{1+d}$

Non-relativistic (single-time) Schrödinger picture: $\quad \varphi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} ; t\right)$

Multi-time Schrödinger picture:

Relation: $\varphi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} ; t\right)=\psi\left(t, \mathbf{x}_{1}, \ldots, t, \mathbf{x}_{N}\right)$

Domain of ψ : space-like configurations

N times

Idea of a multi-time wave function

Setting: $\quad N$ particles, coordinates
$x_{k}=\left(t_{k}, \mathbf{x}_{k}\right) \in \mathbb{R}^{1+d}$

Non-relativistic (single-time) Schrödinger picture: $\varphi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} ; t\right)$

Multi-time Schrödinger picture: $\quad \psi\left(t_{1}, \mathbf{x}_{1}, \ldots, t_{N}, \mathbf{x}_{N}\right)$

Relation: $\varphi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} ; t\right)=\psi\left(t, \mathbf{x}_{1}, \ldots, t, \mathbf{x}_{N}\right)$

Domain of ψ : space-like configurations

N times

Idea of a multi-time wave function

Setting: N particles, coordinates
$x_{k}=\left(t_{k}, \mathbf{x}_{k}\right) \in \mathbb{R}^{1+d}$

Non-relativistic (single-time) Schrödinger picture: $\varphi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} ; t\right)$

Multi-time Schrödinger picture: $\quad \psi\left(t_{1}, \mathbf{x}_{1}, \ldots, t_{N}, \mathbf{x}_{N}\right)$

Relation: $\quad \varphi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} ; t\right)=\psi\left(t, \mathbf{x}_{1}, \ldots, t, \mathbf{x}_{N}\right)$

Domain of ψ : space-like configurations

Idea of a multi-time wave function

Setting: $\quad N$ particles, coordinates $x_{k}=\left(t_{k}, \mathbf{x}_{k}\right) \in \mathbb{R}^{1+d}$

Non-relativistic (single-time) Schrödinger picture: $\varphi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} ; t\right)$

Multi-time Schrödinger picture: $\quad \psi\left(t_{1}, \mathbf{x}_{1}, \ldots, t_{N}, \mathbf{x}_{N}\right)$

Relation: $\quad \varphi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} ; t\right)=\psi\left(t, \mathbf{x}_{1}, \ldots, t, \mathbf{x}_{N}\right)$

Domain of ψ : space-like configurations $\quad \Omega \subset \underbrace{\mathbb{R}^{1+d} \times \cdots \times \mathbb{R}^{1+d}}_{N \text { times }}$

Hamiltonian multi-time equations

Evolution equations:

$$
\begin{aligned}
& i \frac{\partial}{\partial t_{1}} \psi=H_{1} \psi \\
& \vdots \\
& i \frac{\partial}{\partial t_{N}} \psi=H_{N} \psi
\end{aligned}
$$

Consistency condition:

No-go theorem (Petrat/Tumulka 2015)

Interaction potentials excluded, i.e. if

then this has to be gauge-equivalent to $V_{i} \equiv V_{i}\left(x_{i}\right)$.

Hamiltonian multi-time equations

Evolution equations:

$$
\begin{gathered}
i \frac{\partial}{\partial t_{1}} \psi=H_{1} \psi \\
\vdots \\
i \frac{\partial}{\partial t_{N}} \psi=H_{N} \psi
\end{gathered}
$$

Consistency condition: $\left[i \partial_{t_{1}}-H_{1}, i \partial_{t_{2}}-H_{2}\right] \stackrel{!}{=} 0$

> No-go theorem (Petrat/Tumulka 2015)
> Interaction potentials excluded, i.e. if $H_{i}=H_{0, i}^{\text {Dirac }}+V_{i}\left(x_{1}, x_{2}\right)$
> then this has to be gauge-equivalent to $V_{i} \equiv V_{i}\left(x_{i}\right)$.

Hamiltonian multi-time equations

Evolution equations:

$$
\begin{aligned}
& i \frac{\partial}{\partial t_{1}} \psi=H_{1} \psi \\
& \vdots \\
& i \frac{\partial}{\partial t_{N}} \psi=H_{N} \psi
\end{aligned}
$$

Consistency condition: $\left[i \partial_{t_{1}}-H_{1}, i \partial_{t_{2}}-H_{2}\right] \stackrel{!}{=} 0$

No-go theorem (Petrat/Tumulka 2015)

Interaction potentials excluded, i.e. if

$$
H_{i}=H_{0, i}^{\text {Dirac }}+V_{i}\left(x_{1}, x_{2}\right)
$$

then this has to be gauge-equivalent to $V_{i} \equiv V_{i}\left(x_{i}\right)$.

