Interacting relativistic quantum dynamics for multi-time wave functions

Matthias Lienert

Mathematical Institute, LMU Munich - Working group Dürr/Pickl/Deckert J. Math. Phys. 56, 042301 (2015)

August 26, 2015

Setting: N particles, coordinates $x_k = (t_k, \mathbf{x}_k) \in \mathbb{R}^{1+d}$

Non-relativistic (single-time) Schrödinger picture: $\varphi(\mathbf{x}_1,...,\mathbf{x}_N;t)$

Multi-time Schrödinger picture: $\psi(t_1, \mathbf{x}_1, ..., t_N, \mathbf{x}_N)$

Relation: $\varphi(\mathbf{x}_1,...,\mathbf{x}_N;t) = \psi(t,\mathbf{x}_1,...,t,\mathbf{x}_N)$

Setting: N particles, coordinates $x_k = (t_k, \mathbf{x}_k) \in \mathbb{R}^{1+d}$

Non-relativistic (single-time) Schrödinger picture: $\varphi(\mathbf{x}_1,...,\mathbf{x}_N;t)$

Multi-time Schrödinger picture: $\psi(t_1, \mathbf{x}_1, ..., t_N, \mathbf{x}_N)$

Relation: $\varphi(\mathbf{x}_1,...,\mathbf{x}_N;t) = \psi(t,\mathbf{x}_1,...,t,\mathbf{x}_N)$

Setting: N particles, coordinates $x_k = (t_k, \mathbf{x}_k) \in \mathbb{R}^{1+d}$

Non-relativistic (single-time) Schrödinger picture: $\varphi(\mathbf{x}_1,...,\mathbf{x}_N;t)$

Multi-time Schrödinger picture: $\psi(t_1, \mathbf{x}_1, ..., t_N, \mathbf{x}_N)$

Relation: $\varphi(\mathbf{x}_{1},...,\mathbf{x}_{N};t) = \psi(t,\mathbf{x}_{1},...,t,\mathbf{x}_{N})$

Setting: *N* particles, coordinates $x_{k} = (t_{k}, \mathbf{x}_{k}) \in \mathbb{R}^{1+d}$

Non-relativistic (single-time) Schrödinger picture: $\varphi(\mathbf{x}_1,...,\mathbf{x}_N;t)$

Multi-time Schrödinger picture: $\psi(t_1, \mathbf{x}_1, ..., t_N, \mathbf{x}_N)$

Relation: $\varphi(\mathbf{x}_1,...,\mathbf{x}_N;t) = \psi(t,\mathbf{x}_1,...,t,\mathbf{x}_N)$

Setting: *N* particles, coordinates $x_k = (t_k, \mathbf{x}_k) \in \mathbb{R}^{1+d}$

Non-relativistic (single-time) Schrödinger picture: $\varphi(\mathbf{x}_1, ..., \mathbf{x}_N; t)$

Multi-time Schrödinger picture: $\psi(t_1, \mathbf{x}_1, ..., t_N, \mathbf{x}_N)$

Relation: $\varphi(\mathbf{x}_1,...,\mathbf{x}_N;t) = \psi(t,\mathbf{x}_1,...,t,\mathbf{x}_N)$

Hamiltonian multi-time equations

Evolution equations:

$$i\frac{\partial}{\partial t_1}\psi = H_1\psi$$

$$\vdots$$

$$i\frac{\partial}{\partial t_N}\psi = H_N\psi$$

Consistency condition: $[i\partial_{t_1} - H_1, i\partial_{t_2} - H_2] \stackrel{!}{=} 0$

No-go theorem (Petrat/Tumulka 2015)

Interaction potentials excluded, i.e. if

$$H_i = H_{0,i}^{\text{Dirac}} + V_i(x_1, x_2)$$

then this has to be gauge-equivalent to $V_i \equiv V_i(x_i)$

Hamiltonian multi-time equations

Evolution equations:

$$i\frac{\partial}{\partial t_1}\psi = H_1\psi$$

$$\vdots$$

$$i\frac{\partial}{\partial t_N}\psi = H_N\psi$$

Consistency condition: $[i\partial_{t_1} - H_1, i\partial_{t_2} - H_2] \stackrel{!}{=} 0$

No-go theorem (Petrat/Tumulka 2015)

Interaction potentials excluded, i.e. if

$$H_i = H_{0,i}^{\text{Dirac}} + V_i(x_1, x_2)$$

then this has to be gauge-equivalent to $V_i \equiv V_i(x_i)$.