Interaction via boundary conditions: a $(1+1)$-dim. model

Assumptions: $\quad N=2, \quad d=1, \quad m_{1}=m_{2}=0, \quad \psi=\left(\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}\right)$

Multi-time Dirac equations on Ω :

$$
\begin{aligned}
i \frac{\partial}{\partial t_{1}} \psi\left(t_{1}, z_{1}, t_{2}, z_{2}\right) & =-i \sigma_{3} \otimes 1 \frac{\partial}{\partial z_{1}} \psi\left(t_{1}, z_{1}, t_{2}, z_{2}\right) \\
i \frac{\partial}{\partial t_{2}} \psi\left(t_{1}, z_{1}, t_{2}, z_{2}\right) & =-i 1 \otimes \sigma_{3} \frac{\partial}{\partial z_{2}} \psi\left(t_{1}, z_{1}, t_{2}, z_{2}\right)
\end{aligned}
$$

Initial conditions at $t_{1}=t_{2}=0$

Boundary conditions at $\mathcal{C}=\left\{\left(t_{1}, z_{1}, t_{2}, z_{2}\right): t_{1}=t_{2}, z_{1}=z_{2}\right\}$

Basic idea: multi-time characteristics

Write out the two-time system in matrix-vector form:

$$
\begin{aligned}
i \frac{\partial}{\partial t_{1}}\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right) & =-i\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & -1 & \\
& & & -1
\end{array}\right) \frac{\partial}{\partial z_{1}}\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right), \\
i \frac{\partial}{\partial t_{2}}\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right) & =-i\left(\begin{array}{cccc}
1 & & & \\
& -1 & & \\
& & 1 & \\
& & & -1
\end{array}\right) \frac{\partial}{\partial z_{2}}\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right) .
\end{aligned}
$$

$$
\text { E.g. for } \psi_{1} \text { : } \quad\left(\frac{\partial}{\partial t_{1}}+\frac{\partial}{\partial z_{1}}\right) \psi_{1}=0, \quad\left(\frac{\partial}{\partial t_{2}}+\frac{\partial}{\partial z_{2}}\right) \psi_{1}=0
$$

Basic idea: multi-time characteristics

Write out the two-time system in matrix-vector form:

$$
\begin{aligned}
i \frac{\partial}{\partial t_{1}}\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right) & =-i\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & -1 & \\
& & & -1
\end{array}\right) \frac{\partial}{\partial z_{1}}\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right), \\
i \frac{\partial}{\partial t_{2}}\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right) & =-i\left(\begin{array}{cccc}
1 & & & \\
& -1 & & \\
& & 1 & \\
& & & -1
\end{array}\right) \frac{\partial}{\partial z_{2}}\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right) .
\end{aligned}
$$

E.g. for ψ_{1} : $\quad\left(\frac{\partial}{\partial t_{1}}+\frac{\partial}{\partial z_{1}}\right) \psi_{1}=0, \quad\left(\frac{\partial}{\partial t_{2}}+\frac{\partial}{\partial z_{2}}\right) \psi_{1}=0$

$$
\Rightarrow \quad \psi_{1}\left(t_{1}, z_{1}, t_{2}, z_{2}\right)=f_{1}\left(z_{1}-t_{1}, z_{2}-t_{2}\right) .
$$

Existence and uniqueness result

Theorem

There exists a unique C^{k} solution of the following initial boundary value problem on Ω_{1} (i.e. Ω with $z_{1}<z_{2}$):

$$
\begin{aligned}
\psi_{i}\left(0, z_{1}, 0, z_{2}\right) & \stackrel{!}{=} g_{i}\left(z_{1}, z_{2}\right), \quad z_{1}<z_{2}, \quad i=1,2,3,4 \\
\psi_{2}(t, z-0, t, z+0) & \stackrel{!}{=} h_{2}(t, z), \quad t<0, \quad z \in \mathbb{R} \\
\psi_{3}(t, z-0, t, z+0) & \stackrel{!}{=} h_{3}(t, z), \quad t>0, \quad z \in \mathbb{R}
\end{aligned}
$$

where g_{i}, h_{j} are C^{k} functions and compatible, i.e. the transitions between initial values and boundary conditions is also C^{k}.

Relativistic probability conservation

Conserved tensor current: $\quad j^{\mu \nu}\left(x_{1}, x_{2}\right)=\bar{\psi}\left(x_{1}, x_{2}\right) \gamma^{\mu} \otimes \gamma^{\nu} \psi\left(x_{1}, x_{2}\right)$
$d=1: \quad \gamma^{0}=\sigma_{1}, \gamma^{1}=\sigma_{1} \sigma_{3}, \quad \partial_{1, \mu} j^{\mu \nu}=\partial_{2, \nu} j^{\mu \nu}=0$,

Probability conservation on space-like hypersurfaces Σ :

$$
\int_{(\Sigma \times \Sigma) \cap \Omega} d \sigma_{\mu}\left(x_{1}\right) d \sigma_{\nu}\left(x_{2}\right) j^{\mu \mu}\left(x_{1}, x_{2}\right)=1 \forall \Sigma
$$

Theorem
Probability conservation as well as existence and uniqueness are ensured for boundary conditions

Relativistic probability conservation

Conserved tensor current: $\quad j^{\mu \nu}\left(x_{1}, x_{2}\right)=\bar{\psi}\left(x_{1}, x_{2}\right) \gamma^{\mu} \otimes \gamma^{\nu} \psi\left(x_{1}, x_{2}\right)$

$$
d=1: \quad \gamma^{0}=\sigma_{1}, \gamma^{1}=\sigma_{1} \sigma_{3}, \quad \partial_{1, \mu} j^{\mu \nu}=\partial_{2, \nu} j^{\mu \nu}=0, \quad j^{00}=\psi^{\dagger} \psi
$$

Probability conservation on space-like hypersurfaces Σ :

$$
\int_{(\Sigma \times \Sigma) \cap \Omega} d \sigma_{\mu}\left(x_{1}\right) d \sigma_{\nu}\left(x_{2}\right) j^{\mu \mu}\left(x_{1}, x_{2}\right)=1 \forall \Sigma
$$

Theorem
 Probability conservation as well as existence and uniqueness are ensured for boundary conditions

Relativistic probability conservation

Conserved tensor current: $\quad j^{\mu \nu}\left(x_{1}, x_{2}\right)=\bar{\psi}\left(x_{1}, x_{2}\right) \gamma^{\mu} \otimes \gamma^{\nu} \psi\left(x_{1}, x_{2}\right)$

$$
d=1: \quad \gamma^{0}=\sigma_{1}, \gamma^{1}=\sigma_{1} \sigma_{3}, \quad \partial_{1, \mu} j^{\mu \nu}=\partial_{2, \nu} j^{\mu \nu}=0, \quad j^{00}=\psi^{\dagger} \psi
$$

Probability conservation on space-like hypersurfaces Σ :

$$
\int_{(\Sigma \times \Sigma) \cap \Omega} d \sigma_{\mu}\left(x_{1}\right) d \sigma_{\nu}\left(x_{2}\right) j^{\mu \nu}\left(x_{1}, x_{2}\right)=1 \forall \Sigma
$$

Theorem

Probability conservation as well as existence and uniqueness are ensured for boundary conditions

Relativistic probability conservation

Conserved tensor current: $\quad j^{\mu \nu}\left(x_{1}, x_{2}\right)=\bar{\psi}\left(x_{1}, x_{2}\right) \gamma^{\mu} \otimes \gamma^{\nu} \psi\left(x_{1}, x_{2}\right)$

$$
d=1: \quad \gamma^{0}=\sigma_{1}, \gamma^{1}=\sigma_{1} \sigma_{3}, \quad \partial_{1, \mu} j^{\mu \nu}=\partial_{2, \nu} j^{\mu \nu}=0, \quad j^{00}=\psi^{\dagger} \psi
$$

Probability conservation on space-like hypersurfaces Σ :

$$
\int_{(\Sigma \times \Sigma) \cap \Omega} d \sigma_{\mu}\left(x_{1}\right) d \sigma_{\nu}\left(x_{2}\right) j^{\mu \nu}\left(x_{1}, x_{2}\right)=1 \forall \Sigma
$$

Theorem

Probability conservation as well as existence and uniqueness are ensured for boundary conditions

$$
\psi_{2}(t, z-0, t, z+0) \stackrel{!}{=} e^{-i \theta} \psi_{3}(t, z-0, t, z+0) \forall t, z
$$

Lorentz invariance

Apart from the boundary conditions, LI is manifest. Representation of the proper Lorentz group $\mathcal{L}_{+}^{\uparrow}$ in $d=1$:

- Just one generator (boosts in z-direction).