Hamiltonian multi-time equations

Evolution equations:

$$i\frac{\partial}{\partial t_1}\psi = H_1\psi$$

$$\vdots$$

$$i\frac{\partial}{\partial t_N}\psi = H_N\psi$$

Consistency condition: $[i\partial_{t_1} - H_1, i\partial_{t_2} - H_2] \stackrel{!}{=} 0$

No-go theorem (Petrat/Tumulka 2015)

Interaction potentials excluded, i.e. if

$$H_i = H_{0,i}^{\text{Dirac}} + V_i(x_1, x_2)$$

then this has to be gauge-equivalent to $V_i \equiv V_i(x_i)$.

Interaction via boundary conditions: a (1+1)-dim. model

Assumptions: N = 2, d = 1, $m_1 = m_2 = 0$, $\psi = (\psi_1, \psi_2, \psi_3, \psi_4)$

Multi-time Dirac equations on Ω :

$$i\frac{\partial}{\partial t_1}\psi(t_1,z_1,t_2,z_2) = -i\sigma_3 \otimes 1\frac{\partial}{\partial z_1}\psi(t_1,z_1,t_2,z_2)$$

$$i\frac{\partial}{\partial t_2}\psi(t_1,z_1,t_2,z_2) = -i1\otimes\sigma_3\frac{\partial}{\partial z_2}\psi(t_1,z_1,t_2,z_2)$$

Initial conditions at $t_1 = t_2 = 0$

Boundary conditions at $C = \{(t_1, z_1, t_2, z_2) : t_1 = t_2, z_1 = z_2\}$

Basic idea: multi-time characteristics

Write out the two-time system in matrix-vector form:

$$\begin{split} i\frac{\partial}{\partial t_1} \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix} &= -i \begin{pmatrix} 1 \\ & 1 \\ & & -1 \\ & & & -1 \end{pmatrix} \frac{\partial}{\partial z_1} \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix}, \\ i\frac{\partial}{\partial t_2} \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix} &= -i \begin{pmatrix} 1 \\ & -1 \\ & & 1 \\ & & -1 \end{pmatrix} \frac{\partial}{\partial z_2} \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix}. \end{split}$$

E.g. for
$$\psi_1$$
: $\left(\frac{\partial}{\partial t_1} + \frac{\partial}{\partial z_1}\right) \psi_1 = 0$, $\left(\frac{\partial}{\partial t_2} + \frac{\partial}{\partial z_2}\right) \psi_1 = 0$
 $\Rightarrow \psi_1(t_1, z_1, t_2, z_2) = f_1(\mathbf{z_1} - \mathbf{t_1}, \mathbf{z_2} - \mathbf{t_2}).$

Basic idea: multi-time characteristics

Write out the two-time system in matrix-vector form:

$$\begin{split} i\frac{\partial}{\partial t_1} \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix} &= -i \begin{pmatrix} 1 \\ & 1 \\ & -1 \\ & & -1 \end{pmatrix} \frac{\partial}{\partial z_1} \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix}, \\ i\frac{\partial}{\partial t_2} \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix} &= -i \begin{pmatrix} 1 \\ & -1 \\ & & 1 \\ & & -1 \end{pmatrix} \frac{\partial}{\partial z_2} \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix}. \end{split}$$

E.g. for
$$\psi_1$$
: $\left(\frac{\partial}{\partial t_1} + \frac{\partial}{\partial z_1}\right) \psi_1 = 0$, $\left(\frac{\partial}{\partial t_2} + \frac{\partial}{\partial z_2}\right) \psi_1 = 0$
 $\Rightarrow \psi_1(t_1, z_1, t_2, z_2) = f_1(z_1 - t_1, z_2 - t_2)$.