- $S_{i}[\Lambda]=\exp \left(\frac{\beta}{2} \gamma_{i}^{0} \gamma_{i}^{1}\right), \quad \beta \in \mathbb{R}$
- $\psi_{1}\left(x_{1}, x_{2}\right) \stackrel{\wedge}{\longmapsto}\left(\cosh ^{2} \beta+2 \cosh \beta \sinh \beta+\sinh ^{2} \beta\right) \psi_{1}\left(\Lambda^{-1} x_{1}, \Lambda^{-1} x_{2}\right)$ $\psi_{2}\left(x_{1}, x_{2}\right) \stackrel{\wedge}{\longmapsto} \psi_{2}\left(\Lambda^{-1} x_{1}, \Lambda^{-1} x_{2}\right)$

Conclusion: $\psi_{2}(t, z-0, t, z+0) \stackrel{+}{=} e^{-i \theta} \psi_{3}(t, z-0, t, z+0) \forall t, z$ is also

Lorentz invariance

Apart from the boundary conditions, LI is manifest.
Representation of the proper Lorentz group $\mathcal{L}_{+}^{\uparrow}$ in $d=1$:

- Just one generator (boosts in z-direction).

- $S_{i}[\Lambda]=\exp \left(\frac{\beta}{2} \gamma_{i}^{0} \gamma_{i}^{1}\right), \quad \beta \in \mathbb{R}$

Conclusion:

Lorentz invariance

Apart from the boundary conditions, LI is manifest.
Representation of the proper Lorentz group $\mathcal{L}_{+}^{\uparrow}$ in $d=1$:

- Just one generator (boosts in z-direction).
- $\psi\left(x_{1}, x_{2}\right) \stackrel{\wedge}{\longmapsto} S_{1}[\wedge] S_{2}[\Lambda] \psi\left(\Lambda^{-1} x_{1}, \Lambda^{-1} x_{2}\right)$
- $S_{i}[\Lambda]=\exp \left(\frac{\beta}{2} \gamma_{i}^{0} \gamma_{i}^{1}\right), \quad \beta \in \mathbb{R}$

Lorentz invariance

Apart from the boundary conditions, LI is manifest.
Representation of the proper Lorentz group $\mathcal{L}_{+}^{\uparrow}$ in $d=1$:

- Just one generator (boosts in z-direction).
- $\psi\left(x_{1}, x_{2}\right) \stackrel{\wedge}{\longmapsto} S_{1}[\Lambda] S_{2}[\Lambda] \psi\left(\Lambda^{-1} x_{1}, \Lambda^{-1} x_{2}\right)$
- $S_{i}[\Lambda]=\exp \left(\frac{\beta}{2} \gamma_{i}^{0} \gamma_{i}^{1}\right), \quad \beta \in \mathbb{R}$

Lorentz invariance

Apart from the boundary conditions, LI is manifest.
Representation of the proper Lorentz group $\mathcal{L}_{+}^{\uparrow}$ in $d=1$:

- Just one generator (boosts in z-direction).
- $\psi\left(x_{1}, x_{2}\right) \stackrel{\wedge}{\longmapsto} S_{1}[\Lambda] S_{2}[\Lambda] \psi\left(\Lambda^{-1} x_{1}, \Lambda^{-1} x_{2}\right)$
- $S_{i}[\Lambda]=\exp \left(\frac{\beta}{2} \gamma_{i}^{0} \gamma_{i}^{1}\right), \beta \in \mathbb{R}$

Conclusion:

Lorentz invariance

Apart from the boundary conditions, LI is manifest.
Representation of the proper Lorentz group $\mathcal{L}_{+}^{\uparrow}$ in $d=1$:

- Just one generator (boosts in z-direction).
- $\psi\left(x_{1}, x_{2}\right) \stackrel{\wedge}{\longmapsto} S_{1}[\Lambda] S_{2}[\Lambda] \psi\left(\Lambda^{-1} x_{1}, \Lambda^{-1} x_{2}\right)$
- $S_{i}[\Lambda]=\exp \left(\frac{\beta}{2} \gamma_{i}^{0} \gamma_{i}^{1}\right), \quad \beta \in \mathbb{R}$
- $\psi_{1}\left(x_{1}, x_{2}\right) \stackrel{\wedge}{\longmapsto}\left(\cosh ^{2} \beta+2 \cosh \beta \sinh \beta+\sinh ^{2} \beta\right) \psi_{1}\left(\Lambda^{-1} x_{1}, \Lambda^{-1} x_{2}\right)$
$\psi_{2}\left(x_{1}, x_{2}\right) \stackrel{\wedge}{\longmapsto} \psi_{2}\left(\Lambda^{-1} x_{1}, \Lambda^{-1} x_{2}\right)$
$\psi_{3}\left(x_{1}, x_{2}\right) \stackrel{\wedge}{\longmapsto} \psi_{3}\left(\Lambda^{-1} x_{1}, \Lambda^{-1} x_{2}\right)$
$\psi_{4}\left(x_{1}, x_{2}\right) \stackrel{\wedge}{\longmapsto}\left(\cosh ^{2} \beta-2 \cosh \beta \sinh \beta+\sinh ^{2} \beta\right) \psi_{4}\left(\Lambda^{-1} x_{1}, \Lambda^{-1} x_{2}\right)$
Conclusion: $\psi_{2}(t, z-0, t, z+0)$