Existence and uniqueness result

Theorem

There exists a unique C^k solution of the following initial boundary value problem on Ω_1 (i.e. Ω with $z_1 < z_2$):

$$\psi_i(0, z_1, 0, z_2) \stackrel{!}{=} g_i(z_1, z_2), \quad z_1 < z_2, \quad i = 1, 2, 3, 4$$
 $\psi_2(t, z - 0, t, z + 0) \stackrel{!}{=} h_2(t, z), \quad t < 0, \quad z \in \mathbb{R}$
 $\psi_3(t, z - 0, t, z + 0) \stackrel{!}{=} h_3(t, z), \quad t > 0, \quad z \in \mathbb{R}$

where g_i , h_j are C^k functions and compatible, i.e. the transitions between initial values and boundary conditions is also C^k .

Conserved tensor current:
$$j^{\mu\nu}(x_1,x_2) = \overline{\psi}(x_1,x_2)\gamma^{\mu}\otimes\gamma^{\nu}\psi(x_1,x_2)$$

$$d = 1$$
: $\gamma^0 = \sigma_1$, $\gamma^1 = \sigma_1 \sigma_3$, $\partial_{1,\mu} j^{\mu\nu} = \partial_{2,\nu} j^{\mu\nu} = 0$, $j^{00} = \psi^{\dagger} \psi$

Probability conservation on space-like hypersurfaces Σ :

$$\int_{(\Sigma \times \Sigma) \cap \Omega} \!\!\! d\sigma_{\mu}(x_1) d\sigma_{\nu}(x_2) \; j^{\mu\nu}(x_1, x_2) \; = \; 1 \; \; \forall \; \Sigma$$

Theorem

$$\psi_2(t,z-0,t,z+0) \stackrel{!}{=} e^{-i\theta}\psi_3(t,z-0,t,z+0) \ \forall t,z$$

Conserved tensor current:
$$j^{\mu\nu}(x_1,x_2)=\overline{\psi}(x_1,x_2)\gamma^{\mu}\otimes\gamma^{\nu}\psi(x_1,x_2)$$
 $d=1$: $\gamma^0=\sigma_1$, $\gamma^1=\sigma_1\sigma_3$, $\partial_{1,\mu}j^{\mu\nu}=\partial_{2,\nu}j^{\mu\nu}=0$, $j^{00}=\psi^{\dagger}\psi$

Probability conservation on space-like hypersurfaces Σ :

$$\int_{(\Sigma \times \Sigma) \cap \Omega} \!\!\! d\sigma_{\mu}(x_1) d\sigma_{\nu}(x_2) \; j^{\mu\nu}(x_1, x_2) \; = \; 1 \; \; \forall \; \Sigma$$

Theorem

$$\psi_2(t,z-0,t,z+0) \stackrel{!}{=} e^{-i\theta}\psi_3(t,z-0,t,z+0) \ \forall t,z$$

Conserved tensor current:
$$j^{\mu\nu}(x_1,x_2)=\overline{\psi}(x_1,x_2)\gamma^{\mu}\otimes\gamma^{\nu}\psi(x_1,x_2)$$
 $d=1$: $\gamma^0=\sigma_1$, $\gamma^1=\sigma_1\sigma_3$, $\partial_{1,\mu}j^{\mu\nu}=\partial_{2,\nu}j^{\mu\nu}=0$, $j^{00}=\psi^{\dagger}\psi$

Probability conservation on space-like hypersurfaces Σ :

$$\int_{(\Sigma \times \Sigma) \cap \Omega} \!\!\! d\sigma_{\mu}(x_1) d\sigma_{\nu}(x_2) \, j^{\mu\nu}(x_1, x_2) \, = \, 1 \; \; \forall \; \Sigma$$

Theorem

$$\psi_2(t,z-0,t,z+0) \stackrel{!}{=} e^{-i\theta}\psi_3(t,z-0,t,z+0) \ \forall t,z.$$

Conserved tensor current:
$$j^{\mu\nu}(x_1,x_2)=\overline{\psi}(x_1,x_2)\gamma^{\mu}\otimes\gamma^{\nu}\psi(x_1,x_2)$$
 $d=1$: $\gamma^0=\sigma_1$, $\gamma^1=\sigma_1\sigma_3$, $\partial_{1,\mu}j^{\mu\nu}=\partial_{2,\nu}j^{\mu\nu}=0$, $j^{00}=\psi^{\dagger}\psi$

Probability conservation on space-like hypersurfaces Σ :

$$\int_{(\Sigma \times \Sigma) \cap \Omega} \!\!\! d\sigma_{\mu}(x_1) d\sigma_{\nu}(x_2) \, j^{\mu\nu}(x_1, x_2) \; = \; 1 \; \; \forall \; \Sigma$$

Theorem

$$\psi_2(t,z-0,t,z+0) \stackrel{!}{=} e^{-i\theta}\psi_3(t,z-0,t,z+0) \ \forall t,z.$$

Apart from the boundary conditions, LI is manifest.

Representation of the proper Lorentz group \mathcal{L}_+^{\uparrow} in d=1

- Just one generator (boosts in z-direction).
- $\bullet \ \psi(x_1, x_2) \ \stackrel{\wedge}{\longmapsto} \ S_1[\Lambda] S_2[\Lambda] \, \psi(\Lambda^{-1}x_1, \Lambda^{-1}x_2)$
- $S_i[\Lambda] = \exp(\frac{\beta}{2}\gamma_i^0\gamma_i^1), \quad \beta \in \mathbb{R}$
- $\psi_{1}(x_{1}, x_{2}) \xrightarrow{\Lambda} (\cosh^{2}\beta + 2\cosh\beta \sinh\beta + \sinh^{2}\beta)\psi_{1}(\Lambda^{-1}x_{1}, \Lambda^{-1}x_{2})$ $\psi_{2}(x_{1}, x_{2}) \xrightarrow{\Lambda} \psi_{2}(\Lambda^{-1}x_{1}, \Lambda^{-1}x_{2})$ $\psi_{3}(x_{1}, x_{2}) \xrightarrow{\Lambda} \psi_{3}(\Lambda^{-1}x_{1}, \Lambda^{-1}x_{2})$ $\psi_{4}(x_{1}, x_{2}) \xrightarrow{\Lambda} (\cosh^{2}\beta - 2\cosh\beta \sinh\beta + \sinh^{2}\beta)\psi_{4}(\Lambda^{-1}x_{1}, \Lambda^{-1}x_{2})$

Apart from the boundary conditions, LI is manifest.

Representation of the proper Lorentz group $\mathcal{L}_{+}^{\uparrow}$ in d=1:

- Just one generator (boosts in z-direction).
- $\bullet \ \psi(x_1, x_2) \ \stackrel{\wedge}{\longmapsto} \ S_1[\Lambda] S_2[\Lambda] \ \psi(\Lambda^{-1}x_1, \Lambda^{-1}x_2)$
- $S_i[\Lambda] = \exp(\frac{\beta}{2}\gamma_i^0\gamma_i^1), \quad \beta \in \mathbb{R}$
- $\psi_1(x_1, x_2) \xrightarrow{\Lambda} (\cosh^2 \beta + 2 \cosh \beta \sinh \beta + \sinh^2 \beta) \psi_1(\Lambda^{-1}x_1, \Lambda^{-1}x_2)$ $\psi_2(x_1, x_2) \xrightarrow{\Lambda} \psi_2(\Lambda^{-1}x_1, \Lambda^{-1}x_2)$ $\psi_3(x_1, x_2) \xrightarrow{\Lambda} \psi_3(\Lambda^{-1}x_1, \Lambda^{-1}x_2)$ $\psi_4(x_1, x_2) \xrightarrow{\Lambda} (\cosh^2 \beta - 2 \cosh \beta \sinh \beta + \sinh^2 \beta) \psi_4(\Lambda^{-1}x_1, \Lambda^{-1}x_2)$

Apart from the boundary conditions, LI is manifest.