Lorentz invariance

Apart from the boundary conditions, LI is manifest.
Representation of the proper Lorentz group $\mathcal{L}_{+}^{\uparrow}$ in $d=1$:

- Just one generator (boosts in z-direction).
- $\psi\left(x_{1}, x_{2}\right) \stackrel{\wedge}{\longmapsto} S_{1}[\Lambda] S_{2}[\Lambda] \psi\left(\Lambda^{-1} x_{1}, \Lambda^{-1} x_{2}\right)$
- $S_{i}[\Lambda]=\exp \left(\frac{\beta}{2} \gamma_{i}^{0} \gamma_{i}^{1}\right), \quad \beta \in \mathbb{R}$
- $\psi_{1}\left(x_{1}, x_{2}\right) \stackrel{\Lambda}{\longmapsto}\left(\cosh ^{2} \beta+2 \cosh \beta \sinh \beta+\sinh ^{2} \beta\right) \psi_{1}\left(\Lambda^{-1} x_{1}, \Lambda^{-1} x_{2}\right)$
$\psi_{2}\left(x_{1}, x_{2}\right) \stackrel{\wedge}{\longmapsto} \psi_{2}\left(\Lambda^{-1} x_{1}, \Lambda^{-1} x_{2}\right)$
$\psi_{3}\left(x_{1}, x_{2}\right) \stackrel{\wedge}{\longmapsto} \psi_{3}\left(\Lambda^{-1} x_{1}, \Lambda^{-1} x_{2}\right)$
$\psi_{4}\left(x_{1}, x_{2}\right) \stackrel{\wedge}{\longmapsto}\left(\cosh ^{2} \beta-2 \cosh \beta \sinh \beta+\sinh ^{2} \beta\right) \psi_{4}\left(\Lambda^{-1} x_{1}, \Lambda^{-1} x_{2}\right)$
Conclusion: $\psi_{2}(t, z-0, t, z+0) \stackrel{!}{=} e^{-i \theta} \psi_{3}(t, z-0, t, z+0) \forall t, z$ is also LI!

Interaction

Usually: interaction defined by potential term in Hamiltonian. More general criterion needed here.

Criterion
 A model is interacting if there exist initial product wave functions that become entangled during time evolution.

Calculate time evolution of initial product states $\psi=\phi \otimes \chi$

> Theorem
> The model is interacting.

Interaction

Usually: interaction defined by potential term in Hamiltonian. More general criterion needed here.

Criterion

A model is interacting if there exist initial product wave functions that become entangled during time evolution.

Calculate time evolution of initial product states

Theorem
The model is interacting.

Interaction

Usually: interaction defined by potential term in Hamiltonian. More general criterion needed here.

Criterion

A model is interacting if there exist initial product wave functions that become entangled during time evolution.

Calculate time evolution of initial product states $\psi=\phi \otimes \chi$:

Theorem

The model is interacting.

Summary

We have obtained the first multi-time model with the following properties:

- Rigorous (existence and uniqueness of solutions)
- Manifestly Iorentz invariant
- Relativistic probability conservation
- Interacting

Summary

We have obtained the first multi-time model with the following properties:

- Rigorous (existence and uniqueness of solutions)
- Manifestly Lorentz invariant
- Relativistic probability conservation
- Interacting

Summary

We have obtained the first multi-time model with the following properties:

- Rigorous (existence and uniqueness of solutions)
- Manifestly Lorentz invariant
- Relativistic probability conservation
- Interacting

Summary

We have obtained the first multi-time model with the following properties:

- Rigorous (existence and uniqueness of solutions)
- Manifestly Lorentz invariant
- Relativistic probability conservation
- Interacting

Summary

We have obtained the first multi-time model with the following properties:

- Rigorous (existence and uniqueness of solutions)
- Manifestly Lorentz invariant
- Relativistic probability conservation
- Interacting

Questions?

Paper: M. Lienert, J. Math. Phys. 56, 042301 (2015), arXiv:1411. 2833