Representation of the proper Lorentz group $\mathcal{L}_{+}^{\uparrow}$ in d=1:

• Just one generator (boosts in z-direction).

$$\bullet \ \psi(x_1, x_2) \ \stackrel{\wedge}{\longmapsto} \ S_1[\Lambda] S_2[\Lambda] \ \psi(\Lambda^{-1}x_1, \Lambda^{-1}x_2)$$

•
$$S_i[\Lambda] = \exp(\frac{\beta}{2}\gamma_i^0\gamma_i^1), \quad \beta \in \mathbb{R}$$

•
$$\psi_1(x_1, x_2) \stackrel{\wedge}{\longmapsto} (\cosh^2 \beta + 2 \cosh \beta \sinh \beta + \sinh^2 \beta) \psi_1(\Lambda^{-1}x_1, \Lambda^{-1}x_2)$$

 $\psi_2(x_1, x_2) \stackrel{\wedge}{\longmapsto} \psi_2(\Lambda^{-1}x_1, \Lambda^{-1}x_2)$
 $\psi_3(x_1, x_2) \stackrel{\wedge}{\longmapsto} \psi_3(\Lambda^{-1}x_1, \Lambda^{-1}x_2)$
 $\psi_4(x_1, x_2) \stackrel{\wedge}{\longmapsto} (\cosh^2 \beta - 2 \cosh \beta \sinh \beta + \sinh^2 \beta) \psi_4(\Lambda^{-1}x_1, \Lambda^{-1}x_2)$

Apart from the boundary conditions, LI is manifest.

Representation of the proper Lorentz group $\mathcal{L}_{+}^{\uparrow}$ in d=1:

- Just one generator (boosts in z-direction).
- $\psi(x_1, x_2) \stackrel{\Lambda}{\longmapsto} S_1[\Lambda] S_2[\Lambda] \psi(\Lambda^{-1}x_1, \Lambda^{-1}x_2)$
- $S_i[\Lambda] = \exp(\frac{\beta}{2}\gamma_i^0\gamma_i^1), \quad \beta \in \mathbb{R}$

Apart from the boundary conditions, LI is manifest.

Representation of the proper Lorentz group $\mathcal{L}_{+}^{\uparrow}$ in d=1:

- Just one generator (boosts in z-direction).
- $\psi(x_1, x_2) \stackrel{\wedge}{\longmapsto} S_1[\Lambda] S_2[\Lambda] \psi(\Lambda^{-1}x_1, \Lambda^{-1}x_2)$
- $S_i[\Lambda] = \exp(\frac{\beta}{2}\gamma_i^0\gamma_i^1), \quad \beta \in \mathbb{R}$
- $\psi_{1}(x_{1}, x_{2}) \stackrel{\Lambda}{\longmapsto} (\cosh^{2}\beta + 2\cosh\beta \sinh\beta + \sinh^{2}\beta)\psi_{1}(\Lambda^{-1}x_{1}, \Lambda^{-1}x_{2})$ $\psi_{2}(x_{1}, x_{2}) \stackrel{\Lambda}{\longmapsto} \psi_{2}(\Lambda^{-1}x_{1}, \Lambda^{-1}x_{2})$ $\psi_{3}(x_{1}, x_{2}) \stackrel{\Lambda}{\longmapsto} \psi_{3}(\Lambda^{-1}x_{1}, \Lambda^{-1}x_{2})$ $\psi_{4}(x_{1}, x_{2}) \stackrel{\Lambda}{\longmapsto} (\cosh^{2}\beta - 2\cosh\beta \sinh\beta + \sinh^{2}\beta)\psi_{4}(\Lambda^{-1}x_{1}, \Lambda^{-1}x_{2})$

Apart from the boundary conditions, LI is manifest.

Representation of the proper Lorentz group $\mathcal{L}_{+}^{\uparrow}$ in d=1:

- Just one generator (boosts in z-direction).
- $\psi(x_1, x_2) \stackrel{\wedge}{\longmapsto} S_1[\Lambda] S_2[\Lambda] \psi(\Lambda^{-1}x_1, \Lambda^{-1}x_2)$
- $S_i[\Lambda] = \exp(\frac{\beta}{2}\gamma_i^0\gamma_i^1), \quad \beta \in \mathbb{R}$
- $\psi_1(x_1, x_2) \stackrel{\Lambda}{\longmapsto} (\cosh^2 \beta + 2 \cosh \beta \sinh \beta + \sinh^2 \beta) \psi_1(\Lambda^{-1}x_1, \Lambda^{-1}x_2)$ $\psi_2(x_1, x_2) \stackrel{\Lambda}{\longmapsto} \psi_2(\Lambda^{-1}x_1, \Lambda^{-1}x_2)$ $\psi_3(x_1, x_2) \stackrel{\Lambda}{\longmapsto} \psi_3(\Lambda^{-1}x_1, \Lambda^{-1}x_2)$ $\psi_4(x_1, x_2) \stackrel{\Lambda}{\longmapsto} (\cosh^2 \beta - 2 \cosh \beta \sinh \beta + \sinh^2 \beta) \psi_4(\Lambda^{-1}x_1, \Lambda^{-1}x_2)$

Apart from the boundary conditions, LI is manifest.

Representation of the proper Lorentz group $\mathcal{L}_{+}^{\uparrow}$ in d=1:

- Just one generator (boosts in z-direction).
- $\psi(x_1, x_2) \stackrel{\wedge}{\longmapsto} S_1[\Lambda] S_2[\Lambda] \psi(\Lambda^{-1}x_1, \Lambda^{-1}x_2)$
- $S_i[\Lambda] = \exp(\frac{\beta}{2}\gamma_i^0\gamma_i^1), \quad \beta \in \mathbb{R}$
- $\psi_1(x_1, x_2) \stackrel{\Lambda}{\longmapsto} (\cosh^2 \beta + 2 \cosh \beta \sinh \beta + \sinh^2 \beta) \psi_1(\Lambda^{-1}x_1, \Lambda^{-1}x_2)$ $\psi_2(x_1, x_2) \stackrel{\Lambda}{\longmapsto} \psi_2(\Lambda^{-1}x_1, \Lambda^{-1}x_2)$ $\psi_3(x_1, x_2) \stackrel{\Lambda}{\longmapsto} \psi_3(\Lambda^{-1}x_1, \Lambda^{-1}x_2)$ $\psi_4(x_1, x_2) \stackrel{\Lambda}{\longmapsto} (\cosh^2 \beta - 2 \cosh \beta \sinh \beta + \sinh^2 \beta) \psi_4(\Lambda^{-1}x_1, \Lambda^{-1}x_2)$

Interaction

Usually: interaction defined by potential term in Hamiltonian. More general criterion needed here.

Criterion

A model is **interacting** if there exist initial product wave functions that become entangled during time evolution.

Calculate time evolution of initial product states $\psi = \phi \otimes \chi$:

Theorem

The model is interacting.

Interaction

Usually: interaction defined by potential term in Hamiltonian. More general criterion needed here.

Criterion

A model is **interacting** if there exist initial product wave functions that become entangled during time evolution.

Calculate time evolution of initial product states $\psi = \phi \otimes \chi$:

 $\mathsf{Theorem}$

The model is interacting.

Interaction

Usually: interaction defined by potential term in Hamiltonian. More general criterion needed here.

Criterion

A model is **interacting** if there exist initial product wave functions that become entangled during time evolution.

Calculate time evolution of initial product states $\psi = \phi \otimes \chi$:

Theorem

The model is interacting.

- Rigorous (existence and uniqueness of solutions)
- Manifestly Lorentz invariant
- Relativistic probability conservation
- Interacting

- Rigorous (existence and uniqueness of solutions)
- Manifestly Lorentz invariant
- Relativistic probability conservation
- Interacting

- Rigorous (existence and uniqueness of solutions)
- Manifestly Lorentz invariant
- Relativistic probability conservation
- Interacting

- Rigorous (existence and uniqueness of solutions)
- Manifestly Lorentz invariant
- Relativistic probability conservation
- Interacting

- Rigorous (existence and uniqueness of solutions)
- Manifestly Lorentz invariant
- Relativistic probability conservation
- Interacting

Questions?

Paper: M. Lienert, J. Math. Phys. 56, 042301 (2015), arXiv:1411.2833